Safety functions and solutions

 using PreventaCatalogue
2008/2009

Schneider

Safety Functions and Solutions using Preventa

1 Safety functions $1 / 2$
Contents chapter 1 $1 / 0$
2 Safety automation system solutions
Contents chapter 2 2/0
Preventa safety PLCs 2/2
Selection guide: Safety PLCs. 2/2
Preventa safety controllers 2/104
Selection guide: Safety controllers 2/104
Preventa safety modules 2/162
Selection guide: Safety modules 2/162
Safety solutions on AS-Interface cabling system 2/264
Selection guide: Safety monitors and interfaces 2/264
Safety modules integrated in automation platform 2/274
Selection guide: Safety modules for automation platform 2/274
3 Safety detection solutions
Contents chapter 3 $3 / 0$
Safety switches $3 / 2$
Selection guide: Safety switches. 3/2
Safety mats 3/84
Selection guide: Safety mats 3/84
Safety light curtains, type 4 and type 2 3/96
Selection guide: Safety light curtains, types 4 and 2 3/96
4 Safety dialogue solutions
Contents chapter 4 $4 / 0$
Selection guide: Dialogue components 4/2
Emergency stop trip wire switches 4/4
Foot switches. 4/14
Enabling switches for safety circuits. 4/26
Two-hand ergonomic control stations 4/28
Emergency Stop pushbuttons Ø 22 4/34
Control stations for emergency Stop pushbuttons Ø 22 4/42
Beacons and indicator banks $\varnothing \mathbf{7 0}$ mm 4/46
Rotating mirror beacons 4/60
Sirens 4/62
5 Safety control \& protection solutions
Contents chapter 5 5/0
Selection guide: Mini-VARIO switch and Vario disconnectors 5/2
Mini-VARIO and VARIO switch disconnectors 5/4
VARIO enclosed switch disconnectors 5/16
Selection guide: Direct starters for safety applications. 5/26
Thermal-magnetic motor circuit breakers 5/28
Enclosed thermal-magnetic motor circuit breakers, assembled by customer 5/30
Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE. 5/34
Selection guide: Contactors 5/44
6 Safety of personnel and equipment 6/2
Contents chapter 6. 6/0
7 Technical information
Contents chapter 7 7/0
Protective treatment of equipment according to climatic environment 7/2
Product standards and certifications 7/4
Degrees of protection provided by enclosures 7/6
Product reference index 7/8
Selection of protective functions 1/2
Emergency stop function and principal protective functions 1/4
Guards without locking device 1/4
Guards with interlocking device 1/4
Coded magnetic guard switch and system 1/5
Safety light curtains 1/5
Safety mats 1/6
Two-hand control stations 1/6
Enabling grip switch 1/7
Selection of Preventa safety solutions 1/8
Selection of Preventa safety products 1/10
Application examples
Optimised compact machine 1/12
Upgradable compact machine. 1/14

Safety functions
 Selection of protective functions

On the basis of the risk estimation established, the designer will select one or more protective functions that will meet the needs.
The standards classify these functions into two distinct groups.

Emergency stops

This function, required on all machines, is not considered as a principal method of risk reduction. It supplements other protective measures (standard EN/ISO 12100).

Depending on the type of stop, the standard recognises three categories (see details below):

- emergency stop categories 0 or 1 ,
- controlled stop categories 1 or 2 , generally used with variable speed drives
(please refer to our specific Variable Speed Drive catalogues).

Selection of safety function families

Emergency stop		Protective solutions		
		Protective functions		
Control of access to hazardous zones				
Stop category 0	Stop category 1	Stop category 2		Interlocking Guard
:---				

Access to hazardous zones:
Free, frequent to continuous
Occasional
(e.g.: once per shift)
or frequent (1)

(1) in case of risk of ejection.

Safety functions
 Selection of protective functions (continued)

Protection methods

The functions selected, as shown in the chart below, are based on two criteria:
1 persons may occasionally enter the hazardous zones or may work continuously within a hazardous zone
2 the methods adopted to reduce the risks involve the use of defined functions.

Safety functions

Emergency stop function
and Principal protective functions

Guards without guard locking device

Guards with guard locking device

Stop category 0
Emergency stop function

Sub-elements of the emergency stop function

Guard with guard locking device

Guard without guard locking device

Emergency stop function

International standard EN/ISO 13850 (which replaces standard EN 418) specifies the functional requirements and design principles of emergency stop devices. It applies to all machines, whatever type of energy is used to control this function.

When the emergency stop instruction ceases, the effect must be maintained until it is reset. Manual resetting must only be possible in the location where the instruction was given.
Resetting must not start the machine, but simply enable the starting cycle. Restarting of the machine must not be possible until the emergency stop has been reset.

The standard allows two types of stop:

- category 0 : stopping by immediate cutting-off of power or mechanical disconnection between the dangerous components,
- category 1 stop: controlled stopping with power maintained to the actuator to achieve stopping (braking for example), then cut-off of power when standstill is reached
The choice between these two stopping methods is determined by an evaluation of the machine-related risks

This function includes several sub-functions but is generally represented by the drawings opposite.

The operator interface may be:

- a pushbutton equipped with a mushroom head,
- a cable actuated switch,
- a foot switch.

Guards without guard locking device

On a large number of potentially dangerous machines, the operator must be kept at a distance during operation, but needs to take action when the machine is stopped to position a part, remove a product or adjust a tool.

An effective means of protection is to install a guard which, according to the type of installation, will cut-off the power to the motor if an attempt is made to open it during the machine operating phase
In all cases, it must not be possible to restart the machine until the guard is closed.

Depending on the level of protection required, the system will comprise two conventional limit switches or a combination of protected, actuator operated guard switches to prevent tampering.

Guards with guard locking device

This type of guard is necessary for potentially dangerous machines with high inertia (long rundown time).
The guard is interlocked (by a solenoid for example); it cannot be opened until the machine has come to a complete standstill.

Safety functions
 Principal protective functions (continued)
 Coded magnetic guard switch and system
 Safety light curtains

Coded magnetic guard switch

Functions of coded magnetic guard switches

Self-contained coded magnetic system (integral processing)

Safety light curtain

Coded magnetic guard switch and system

A non-contact solution is often used on industrial machines fitted with a door or guards with imprecise guiding.
It is particularly suitable for machines subjected to frequent washing or splashing of liquids as well as small machines with a single guard for self-contained systems.

Depending on the models used, the sensing distance will be between 5 and 10 mm .

The reed contacts used for the coded magnetic switches cannot withstand shortcircuits and the switches always incorporate a resistor in series. Their operation can therefore only be guaranteed with the associated processing module.

The Hall-effect self-contained systems with integral processing do not require any further processing of the signal.

The illustrations opposite show the functions of coded magnetic guard switches and of a system.

Safety light curtains

Safety light curtains are electro-sensitive systems (Electro-Sensitive Protective Equipment) designed to protect persons working in the vicinity of machinery, by stopping dangerous movements when a light beam is broken.

The absence of a door or guard reduces loading, inspection or tool changing times.
This type of system, defined by standards EN/IEC 61496-1 and EN/IEC 61496-2, is frequently used with machines such as:

- presses,
- machine tools
- assembly lines, etc

The machine must be designed so that it is impossible to gain access to dangerous movements without breaking one or more of the light beams In addition, the movement must be stopped whatever the entry speed of the operator into the hazardous zone.

The diagram opposite illustrates the operation of a light curtain.

Safety functions
 Principal protective functions (continued)
 Safety mats
 Two-hand control stations

Safety mat

Example of a safety mat application

Two-hand control station

Functions of a two-hand control station

[^0]
Safety mats

Safety mats are used to detect persons walking across or standing on the mat or objects falling onto the mat.
Standards EN 1760-1/ISO 13856 define their performance.
Any detection of an object on the mat initiates stopping of any dangerous machine movement.
Restarting can be controlled manually or automatically, depending on the configuration of the associated processing unit.

When pressure is applied, the mat distorts locally and the integrated sensors are short-circuited.
The special design of these sensors requires that the mat and the detection module be matched.

In general, several mats are used to cover the safety zone.
The safety distance \mathbf{S}, defined by the standard, takes into account the speed at which a person can cross the safety zone to reach the hazardous zone.

Two-hand control stations

Standards ISO 13851 and EN 574 define this device.
It requires simultaneous operation by both hands in order to start and maintain operation of a machine.
It therefore provides protection exclusively for the person operating it.

A diagram representing the function is given opposite; it must meet the following requirements:

- concurrent, maintained operation of the two input controls for the same period of time,
- synchronous operation; the delay between the two signals must not exceed 0.5 s ,
- prevention of accidental operation (mechanical guard),
- protection against tampering.

Safety functions
 Principal protective functions (continued)
 Enabling switch (grip switch)

Enabling switch

Marking identifying an enabling switch

Enabling switch XY2 AU1:
2 enabling functions,
3 positions + 1 N/C

Enabling switch

Enabling switches, allow authorised personnel to carry out maintenance, adjustment or programming operations within hazardous zones of machines, provided certain conditions are met.
These devices conform to standards EN/IEC 60947-5-8 and EN/IEC 60204-1. In effect, to gain access, these operations, often performed at reduced speed, must be selected by authorised personnel using selectors with key or equivalent.

Important note: the enabling switch alone must not lead to the actuation of any dangerous movements associated with the machine; a secondary, intentional, control action is required from the operator

All devices which conform to the standard must be identified by the marking scheme shown opposite.

Operating principle

The three possible states are:

- position 0: contact open (control operator at rest),
- position 1: contact closed (control operator depressed to normal enabling position),
- position 2: contact open (control operator fully depressed).

When the switch is depressed in position 1, it must return to position 0 when released.
The switch must change from position 1 to position 2 when pressed more firmly When it is released from position 2 to position 0 , the switching contact must not close.

Operating principle of an enabling switch

Safety functions
Selection of Preventa safety solutions

The table below indicates the associated control solutions for each safety function.
The Schneider Electric range of safety control solutions comprises four product families:

- dedicated safety modules with one or two safety functions,
- configurable controllers managing several safety functions,
- safety monitors and interfaces dedicated to the AS-Interface system, allowing use of a single medium for control and safety,
- safety PLCs used within complex safety systems.

Architecture
Setting-up
Diagnostics

Functions Emergency stop monitoring

Monitoring of emergency stop and of a guard with timer Monitoring of a guard with safety switch Monitoring of a guard with coded magnetic switch Monitoring of safety mats and sensitive edges Two-hand control station (type IIIC acc. EN 574) Two-hand control station (type IIIA acc. EN 574) Monitoring of type 4 safety light curtains, solid- state outputs and test function Monitoring of single-beam photo-electric sensors (transmitter + receiver) with test input and built-in muting function Monitoring of 2 to 4 type 2 and type 4 light curtains Monitoring of a type 4 light curtain with relay output Monitoring muting function of 2 light curtains with transistor outputs Monitoring of an enabling switch Zero speed detection on motor Monitoring the position of a lift cabin Dynamic valve monitoring on linear hydraulic presses Dynamic monitoring of double-bodied solenoid valves Safety stop at top dead centre with automatic overtravel monitoring on eccentric presses Safety foot switch

Simple machines
Wired link
LED
-
Solid-state outputs

Machines with several safety functions	
Configurable by pushbuttons	Configurable by software
LED	LED
-	PC
Solid-state outputs	Modbus serial link (RTU), CANopen, Profibus DP

Product families
Safety modules
Configurable safety controllers

XPS AC, XPS AF, XPS AK, XPS AR, XPS AX	X	X
XPS ATE, XPS AV	X	X
XPS AC, XPS AF, XPS AK, XPS AR, XPS AX	X	X
XPS DMB, XPS DME	X	X
XPS AK	X	X
XPS BC, XPS BF	-	X
XPS BA	-	-
XPS AFL, XPS AR, XPS AK	X	X
XPS CM	-	-
XPS LCD	-	X
-	-	X
XPS LCM	-	-
XPS VC	X	X
XPS VNE	-	X
XPS DA	-	X
XPS PVT	-	X
XPS PVK	-	X
XPS OT	-	X
-	-	X

The product family provides the function.
:The product family provides the function after programming (by means of pushbutton or software, depending on the product).
: The product family does not provide the function.

Machines using AS-Interface			Communication network
Interface to be connected	Built-in interfaces	Monitor library configurable by software	
		LED	LED
	-	PC	PC
		AS-Interface	Modbus serial link (RTU), Modbus TCP/IP, Profibus DP
ASI SSLB4, ASI SSLE4, ASI SSLE5	ASI SEA1C, ASI SSK1C ASI SSLE4, ASI SSLE5	x	x
-	-	-	X
ASI SSLC1, ASI SSLC2, ASI SSLLS	-	X	X
ASI SSLC1, ASI SSLC2, ASI SSLLS	-	X	X
-	-	X	X
$2 \times$ ASI SSLC2	-	X	X
-	-	X	X
-	-	X	X
-	-	-	-
-	-	X	X
ASI SSLC1, ASI SSLC2, ASI SSLLS	-	X	X
-	-	-	-
-	-	-	X
-	-	-	X
-	-	-	X
-	-	-	X
-	-	-	x
-	-	-	X
ASI SSLC1, ASI SSLC2, ASI SSLLS	-	X	X

Safety functions
Selection of Preventa safety products

This selection table indicates which safety products to select, according to the required safety functions.

Final selection will be made by consulting the specific catalogue pages for each of these products.

Safety control solution

Configurable safety	max. Category 1, $P L=b$	SIL 1
Several safety functions controllers,	max. Category 2, $P L=c$	SIL 1
Hard wired, Fieldbus for	max. Category 3, $P L=d$	SIL 2
for XPS MC).	max. Category 4, $\mathrm{PL}=\mathrm{e}$	SIL 3

AS-Interface "safety at work"	max. Category 1 , $P L=b$	SIL 1
monitors and interfaces	max. Category 2, $P L=c$	SIL 1
Several safety functions, Safety Network,	max. Category 3, $P L=d$	SIL 2
Fieldbus for diagnostics.	max. Category 4, $\mathrm{PL}=\mathrm{e}$	SIL 3

Safety PLCs Several safety functions, Safety Network, Fieldbus for diagnostics.	max. Category 1, PL = b	SIL 1	X	X	X	X	X	X	X
	max. Category 2, PL = c	SIL 1	X	X	X	X	X	X	X
	max. Category 3, $P L=d$	SIL 2	X	X	X	X	X	X	X
	max. Category 4, $\mathrm{PL}=\mathrm{e}$	SIL 3	X	X	X	X	X	X	X

$\mathrm{XPS} A C, \ldots$	$:$ The solution is specifically provided by the products indicated.
\mathbf{X}	: The solution is provided by the products.
-	The solution is not provided by the products.

Starting and enabling of dangerous movements		Safety monitoring functions				Functions for specific machines		
Two-hand control station	Enabling switch (grip switch)	Zero speed detection (remanent voltage)	Zero speed detection/safety speed reduction	Safety timer	Increasing the number of safety contacts	Safety valve monitoring	Safety function for presses	Lift cabin levelling and door monitoring
XPS BA	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	XPS VNE	-	XPS TSA XPS TSW	-	-	-	-
XPS BC, XPS BF	XPS VC	-	-	-	XPS ECM, XPS ECP	XPS PVT, XPS PVK	XPS OT	XPS DA
XPS BA	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
XPS MC	XPS MP, XPS MC	-	XPS MC	XPS MC	-	XPS MC	XPS MC	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
X	-	-	-	X	-	-	-	-
X	X	-	X	X	X	X	X	X
X	X	-	X	X	X	X	X	X
X	X	-	X	X	X	X	X	X
X	X	-	X	X	X	X	X	X

Typical application: compact packaging machine
 control circuit

Channel 2
Functional representation of the scheme conforming to EN/ISO 13849-1

Optimised compact machine

To aid understanding, we are presenting three application examples covering typical cases encountered in machines.
These examples are extracts from the Preferred Implementations proposed by Schneider Electric.
For clarity, only the safety functions will be detailed and, in all cases, the calculation methods corresponding to the following two standards will be used:

- standard EN/ISO 13849-1, which has replaced EN 954-1 that cannot be used after November 2009, defines Performance Levels PL,
- standard EN/IEC 62061 defines Safety Integrity Levels SIL.

A detailed presentation of these two standards is given on page 6/10.

Typical applications

Compact and repetitive machines, hard wired. We will choose a packaging machine as an example.

Description of safety functions

This application uses several motors which must be stopped when the safety guard is opened.
The estimated level of risk reduction for this function of the machine requires a performance level PL=d or a safety integrity level SIL = $\mathbf{2}$.
It will therefore be necessary to use:

- an XCS A guard switch 2-pole N/C + N/C,
- an XPS AC safety module,
- two LC1 K contactors in series.

Connections are by means of conventional wiring.

Calculation and component selection for a PL =d

To achieve the required performance level, two redundant channels must be used, corresponding to category 3 . The calculation is shown in the table below.

Cycle time (s)			60	
Number of hours' operation per day (h)			24	
Number of days' operation per year			365	
Number of operations per year			525600	
		Requirement: $P L=d$	Channel 1	Channel 2
Input (sensors) XCS A	B_{10}	-	1000000	1000000
	\% dangerous failure	-	20\%	20\%
	B10 ${ }_{\text {d }}$	-	5000000	5000000
	MTTF $_{\text {d }}$	-	95.13	95.13
	DC	-	0.0\%	0.0\%
Processing unit (safety module) XPS AC	MTTF ${ }_{\text {d }}$	-	315.5	315.5
	DC	-	99.9\%	99.9\%
Output (actuator) LC1 K	B_{10}	-	1000000	1000000
	\% dangerous failure	-	73\%	73\%
	$\mathrm{B}_{10 \mathrm{~d}}$	-	1369863	1369863
	MTTF ${ }_{\text {d }}$	-	156.38	156.38
	DC	-	99.0\%	99.0\%
Safety function	$\mathrm{MTTF}_{\text {dc }}$	$10 \leqslant \mathrm{MTTF}_{\mathrm{d}}<30$	23.48	23.48
	$\mathrm{DC}_{\text {avg }}$	60\% \leqslant DC < 99\%	79.1\%	
	MTTF $_{d}$ for the different channels	Category 3	19.21	

Safety functions

Application examples (continued)
Optimised compact machine (continued)

Functional representation of the scheme conforming to ENIIEC 62061

Architectures selected for the sub-systems

Optimised compact machine (continued) Calculation and component selection for a SIL =2

For sub-system 1, we will use a type B architecture: the safety guard switch contains redundant contacts.
Sub-system 2 is type D: diagnostics are performed by the mechanically-linked auxiliary contacts built-into the contactors and connected to the XPS AC safety module that incorporates this function.

The calculation method is shown in the table below.
The result conforms to the requirements.

Cycle time (s)	60
Cycle time in hours (h)	0.16667
Number of cycles per hour	60

		Type of sub-system	Requirement	Element 1	Element 2
Input (sensor) XCS A	$\begin{aligned} & \mathrm{B}_{10} \\ & \text { (operations) } \end{aligned}$	-	-	1000000	1000000
	Portion of dangerous failures \%	-	-	20\%	20\%
	λ	-	-	$6.00 \mathrm{E}^{-06}$	$6.00 \mathrm{E}^{-06}$
	$\lambda_{\text {D }}$	-	-	$1.20 \mathrm{E}^{-06}$	$1.20 \mathrm{E}^{-06}$
	β	-	-	10\%	
	Life expectancy in years			10	
	Life expectancy or test interval T1 (h)	-	-	87600	
	DC	-	-	0.0 \%	0.0 \%
	PFH ${ }_{\text {DSsB }}$	Sub-system B HFT = 1 no diagnostic function	SIL $=2$	$1.30 \mathrm{E}^{-08}$	
Processing unit (safety module) XPS AC	$\mathrm{PFH}_{\mathrm{DSsD}}$	Sub-system D HFT = 1 diagnostic function	SIL $=2$	$1.75 \mathrm{E}^{-09}$	
	DC	-	-	99.9\%	
Output (actuator) LC1 K	$\begin{aligned} & \mathrm{B}_{10} \\ & \text { (operations) } \\ & \hline \end{aligned}$	-	-	1000000	1000000
	Portion of dangerous failures \%	-	-	73\%	73\%
	λ	-	-	$6.00 \mathrm{E}^{-06}$	$6.00 \mathrm{E}^{-6}$
	$\lambda_{\text {D }}$	-	-	$4.38 \mathrm{E}^{-06}$	$4.38 \mathrm{E}^{-06}$
	β	-	-	5 \%	
	Life expectancy in years			20	
	Life expectancy or test interval T1 (h)	-	-	175200	
	DC	-	-	99\%	99\%
	$\mathrm{PFH}_{\text {DSSB }}$	Sub-system D HFT = 1 diagnostic function	SIL $=2$	$4.73 \mathrm{E}^{-07}$	
Safety-related control function	$\mathrm{PFH}_{\text {DSRECS }}$		$10^{-7} \leqslant \ldots<10^{-6}$	$2.64 \mathrm{E}^{-07}$	

Presentation

Safety functions
Application examples (continued)
Upgradable compact machine

Printing machine

Safety-related part of a printing machine scheme (the calculation is made on the portion of circuit surrounded in grey)

Functional analysis of the scheme conforming to EN/ISO 13849-1

Upgradable compact machine
 Typical applications

This type of machine is generally integrated into a manufacturing process and must be suited to the customer's process. To facilitate upgrading, a CanOpen fieldbus is used
Examples: woodworking machines, printing machines, packaging machines.

Description of safety functions

Protection systems will limit the possibility of access to hazardous areas. As the risk for operators is high, a performance level $\mathrm{PL}=\mathbf{e}$ or a safety integrity level SIL = 3 will be required.
It will therefore be necessary to use protective systems (partially represented on the scheme) such as guards, light curtains, etc.

The complexity of the circuit leads to selection of a controller to provide all the emergency stop and safety functions. It offers the advantage of being able to communicate the operating states and diagnostics on the fieldbus.
Contactors in series cut-off the power in variable speed drives.
Safety connections are made by means of conventional wiring.
The control system is monitored via a CanOpen fieldbus.

Calculation and component selection for a $\mathrm{PLr}=\mathrm{e}$

The required Performance Level of safety necessitates the use of category 4 products (redundancy and self-monitoring).
In compliance with standard EN/ISO 13849-1, the functional analysis is performed by splitting into channels. The figure opposite represents channels 1 to 8 which ensure operation of the scheme.
It should be noted that the contactors are common to several channels:

- C1 is common to channels $1,3,5$
- C 2 is common to channels $2,4,6$
- C3 is common to channels 3,7
- C4 is common to channels 4,8

For clarity, the calculation shown below only relates to channels 7 and 8 .

Cycle time (s)			360	
Number of hours' operation per day (h)			24	
Number of days' operation per year			365	
Number of operations per year			87600	
		Requirement: $P L=e$	Channel 7	Channel 8
Input (sensors) XCS PA, XCS M	B_{10}		1000000	10000000
	\% dangerous failures		20\%	20\%
	$\mathrm{B}_{10 \mathrm{~d}}$		5000000	50000000
	MTTF ${ }_{\text {d }}$		570.78	5707.76
	DC		99.0\%	99.0\%
Processing unit (controller) XPS MC	MTTF ${ }_{\text {d }}$		76.6	76.6
	DC		99.6\%	99.6\%
Output (actuator) LC1 K	B_{10}		1000000	1000000
	\% dangerous failures		73\%	73\%
	$\mathrm{B}_{10 \mathrm{~d}}$		1369863	1369863
	MTTF ${ }_{\text {d }}$		156.38	156.38
	DC		99.0\%	99.0\%
Safety function	$\mathrm{MTTF}_{\text {dc }}$	$30 \leqslant$ MTTF $_{\text {d }}<100$	47.17	50.96
	$\mathrm{DC}_{\text {avg }}$	DC $\geqslant 99 \%$	99.4\%	
	MTTF $_{\mathrm{d}}$ for the different channels	Category 4	49.09	

Safety functions

Application examples (continued)
Upgradable compact machine (continued)

Functional representation of the scheme conforming to EN/IEC 62061

Architecture of a type \boldsymbol{D} sub-system

Upgradable compact machine (continued) Specification of SRECS and calculation and component selection for a SIL = 3

As in the previous calculation, we will analyse the safety functions associated with motors M1.
On the figure representing the break-down into sub-systems, the required level SIL= 3 necessitates a type \mathbf{D} architecture for each sub-system: in addition to redundancy of the circuits, it includes a diagnostic function.

It should be noted that the diagnostic functions are provided by the XPS MC controller: it monitors operation of the sensors and contactors.

The calculation method is shown in the table below.
The result conforms to the SIL3 requirements.

Cycle time (s)				360	
Cycle time in hours (h)				0.1	
Number of cycles per hour				10	
		Type of sub-system	Requirement	Element 1	Element 2
Input (sensors) XCS PA, XCS PM	$\begin{aligned} & \mathrm{B}_{10} \\ & \text { (operations) } \\ & \hline \end{aligned}$			1000000	10000000
	Proportion of dangerous failures \%			20\%	20\%
	λ			$1.00 \mathrm{E}^{-06}$	$1.00 \mathrm{E}^{-07}$
	$\lambda_{\text {D }}$			$2.00 \mathrm{E}^{-07}$	$2.00 \mathrm{E}^{-08}$
	β			5\%	
	Life expectancy in years			10	
	Life expectancy or test interval T1 (h)			87600	
	DC			99.0\%	99.0\%
	$\mathrm{PFH}_{\text {ossd }}$	Sub-system D HFT = 1 diagnostic function	SIL $=3$	$5.50 \mathrm{E}^{-09}$	
Processing unit (controller) XPS MC	$\mathrm{PFH}_{\text {osso }}$	Sub-system D HFT = 1 diagnostic function	SIL $=3$	$1.29 \mathrm{E}^{-08}$	
	DC			99.6\%	
Output (actuators) $2 \times$ LC1 D	$\begin{aligned} & \mathrm{B}_{10} \\ & \text { (operations) } \\ & \hline \end{aligned}$			1000000	1000000
	Proportion of dangerous failures \%			73\%	73\%
	λ			$1.00 \mathrm{E}^{-06}$	$1.00 \mathrm{E}^{-06}$
	$\lambda_{\text {D }}$			$7.30 \mathrm{E}^{-07}$	$7.30 \mathrm{E}^{-07}$
	β			5\%	
	Life expectancy in years			20	
	Life expectancy or test interval T1 (h)			175200	
	DC			99.0\%	99.0\%
	$\mathrm{PFH}_{\text {osso }}$	Sub-system D HFT = 1 diagnostic function	$\mathrm{SIL}=3$	$3.73 \mathrm{E}^{-08}$	
Safety-related control function	PFH ${ }_{\text {dSRECS }}$		$10^{-8} \leqslant \ldots<10^{-7}$	$5.57 \mathrm{E}^{-08}$	

Preventa safety PLCs, XPS MF
Selection guide: Preventa safety PLCs, XPS MF 2/2
Preventa safety compact PLCs, XPS MF40. 2/4
Preventa safety compact PLCs, XPS MF31/30/35 2/18
Preventa safety modular PLC, XPS MF60:
■ Rack, power supply and central processing unit 2/34
■ "In rack" analogue input card. 2/50
■ "In rack" analogue output card 2/52
■ "In rack" mixed card: counting inputs/digital outputs 2/54
■ "In rack" digital input card (24 digital inputs). 2/56
■ "In rack" digital input card (32 digital inputs). 2/58
■ "In rack" digital I/O card 2/60
■ "In rack" relay output card 2/62
Communication on network and bus 2/64
Programming software XPSMFWIN
for Preventa safety compact and modular safety PLCs, XPS MF 2/68
Selection guide: safety remote input/output modules, XPS MF1/2/3 2/74
■ Safety remote input modules, XPS MF1 2/76

- Safety remote output modules, XPS MF2 2/80
■ Safety remote mixed I/O modules, XPS MF3 2/90
Preventa safety controllers
Selection guide: Preventa safety controllers 2/104
Controllers with pre-defined functions, XPS MP 2/106
Configurable controllers, XPS MC 2/118
Preventa safety modules
Selection guide: Preventa safety modules 2/162
Curves 2/172
Type XPS AC, for Emergency stop and switch monitoring 2/174
Type XPS AV and XPS ATE, for Emergency stop and switch monitoring 2/178
Type XPS AF, for Emergency stop and switch monitoring 2/186
Type XPS AFL,
for Emergency stop, switch and safety light curtain monitoring 2/190
Type XPS AR, for Emergency stop, switch or safety light curtain monitoring 2/194
Type XPS AK,
for Emergency stop, switch, sensing mat/edges or safety light curtain monitoring 2/200
Type XPS VC, for enabling switch monitoring 2/206
Type XPS BA, XPS BC and XPS BF, for electrical monitoring of two-hand control stations 2/208
Type XPS LCD,
for monitoring 2 to 4 safety light curtains type 2 and type 4 2/216
Type XPS LCM,
for the "muting" function of type 2 and type 4 safety light curtains. 2/220
Type XPS ECM and XPS ECP,
for increasing the number of safety contacts 2/228
Type XPS TSA and XPS TSW, for safety time delays 2/232
Type XPS DMB and XPS DME, for coded magnetic switch monitoring 2/236
Type XPS VNE, for zero speed detection 2/242
Type XPS DA, for lift control 2/248
Type XPS PVT,
for dynamic monitoring of hydraulic valves on linear presses 2/250
Type XPS PVK,
for dynamic monitoring of double-bodied solenoid valves. 2/254
Type XPS OT,
for safety stop with automatic overtravel monitoring and control 2/258
Dimensions 2/262
Safety solutions on AS-Interface cabling system
Selection guide: Safety monitors and interfaces 2/264
Safety monitors 2/266
Safety interfaces 2/270
Safety modules integrated in automation platform
Selection guide: Preventa safety modules for automation platform 2/274
Modicon TSX Micro automation platform 2/276
Modicon Premium automation platform 2/280

Selection guide
Safety automation system solutions
Preventa safety PLCs
Compact and modular, XPS MF

Products referenced XPS MF31222, XPS MF3022 and XPS MF35•• are marked HIMatrix F31, HIMatrix F30 and HIMatrix F35 (manufactured by Hima, sold by Schneider Electric).
Presentation
Products referenced XPS MF31222, XPS MF3022 and XPS MF35•• are

Compact PLCs:
 - Designed for use with numerous machine safety functions and for the protection of personnel.
 - Designed for use in safety related parts of control systems up to category 4 conforming to EN 954-1, up to performance level "e" conforming to EN/ISO 13849-1, and up to SIL 3 conforming to EN/IEC 61508.

User memory	Application
	Data
Response time	
Maximum consumption	
Supply	
Inputs Digital	Number of channels
	Current at state 0
	Current at state 1
Analogue	Number of channels
	Range: voltage/current
Counting	Number of channels
	Current
Outputs Digital	Number of channels
	Output current
Analogue	Number of channels
	Range: voltage/current
Relay	Number
	Switching voltage
Line control	
Input/output connections	
Communication on Ethernet network Safe communication using SafeEthernet protocol	
Non safe communication using Modbus TCP/IP protocol, server (slave)	
Communication on fieldbus Non safety using Modbus RTU protocol, slave (RS 485)	
Non safety using PROFIBUS DP protocol, (V0 slave)	
Safety PLC type	
See page	
"In rack" card type	
See page	

[^1]```
Modular PLC XPS MF60: metal rack XPS MFGEH01 with slots for power supply module XPS MFPS01, central processing unit XPS MFCPU22 and six "in rack"
I/O cards.
- Designed for use with numerous machine safety functions and for the protection of personnel.
- Designed for use in safety related parts of control systems up to category 4 conforming to EN 954-1, up to performance level "e" conforming to EN/ISO 13849-1
and up to SIL 3 conforming to EN/IEC 61508.
```



| 500 kB |
| :--- |
| 500 kB |
| Depending on size of application |

30 A max., 32 A external fuse
External -= 24 V supply (with separate protection conforming to EN/IEC 60950, SELV (Safety Extra Low Voltage) or PELV (Protection Extra Low Voltage) rated)

| - | - | - | 24, electrically isolated | 32 (2), electrically isolated | 24 (2), electrically isolated | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | 1 mA at 5 V | 1 mA at 5 V | - |
| - | - | - | $\geqslant 2.2 \mathrm{~mA}$ at 79 V | $\begin{aligned} & 2 \mathrm{~mA} \text { at }=10 \mathrm{~V}, \\ & 5 \mathrm{~mA} \text { at }=-24 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 2 \mathrm{~mA} \text { at }=10 \mathrm{~V} \text {, } \\ & 5 \mathrm{~mA} \text { at }=-24 \mathrm{~V} \end{aligned}$ | - |
| 8 single-pole or 42 -pole, configurable, electrically isolated | - | - | - | - | - | - |
| -10...+10 V/0... 20 mA (1) | - | - | - | - | - | - |
| - |  | 2 | - | - | - | - |
| - | - | $\begin{aligned} & 0.8 \mathrm{~A} \text { at }-=3.3 \mathrm{~V} \\ & 0.1 \mathrm{~A} \text { at }-5 \mathrm{~V} \\ & 0.1 \mathrm{~A}+\text { output } \\ & \text { current at }-\mathrm{z} .24 \mathrm{~V} \end{aligned}$ | - | - | - | - |
| - | - | 4 | - | - | 16 (3), electrically isolated | - |
| - | - | 0.5 A per channel, 2 A max. per "in rack" card | - | - | 2 A per channel at $30^{\circ} \mathrm{C}$, <br> 8 A max. at $30^{\circ} \mathrm{C}$ per "in rack" card | - |
| - | 8, electrically isolated | - | - | - | - | - |
| - | $\begin{aligned} & \hline-10 \ldots . .10 \mathrm{~V} / \\ & 0 \ldots . .20 \mathrm{~mA} \end{aligned}$ | - | - | - | - | - |
| - | - | - | - | - | - | 8 |
| - | - | - | - | - | - | $\sim 6 . .250 \mathrm{~V}$ |
| - | - | - | - | - | (3) | - |

Removable screw terminals are provided with "in rack" I/O cards and Power supply module

## By integrated RJ45 switched Ethernet communication ports

| yes |
| :--- |
| yes |


| yes |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| yes |  |  |  |  |  |  |
| XPS MFGEH01 (rack) + XPS MFPS01 (power supply) + XPS MFCPU22 (central processing unit) + "in rack" I/O cards (to be selected from below) |  |  |  |  |  |  |
| 2/44 |  |  |  |  |  |  |
| XPS MFA1801 | XPS MFA0801 | XPS MFCIO2401 | XPS MFDI2401 | XPS MFDI3201 | XPS MFDIO241601 | XPS MFD0801 |
| 2/51 | 2/53 | 2/55 | 2/57 | 2/59 | 2/61 | 2/63 |

[^2]

XPS MF4000
XPS MF4002


XPS MF4020
XPS MF4022


XPS MF4040
XPS MF4042

## Presentation

Preventa compact safety PLCs XPS MF40•• enable the monitoring of simple to complex safety functions for all industrial applications relating to the protection of personnel and machine safety.

Designed for use with numerous machine safety functions, these compact safety PLCs are intended for use in safety related parts of control systems.
They can manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.

The compact safety PLC range XPS MF40•e comprises of 6 versions that are differentiated by their non safety related communication protocols.

| Compact <br> PLCs | Digital <br> Inputs/Outputs | Line <br> contro <br> outputs | Communication |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| On Ethernet network | Safety <br> protocol | Non safety <br> protocol |  |  |  |
| XPS MF4000 | 24, configurable | 8 | SafeEthernet | - | - |
| XPS MF4002 | 24, configurable | 8 | SafeEthernet | Modbus TCP/IP <br> Server | - |
| XPS MF4020 | 24, configurable | 8 | SafeEthernet | - | Modbus serial <br> Slave (RTU) |
| XPS MF4022 | 24, configurable | 8 | SafeEthernet | Modbus TCP/IP <br> Server | Modbus serial <br> Slave (RTU) |
| XPS MF4040 | 24, configurable | 8 | SafeEthernet | - | PROFIBUS DP <br> V0 slave |
| XPS MF4042 | 24, configurable | 8 | SafeEthernet | Modbus TCP/IP <br> Server | PROFIBUS DP <br> V0 slave |

## Safety PLCs

In order to meet safety requirements, the compact safety PLCs XPS MF40•e incorporate two essential functions (Redundancy and Self-monitoring) complying to category 4 conforming to EN 954-1 and performance level "e" conforming to EN/ISO 13849-1 in addition to the SafeEthernet safety communication protocol between the safety PLCs and the safety remote I/O modules (Special Switch).

■ Redundancy: the triple processor integrated in the compact safety PLCs analyses and compares the data received from the safety inputs and outputs. The incoming and outgoing data (programmed values and received values) are received in parallel by the three processors and compared in real-time.
■ Self-monitoring ("Watchdog"): the compact safety PLCs continuously monitor the data processing cycle and the execution of tasks, and intervenes if the cycle time does not conform to the predefined value.

- The integrated switch (Special Switch) stores for a very short time and sends at very high speed the data provided by the inputs and outputs of the safety PLCs on the Ethernet network, whilst avoiding signal collisions and excessive amounts of data on the network.

Functional synoptics
Compact safety PLCs XPS 4000/MF4002


| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 4$ | page $2 / 10$ | page $2 / 12$ | Dimensions, mounting: |

## Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF 40

Functional synoptics (continued)
Compact safety PLCs XPS MF4020/MF4022


Compact safety PLCs XPS MF4040/MF4042


## Line control for safety PLCs XPS MF40•e

Line control is a means of short-circuit and line break monitoring.
Using line control outputs enables SIL 3 (EN/IEC 61508) and category 4 (EN 954-1) safety to be achieved. The line control outputs send a high signal with a very short low signal, thus enabling a wiring fault (short-circuit, line break) to be seen at the inputs of the safety PLCs.

The line control outputs 1 to 8 are connected to the digital inputs of the same circuit.
Example: Emergency stop pushbutton with two normally closed (N/C) contacts that are supplied by two different line control outputs connected via these two normally closed contacts and fed into the inputs of the safety PLCs

## Programming automated safety functions

Software XPS MFWIN (reference SSV1XPSMFWIN) running on a PC enables the programming of all safety remote I/O modules and safety PLCs, as well as configuration of the communication settings.

# Safety automation system solutions Preventa safety PLCs Compact, XPS MF40 



Example of mechanical integration of a compact safety PLC XPS MF40 on a Premium automation platform.

## 1 Premium rack

2 Power supply module
3 Premium processor module
4 Other Premium modules (communication, I/O)
5 Compact safety PLC XPS MF40

Compact safety PLCs XPS MF40•• incorporate:

- 24 configurable I/O channels
$\square$ digital inputs
$\square$ or digital outputs
- and $8(2 \times 4)$ line control output channels.


## Digital inputs

Compact safety PLCs XPS MF40•e incorporate up to 24 digital inputs for the connection of safety related input devices, such as emergency stop contacts, magnetic switches, light curtains, etc.

| Compact PLCs | Digital inputs |  |  |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{N}^{\circ}$ | Safety detection | Safety dialogue |
| XPS MF4000 | 24 | Limit switches, <br> Guard switches, with reset <br> and with actuator, <br> Safety light curtains type 2 <br> and type 4, <br> Safety mats and sensing <br> edges... | Mushroom head Emergency <br> stops, <br> Enclosures for control and <br> signalling units, <br> Two-hand control stations... |
| XPS MF4002 | 24 |  |  |
| XPS MF4020 | 24 | 24 |  |
| XPS MF4022 | 24 | 24 |  |
| XPS MF4040 |  |  |  |
| XPS MF4042 |  |  |  |

## Digital outputs

Compact safety PLCs XPS MF40•e incorporate up to 24 digital outputs for the connection of safety related output devices, such as contactors, illuminated beacons, sirens, etc.

| Compact PLCs | Digital outputs |  |  |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{N}^{\circ}$ | Safety actuators | Safety dialogue |
| XPS MF4000 | 24 | Contactors-motors, | Beacons and indicator banks, <br> Rotating mirror beacons, |
| XPS MF4002 | 24 | Contactors-reversing, <br> Variable speed drives... | Sirens... |
| XPS MF4020 | 24 |  |  |
| XPS MF4022 | 24 |  |  |
| XPS MF4040 | 24 |  |  |
| XPS MF4042 | 24 |  |  |


| Line control outputs |  |  |
| :--- | :--- | :--- |
| Compact PLCs | Line control outputs <br> $N^{\circ}$ |  |
| XPS MF4000 | 8 | Short-circuit and line break monitoring |
| XPS MF4002 | $(2 \times 4)$ |  |
| XPS MF4020 |  |  |
| XPS MF4022 |  |  |
| XPS MF4040 |  |  |
| XPS MF4042 |  |  |

## Remote inputs and outputs

In addition to the inputs/outputs integrated as standard, compact safety PLCs XPS MF40•e can be connected to safety remote input modules XPS MF1 and/or safety remote output modules XPS MF2 and/or safety remote mixed I/O modules XPS MF3.
The safety remote input, output and mixed I/O modules can be located within the vicinity of the machines to be monitored, thus reducing cabling.

Communication between these safety remote I/O modules and safety PLCs XPS MF40•• is performed on an Ethernet network using the SafeEthernet safety protocol, via the integrated RJ45 switched Ethernet communications ports.

Integrating safety PLCs XPS MF40 on a Premium automation platform
Designed for mechanical integration on a Premium automation platform, safety PLCs XPS MF40•• occupy 2 slots on the Premium rack TSX RKY.
There is interaction between the two programming environments (Unity and XPSMFWIN): the variables defined using software XPSMFWIN can be retrieved by Unity (platform programming software) by using a tool included in Safety Suite V2.

| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 4$ | page $2 / 10$ | page $2 / 12$ | Dimensions, mounting: |

## Safety automation system solutions Preventa safety PLCs Compact, XPS MF40

## Safety communication on Ethernet network

Communication between the PC, Magelis graphic terminals or automation platform (Premium) and the compact safety PLCs XPS MF40•• is achieved by Ethernet network connection via the integrated RJ45 switched Ethernet communication ports of the compact PLCs.


1 Premium automation platform: Modbus TCP/IP client.
2 Graphic terminal XBT GT: Modbus TCP/IP client.
3 Safety PLCs XPS MF40•e: Modbus TCP/IP servers.
4 Safety remote I/O modules XPS MF1/2/3. They communicate with safety PLCs XPS MF40॰2 using the SafeEthernet protocol.

## Communication on Modbus serial (RTU) and PROFIBUS DP fieldbus

- On Modbus serial (RTU), safety PLCs XPS MF4020 and XPS MF4022 are slaves of the Premium automation platform and Magelis graphic terminal.
They are connected to the Modbus serial network via their RJ45 connector.


1 Graphic terminal XBT GT: Modbus serial (RTU) master.
2 Premium automation platform: Modbus serial (RTU) master.
3 Safety PLCs XPS MF402e: Modbus serial (RTU) slave, Modbus TCP/IP server.
4 Safety remote I/O modules XPS MF1/2/3. They communicate with safety PLCs XPS MF402• using the SafeEthernet protocol
5 Graphic terminal XBT GT: Modbus serial (RTU) client.

■ On PROFIBUS DP, safety PLCs XPS MF4040 and XPS MF4042 are slaves of the Premium automation platform and Magelis graphic terminal.
They are connected to the PROFIBUS DP network via their SUB-D 9-pin connector.


1 Premium automation platform: PROFIBUS DP master.
2 Graphic terminal XBT GT: PROFIBUS DP master.
3 Safety PLC XPS MF404•: PROFIBUS DP slave, Modbus TCP/IP server.
4 Graphic terminal XBT GT: Modbus TCP/IP client.
5 Safety remote I/O modules XPS MF1/2/3. They communicate with safety PLCs XPS MF404• using the SafeEthernet protocol


## Description

## Safety PLCs XPS MF4000/MF4002

## On the front face of the enclosure:

1 One terminal block (1) for --- 24 V supply.
2 Two integrated RJ45 (type 10BASE-T/100BASE-TX) switched ports for programming, and for Safety and non-safety related communication on Ethernet (safety related using SafeEthernet protocol and Non-safety related using Modbus TCP/IP server protocol).
Process status LEDs.
One "Reset" button.
Six terminal blocks (1) for connection of configurable digital I/Os.
Two terminal blocks (1) for connection of line control outputs.
7 On the rear face: one removable plate with spring fixing for mounting on 35 mm - rail.

## Safety PLCs XPS MF4020/MF4022

On the front face of the enclosure:
1 One terminal block (1) for -- 24 V supply.
2 Two integrated RJ45 (type 10BASE-T/100BASE-TX) switched ports for programming, and for Safety and non-safety related communication on Ethernet (safety related using SafeEthernet protocol and Non-safety related using Modbus server protocol).
3 Process status LEDs.
4 One "Reset" button.
5 Six terminal blocks (1) for connection of configurable digital I/Os.
6 Two terminal blocks (1) for connection of line control outputs.
7 One RJ45 connector for connection on Modbus serial (RTU), with 2 process status LEDs.
8 On the rear face: one removable plate with spring fixing for mounting on 35 mm ப rail.

## Safety PLCs XPS MF4040/MF4042

On the front face of the enclosure:
1 One terminal block (1) for -- 24 V supply.
2 Two integrated RJ45 (type 10BASE-T/100BASE-TX) switched ports for programming, and for Safety and non-safety related communication on Ethernet (safety related using SafeEthernet protocol and Non-safety related using Modbus TCP/IP server protocol).
Process status LEDs.
One "Reset" button.
Six terminal blocks (1) for connection of configurable digital I/Os.
Two terminal blocks (1) for connection of line control outputs.
7 One SUB-D (9-pin female) connector for connection on PROFIBUS DP, with 2 process status LEDs.
8 On the rear face: one removable plate with spring fixing for mounting on 35 mm ᄂ rail.

| Presentation: | Characteristics: | References: | Dimensions, mounting: |
| :--- | :--- | :--- | :--- |
| page 2/4 | page $2 / 10$ | page 2/12 | page 2/15 |

## Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF40



Process status LEDs


1 Internal Ethernet LED
2 External Ethernet LEDs


Modbus serial (RTU) LEDs

## 

PROFIBUS DPLEDs

| LED details |  |  |  |
| :---: | :---: | :---: | :---: |
| Process status LEDs on safety PLCs XPS MF40•• |  |  |  |
| LED | Colour | Status | Meaning |
| 1... 24 | Green | On | Channels configured as inputs: input signal being received. Channels configured as outputs: output signal being sent. |
| T1...T8 | Green | On | Line control outputs active. |
| PWR | Green | On | -- 24 V voltage present. |
|  |  | Off | No voltage. |
| PG | Yellow | On | The CPU is being loaded with a new configuration. |
|  |  | Flashing | The FLASH ROM is being loaded with a new operating system. |
|  |  | Off | No loading of configuration or operating system. |
| ERR | Red | On | Software error or hardware fault detected by the CPU. |
|  |  |  | The monitoring program (Watchdog) has triggered the STOP state of the process because the programmed cycle time has been exceeded. |
|  |  |  | The CPU has stopped the execution of the user application, ended all hardware and software tests and all outputs have been reset. |
|  |  |  | The process can only be started again from the PC. |
|  |  | Off | No errors detected. |
| FAU | Orange | On | Error display for line control. |
|  |  |  | The user application has caused an error. |
|  |  |  | The system configuration is defective. |
|  |  |  | The loading of a new operating system was defective and the operating system is corrupt. |
|  |  | Flashing | An error has occurred whilst writing to FLASH ROM memory (during updating of the operating system). |
|  |  |  | One or more I/O errors have occurred. |
|  |  | Off | None of the above errors have occurred. |
| RUN | Green | On | Normal service mode, loaded program running, the PLC receives I/O messages, communication and hardware/software tests carried out. |
|  |  | Flashing | The CPU is in STOP and is not executing any user application. All the outputs are reset to a safe, de-energised state. |
|  |  | Off | The CPU is in "ERROR" state (see ERR). |
| FOR | Green | On | The CPU is in RUN mode and force is active. |
|  |  | Flashing | The system is not processing (STOP), but force is prepared and is activated if the triple processor is started. |
|  |  | Off | Force mode not activated. |
| OSL | Orange | Flashing | Emergency loading of the operating system is active. |
| BL | Orange | Flashing | COM in INIT_Fail state. |
| Ethernet LEDs on safety PLCs XPS MF40•• |  |  |  |
| LK/ACT external | Green | Off | No connection/link established. |
|  |  | On | Connection established/link established. |
|  |  | Flashing | External data exchange (speed 10... 100 Mbps ). |
| LK/ACT internal | Green | Off | No connection/link established. |
|  |  | On | Connection established/link established. |
|  |  | Flashing | Internal data exchange (speed 10... 100 Mbps ). |
| Modbus serial (RTU) LEDs on safety PLCs XPS MF4020/MF4022 |  |  |  |
| COM | Yellow | Off | No bus network signals being received or transmitted. |
|  |  | On | Bus network signals being received or transmitted. |
| RDY | Green | Off | Transmission power not available. |
|  |  | On | Equipment on. |
| PROFIBUS DP LEDs on safety PLCs XPS MF4040/MF4042 |  |  |  |
| RUN | Green | Off | Equipment not connected or not operational. |
|  |  | On | Equipment operational. |
| ERR | Red | Off | Transmission power not available or the slave is exchanging data. |
|  |  | On | Connection to other equipment is established but no data exchange is possible. <br> Bus disconnected or bus Master not available. |
|  |  | Flashing | A configuration error has occurred and no data exchange is possible. |

## Environment

Compact safety PLC type
Products designed for max. use in safety related parts of control systems (conforming to EN 954-1, EN/ISO 13849-1 and EN/IEC 61508)
Product certifications

| Ambient air temperature conforming to EN/IEC 61131-2 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
|  | ${ }^{\circ} \mathrm{C}$ |
| Relative humidity |  |
| Degree of protection Enclosure |  |
| Pollution |  |
| Altitude | m |
| Protection class |  |
| Electromagnetic compatibility |  |
| Vibration resistance $\quad$ Operating conforming to EN/IEC 61131-2 |  |
| Shock resistance Operating <br> conforming to EN/IEC 61131-2  |  |
| Resistance to electrostatic discharges conforming to EN/IEC 61000-4-2 | kV |
| Immunity to high frequency interference conforming to EN/IEC 61000-4-3 | V/m |

## Electrical characteristics

| Supply | Voltage | V | -- 24 (external supply with separate protection conforming to EN/IEC 60950, SELV (Safety Extra Low Voltage) or PELV (Protection Extra Low Voltage) rated) |
| :---: | :---: | :---: | :---: |
|  | Voltage limits |  | -15... 20 \% |
| Maximum consumption |  | A | 8 |
| Idle current |  | A | 0.5 |
| Immunity to momentary supply interruptions |  | ms | 10 |
| Protection |  |  | Internal fuse, 10A |
| Response time |  | ms | Depending on size of application |
| Clock |  |  | Supplied by backup capacitor for 1 week following loss of supply |
| User memory | Application | kB | 250 |
|  | Data | kB | 250 |
| LED display |  |  | Yes |
| Digital inputs |  |  |  |
| Number Inpun | Inputs not electrically isolated |  | 24, configurable channels |
| Permissible current | At state 0 | mA | 1.5 max. at - - 24 V |
|  | At state 1 | mA | 3.5 at $=-24 \mathrm{~V}, 4.5$ at $=-30 \mathrm{~V}$ |
| Input supply |  |  | $3 \mathrm{x}=-20 \mathrm{~V} / 100 \mathrm{~mA}$ (on 24 V ) |
| Input resistance |  | $\mathrm{k} \Omega$ | $<7$ |
| Overvoltage protection |  | V | -10, + 35 |
| LED display |  |  | Yes, see page 2/9 |
| Maximum distance of equipment |  | m | 300 |
| Digital outputs |  |  |  |
| Number O | Outputs not electrically isolated |  | 24, configurable channels |
| Output voltage |  | V | -- $24 \pm 2$ |
| Output current | Channels 1 to 3,5 to 7,9 to 11, 13 to 15,17 to 19,21 to 23 | A | 0.5 at $60^{\circ} \mathrm{C}$ |
|  | Channels 4, 8, 12, 16, 20 and 24 | A | 1 at $60^{\circ} \mathrm{C}, 2$ at $50^{\circ} \mathrm{C}$ |
| Minimum load |  | mA | 2 per channel |
| Leakage current at state 0 |  | mA | 1 max . at 2 V |
| Response to overload |  |  | Shutdown of outputs concerned with cyclic reconnection |
| Total output current |  | A | 7 max., shutdown of all outputs if exceeded with cyclic reconnection |
| LED display |  |  | Yes |
| Maximum distance of equipment |  | m | 300 |
| Line control outputs |  |  |  |
| Number O | Outputs not electrically isolated |  | $8(2 \times 4)$ |
| Output voltage |  | V | 20 , depending on the supply voltage |
| Output current |  | mA | 60 |
| Minimum load |  | mA | None |
| Response to overload |  |  | $4 \mathrm{x} \geqslant 19.2 \mathrm{~V} / 60 \mathrm{~mA}$ (on 24 V ), short-circuit current |
| LED display |  |  | Yes |
| Presentation: <br> page 2/4 | Characteristics: page 2/10 | Refere page 2 | ces: Dimensions, mounting: <br> page 2/15 Connections: <br> page 2/16 |

Characteristics (continued)

## Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF40



[^3]

XPS MF4000 XPS MF4002


XPS MF4020 XPS MF4022


XPS MF4040 XPS MF4042

| Compact safety PLCs |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --- 24 V supply |  |  |  |  |  |  |  |
| Digital Inputs or Outputs | Line control outputs | Communication on |  |  |  | Reference | Weight kg |
|  |  | Ethernet netw | vork | Modbus | PROFIBUS DP |  |  |
|  |  | SafeEthernet protocol | Modbus TCP/IP protocol | serial <br> (RTU) |  |  |  |
| 0... 24 configurable channels | $2 \times 4$ | Yes | - | - | - | XPS MF4000 | 1.000 |


| Yes, server | - | - | XPS MF4002 | 1.000 |
| :--- | :--- | :--- | :--- | :--- |


| Yes, server | Yes, <br> slave | - | XPS MF4022 | 1.000 |
| :--- | :--- | :--- | :--- | :--- |


| - | - | Yes, | XPS MF4040 | 1.000 |
| :--- | :--- | :--- | :--- | :--- |


| Yes, server | - | Yes, | XPS MF4042 | 1.000 |
| :--- | :--- | :--- | :--- | :--- |
|  | V0 slave |  |  |  |

## Configuration software

■ Reference SSV1XPSMFWIN is the full version of software XPSMFWIN version 4.1 and must be installed if no previous version of this software has been installed.
■ Reference SSVXPSMFWINUP is an update for software XPSMFWIN and can be used if SSV1XPSMFWIN has been installed using Safety Suite V1. An update from version 4.1 to version 4.1-6150 for the software XPSMFWIN will then be performed.

| Description | Operating <br> system | Details | Languages | Reference | Weight <br> kg |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Configuration software <br> XPSMFWIN for <br> programming compact <br> safety PLCs <br> CD-ROM + user manual | Windows 2000, <br> Windows XP | Software available <br> on Safety Suite V2 <br> software pack | English, <br> German, <br> French | SSV1XPSMFWIN | 0.520 |
| XPSMFWIN software <br> update <br> CD-ROM + user manual | Windows 2000, <br> Windows XP | Software update <br> available on Safety <br> Suite V2 software | English, <br> German, <br> prench | SSVXPSMFWINUP | 0.520 |
|  |  |  |  |  |  |


| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 4$ | page $2 / 10$ | page $2 / 12$ | Dimensions, mounting: |

# Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF40 



ABL 1 REM 24025


XBT GT2130, XBT GT2330


XBT GT4330


XBT GT5•30


XBT GT6330

[^4]

| Phaseo regulated switch mode power supplies |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mains input voltage | Output voltage | Nominal power | Nominal current | Auto-protect reset | Conformity to standard IEC EN 61000-3-2 and IEC EN 60950 | Reference | Weight |
| V | -. V | W | A |  |  |  | kg |
| Universal range, single-phase (N-L1) or 2-phase (L1-L2) connection |  |  |  |  |  |  |  |
| $\begin{aligned} & \sim 100 \ldots 120 \mathrm{~V} / 200 \ldots 500 \\ & -15 \%,+10 \% \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ | 24...28.8 | 72 | 3 | Auto/Manual | Yes | ABL 8RPS24030 | 0.300 |
|  |  | 120 | 5 | Auto/Manual | Yes | ABL 8RPS24050 | 0.700 |
|  |  | 240 | 10 | Auto/Manual | Yes | ABL 8RPS24100 | 1.000 |
| Dedicated range, single-phase connection |  |  |  |  |  |  |  |
| ~100... 240 (1) <br> wide range, $47 \ldots 63 \mathrm{~Hz}$ | 12 | 60 | 5 | Auto | No | ABL 1REM12050 | 0.440 |
|  | 24 | 60 | 2.5 | Auto | No | ABL 1REM24025 | 0.440 |
| $\sim 100 . .120 / 200 . . .240$ (2) | 24 | 240 | 10 | Auto | No | ABL 1REM24100 | 0.880 |

## Magelis multifunction graphic terminals with touch sensitive screen and on-board <br> Ethernet (1) (2)

Supply voltage --. 24 V

| Description | Ports: serial and communication (type of link) | Application Reference <br> memory | Weight <br> kg |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5.7" | Monochrome black | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 16 Mb | XBT GT2130 | 1.000 |
| and white STN | PLCs) |  |  |  |  |
|  | $1 \times$ RJ45 (RS 485 serial link) |  |  |  |  |
|  | $1 \times$ USB (peripheral connection and application transfer) |  |  |  |  |
|  | $1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX) |  |  |  |  |


| Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 16 Mb | XBT GT2330 | 1.000 |
| :--- | :--- | :--- | :--- | :--- | PLCs)

$1 \times$ RJ45 (RS 485 serial link)
$1 \times$ USB (peripheral connection and application transfer)
1 x RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)
7.5" $\begin{array}{llllll} & \text { Colour TFT } & 1 \times \text { SUB-D 9-pin (RS 232C or RS 422/485 serial link to } & 32 \mathrm{Mb} & \text { XBT GT4330 } & 1.800\end{array}$ PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$1 \times$ USB (peripheral connection and application transfer)
1 x RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

| 10.4" | Colour STN | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT5230 | 3.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | PLCs)

$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

1 x SUB-D 9-pin (RS 232C or RS 422/485 serial link to $32 \mathrm{Mb} \quad$ XBT GT5330 $\quad 3.000$ PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

| 12.1" | Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT6330 | 3.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | PLCs)

$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
1 x RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

| $15 "$ | Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT7340 | 5.600 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | PLCs)

$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)
(1) Service instructions, USB connectors locking device and fixing kit included.
(2) Other operator dialogue terminals, industrial PCs: please refer to our "Human Machine Interface" catalogue.

| Connecting cables for network and bus |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Connection to Ethernet network |  |  |  |  |
| Description | Pre-fitted connectors | Length <br> (m) | Reference | Weight kg |
| Shielded twisted pair cables, straight through | 2 RJ45 connectors For connection to DTE (Data Terminal Equipment) | 2 | 490 NTW 00002 (1) | - |
|  |  | 5 | 490 NTW 00005 (1) | - |
|  |  | 12 | 490 NTW 00012 (1) | - |
|  |  | 40 | 490 NTW 00040 (1) | - |
|  |  | 80 | 490 NTW 00080 (1) | - |
| Shielded twisted pair cables, crossed wires | 2 RJ45 connectors <br> For connection between hubs, switches and transceivers | 5 | 490 NTC 00005 (1) | - |
|  |  | 15 | 490 NTC 00015 (1) | - |
|  |  | 40 | 490 NTC 00040 (1) | - |
|  |  | 80 | 490 NTC 00080 (1) | - |


| Connection to Modbus serial link |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Use |  | Length (m) | Reference | Weight kg |
|  | From | To |  |  |  |
| Trunk cables, shielded dual twisted pair, RS 485 | Compact safety PLCs XPS MF4020/MF4022 <br> (RJ45) | Modbus splitter box LU9 GC3 (RJ45) | 100 | TSX CSA 100 | 5.680 |
|  |  |  | 200 | TSX CSA 200 | 10.920 |
|  |  |  | 500 | TSX CSA 500 | 30.000 |
|  | Graphic terminals XBT GT (SUB-D 9-pin) | Modbus splitter box LU9 GC3 (RJ45) | 2.5 | XBT Z938 (2) | 0.210 |
| Adaptor for cable XBT Z938 | SUB-D 9-pin (XBT GT) | $\begin{aligned} & \hline \text { XBT Z938 } \\ & \text { (SUB-D 25-pin) } \end{aligned}$ | 0.2 | XBT ZG909 | - |
| Description | Characteristics | Sold in lots of |  | Unit reference | Weight kg |
| End of line adaptors For RJ45 connector | $\begin{aligned} & \mathrm{R}=120 \Omega, \\ & \mathrm{C}=1 \mathrm{nF} \end{aligned}$ | 2 |  | VW3 A8 306 RC | 0.200 |
|  | $\mathrm{R}=150 \Omega$ | 2 |  | VW3 A8 306 R | 0.010 |


| PROFIBUS DP bus connection components |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Profile | Services | Reference | Weight kg |
| PROFIBUS DP module set for Premium PLCs | Master, 12 Mbps | Class 1 and Class 2 master Vo functions, see characteristics. PROFIBUS FMS messaging not supported | TSX PBY 100 | 0.870 |
| Description | Use |  | Reference | Weight kg |
| Remote inputs/outputs on PROFIBUS DP bus | Advantys STB network interface module |  | STB NDP 2112 | 0.140 |
|  | Momentum communication module |  | 170 DTN 11000 | - |
| Connectors for remote I/O communication module | Line terminators |  | 490 NAD 91103 | - |
|  | Intermediate connection |  | 490 NAD 91104 | - |
|  | Intermediate connection and terminal port |  | 490 NAD 91105 | - |
| Description | Length (m) |  | Reference | Weight kg |
| PROFIBUS DP connecting cables | 100 |  | TSX PBS CA 100 | - |
|  | 400 |  | TSX PBS CA 400 | - |
| Description |  |  | Reference | Weight kg |
| Replacement parts | Main bus junction box |  | 490 NAE 91100 | - |
|  | PCMCIA card |  | 467 NHP 81100 | - |

[^5]| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 4$ | page $2 / 10$ | page $2 / 12$ | Dimensions, mounting: |


(1) 153 mm with screw terminal block, 151.4 mm with spring terminal block.
(2) Removable plate with spring fixing for mounting on 35 mm 乙 rail.

Mounting
Mounting precautions relating to connectors

| Mounting precautions relating to connectors |
| :--- |
| Access to Ethernet network |


| RJ45 socket (SafeEthernet protocol, |
| :--- |
| (RTU) |
| Modbus TCP/IP server protocol) |
| RJ45 socket |

Mounting in panel or enclosure

(2) Prefabricated electrical ducting for passage of cables.

## Mounting on Premium rack

Mechanical mounting only, without connection to either the back plane bus or to the Premium platform supply


1 Premium rack
2 Premium supply
3 Premium CPU
4 Premium I/O module
5 Safety PLC XPS MF40•• (occupies 2 slots)
6 Premium As-interface master

## Connections



XPS MF4000/MF4002, XPS MF4020/MF4022, XPSMF4040/MF4042

| Item | Connection | Connector | Screw | Function |
| :---: | :---: | :---: | :---: | :---: |
| A | Supply | Supply | 24 V | --24V |
|  |  |  | 0 V | --2 24 V (reference pole) |
|  |  |  | FE | Earth (1) |
| B | Digital Inputs or Outputs | Connector 1 | S+ | Supply to Inputs 1 to 4 |
|  |  |  | 1 | Input/Output 1 |
|  |  |  | 2 | Input/Output 2 |
|  |  |  | 3 | Input/Output 3 |
|  |  |  | 4 | Input/Output 4 |
|  |  |  | L- | Inputs/Outputs 1 to 4 common |
|  |  | Connector 2 | S+ | Supply to Inputs 5 to 8 |
|  |  |  | 5 | Input/Output 5 |
|  |  |  | 6 | Input/Output 6 |
|  |  |  | 7 | Input/Output 7 |
|  |  |  | 8 | Input/Output 8 |
|  |  |  | L- | Inputs/Outputs 5 to 8 common |
|  |  | Connector 3 | S+ | Supply to Inputs 9 to 12 |
|  |  |  | 9 | Input/Output 9 |
|  |  |  | 10 | Input/Output 10 |
|  |  |  | 11 | Input/Output 11 |
|  |  |  | 12 | Input/Output 12 |
|  |  |  | L- | Inputs/Outputs 9 to 12 common |
|  |  | Connector 5 | S+ | Supply to Inputs 13 to 16 |
|  |  |  | 13 | Input/Output 13 |
|  |  |  | 14 | Input/Output 14 |
|  |  |  | 15 | Input/Output 15 |
|  |  |  | 16 | Input/Output 16 |
|  |  |  | L- | Inputs/Outputs 13 to 16 common |
|  |  | Connector 6 | S+ | Supply to Inputs 17 to 20 |
|  |  |  | 17 | Input/Output 17 |
|  |  |  | 18 | Input/Output 18 |
|  |  |  | 19 | Input/Output 19 |
|  |  |  | 20 | Input/Output 20 |
|  |  |  | L- | Inputs/Outputs 17 to 20 common |
|  |  | Connector 7 | S+ | Supply to Inputs 21 to 24 |
|  |  |  | 21 | Input/Output 21 |
|  |  |  | 22 | Input/Output 22 |
|  |  |  | 23 | Input/Output 23 |
|  |  |  | 24 | Input/Output 24 |
|  |  |  | L- | Inputs/Outputs 21 to 24 common |
| C | Line control outputs | Connector 4 | L- | Outputs 1 to 4 common |
|  |  |  | 1 | Line control Output 1 (T1) |
|  |  |  | 2 | Line control Output 2 (T2) |
|  |  |  | 3 | Line control Output 3 (T3) |
|  |  |  | 4 | Line control Output 4 (T4) |
|  |  |  | L- | Outputs 1 to 4 common |
|  |  | Connector 8 | L- | Outputs 5 to 8 common |
|  |  |  | 5 | Line control Output 5 (T5) |
|  |  |  | 6 | Line control Output 6 (T6) |
|  |  |  | 7 | Line control Output 7 (T7) |
|  |  |  | 8 | Line control Output 8 (T8) |
|  |  |  | L- | Outputs 5 to 8 common |

(1) Earthed when mounting on plate or rail.

| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 4$ | page $2 / 10$ | page $2 / 12$ | Dimensions, mounting: |

## Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF40



## Connections examples

Actuator connections to the outputs



XPS MF31222


XPS MF35••

Products referenced XPS MF31222, XPS MF3022 and XPS MF35•• are marked HIMatrix F31, HIMatrix F30 and HIMatrix F35 (manufactured by Hima, sold by Schneider Electric).

## Presentation

Preventa compact safety PLCs XPS MF31/30/35 enable the monitoring of simple to complex safety functions for all industrial applications relating to the protection of personnel and machine safety.

Designed for use with numerous machine safety functions, these compact safety PLCs are intended for use in safety related parts of control systems.
They can manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.

The compact safety PLC range XPS MF31/30/35 comprises 5 versions that are differentiated by their characteristics, detailed below.

| Compact PLCs | Inputs |  |  | Outputs Digital | Communication |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Digital | Analogue | Counter |  | On Ethernet network | On fieldbus |
| XPS MF31222 | 20 | - | - | 8 (1) | For all compact PLCs XPS MF31/30/35 using SafeEthernet safety protocol, and with non safety protocol Modbus TCP/IP server | - |
| XPS MF3022 | 20 | - | - | 8 (1) |  | Modbus serial Slave (RTU) |
| XPS MF3502 | 24 | 8 | 2 | 8 |  | - |
| XPS MF3522 | 24 | 8 | 2 | 8 |  | Modbus serial Slave (RTU) |
| XPS MF3542 | 24 | 8 | 2 | 8 |  | PROFIBUS DP V0 slave |

## Safety PLCs

In order to meet safety requirements, the compact safety PLCs XPS MF31/30/35 incorporate two essential functions (Redundancy and Self-monitoring) complying to category 4 conforming to EN 954-1 and performance level "e" conforming to EN/ISO 13849-1 in addition to the SafeEthernet safety communication protocol between the safety PLCs and the safety remote I/O modules (Special Switch).

■ Redundancy: the dual processor integrated in the compact safety PLCs analyses and compares the data received from the safety inputs and outputs.
The incoming and outgoing data (programmed values and received values) are received in parallel by the two processors and compared in real-time.

■ Self-monitoring ("Watchdog"): the compact safety PLCs continuously monitor the data processing cycle and the execution of tasks, and intervenes if the cycle time does not conform to the predefined value.
$\square$ The integrated switch (Special Switch) stores for a very short time and sends at very high speed the data provided by the inputs and outputs of the safety PLCs on the Ethernet network, whilst avoiding signal collisions and excessive amounts of data on the network.

Functional synoptics
Compact safety PLC XPS MF31222

(1) Digital outputs can be configured for line control.

| Presentation: <br> page 2/18 | Characteristics: <br> page $2 / 24$ | References: <br> page $2 / 27$ | Dimensions, mounting: <br> page $2 / 30$ |
| :--- | :--- | :--- | :--- |
| $2 / 18$ |  | Schneider |  |

## Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF31/30/35

Functional synoptics (continued)
Compact safety PLC XPS MF3022


Compact safety PLCs XPS MF35 ${ }^{\bullet}$


Line control for XPS MF31222 and XPS MF3022
Line control is a means of short-circuit and line break monitoring. Using line control outputs enables SIL 3 (EN/IEC 61508) and category 4 (EN 954-1) safety to be achieved. The line control outputs send a high signal with a very short low signal, thus enabling a wiring fault (short-circuit, line break) to be seen at the inputs of the safety PLC inputs.

Digital outputs 1 to 8 are connected to the digital inputs of the same circuit.
Example: Emergency stop pushbutton with two normally closed (N/C) contacts that are supplied by two different line control outputs connected via these two normally closed contacts and fed into the inputs of the safety PLCs.

## Programming automated safety functions

Software XPSMFWIN (reference SSV1XPSMFWIN) running on a PC enables the programming of all safety remote I/O modules and safety PLCs, as well as configuration of the communication settings.
(1) Digital outputs can be configured for line control.
(2) FB1 and FB2 not used.
(3) FB3 not available on safety PLC XPS MF3502.
(4) Depending on model.

## Digital inputs

Compact safety PLCs XPS MF3eeゃ๑ incorporate up to 24 digital inputs for the connection of safety related input devices.

| Compact PLCs | Digital inputs |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{N}^{\circ}$ | Safety detection | Safety dialogue |
| XPS MF31222 | 20 | Limit switches, <br> Guard switches, with reset and with actuator, <br> Safety light curtains type 2 and type 4, <br> Safety mats and sensing edges... | Mushroom head Emergency stops, <br> Enclosures for control and signalling units, Two-hand control stations... |
| XPS MF3022 | 20 |  |  |
| XPS MF3502 | 24 |  |  |
| XPS MF3522 | 24 |  |  |
| XPS MF3542 | 24 |  |  |

## Analogue inputs

Compact safety PLCs XPS MF35•• incorporate 8 analogue measuring inputs that receive analogue safety related signals from the machines to be monitored (1).

| Compact PLCs | Analogue inputs with transmitter supply |  |
| :--- | :--- | :--- |
|  | $\mathbf{N}^{\circ}$ | Functions |
| XPS MF3502 | 8 | Closed circuit scanning of input channels, |
| XPS MF3522 | 8 | Single-pole measuring of 0 to 10 V voltages, <br> Measuring 0 to 20 mA currents using shunt |
| XPS MF3542 | 8 |  |

## Counter inputs

Compact safety PLCs XPS MF35e๑ incorporate 2 independent and configurable counting channels:
■ as a counting function, independent to the direction of counting,

- as a counting function, dependent to the direction of counting,

■ or as a counting function via an absolute encoder with Gray code.

| Compact PLCs | Counting inputs |  |  |
| :---: | :---: | :---: | :---: |
|  | ${ }^{\circ}$ | -. 5 V | --. 24 V |
| XPS MF3502 | 2 | Incremental encoders | Sensors, 2/3-wire PNP/NPN |
| XPS MF3522 | 2 |  |  |
| XPS MF3542 | 2 |  |  |

## Digital outputs

All compact safety PLCs XPS MFeeゃ๑ incorporate 8 digital outputs for connection to signalling equipment and machines to be controlled (1).

| Compact PLCs | Digital outputs |  |  |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{N}^{\circ}$ | Safety actuators | Safety dialogue |
| XPS MF31222 | 8 | Contactors-motors, <br> Control relays, | Beacons and indicator banks, <br> Rotating mirror beacons, <br> Sirens... |
| XPS MF3022 | 8 | Variable speed drives. |  |
| XPS MF3502 | 8 |  |  |
| XPS MF3522 | 8 |  |  |
| XPS MF3542 | 8 |  |  |

## Remote inputs and outputs

In addition to the inputs/outputs integrated as standard, compact safety PLCs XPS MF31/30/35 can be connected to safety remote input modules XPS MF1 and/or safety remote output modules XPS MF2 and/or safety remote mixed I/O modules XPS MF3.
The safety remote input, output and mixed I/O modules can be located within the vicinity of the machines to be monitored, thus reducing cabling.
Communication between these safety remote I/O modules and compact safety PLCs XPS MF31/30/35 is performed on an Ethernet network using the SafeEthernet safety protocol, via the Integrated RJ45 switched Ethernet communications ports.
(1) Use shielded dual twisted pair cables, maximum length 300 m , short-circuit unused analogue inputs.

| Presentation: | Characteristics: | References: | Dimensions, mounting: |
| :--- | :--- | :--- | :--- |
| page 2/18 | page $2 / 24$ | page $2 / 27$ | page 2/30 |

## Safety automation system solutions Preventa safety PLCs Compact, XPS MF31/30/35

## Safety communication on Ethernet network

Communication between the PC, Magelis graphic terminal or automation platform (Premium) and the compact safety PLCs is achieved by Ethernet network connection via the Integrated RJ45 switched Ethernet communications ports of compact PLCs XPS MF31/30/35.


1 Premium automation platform: Modbus TCP/IP client.
2 Graphic terminal XBT GT: Modbus TCP/IP client.
3 Safety PLC XPS MF31/30/35: Modbus TCP/IP server.
4 Safety remote I/O modules XPS MF1/2/3. They communicate with safety PLCs XPS MF31/30/35 using the SafeEthernet protocol.

## Communication on Modbus serial (RTU) and PROFIBUS DP fieldbus

■ On Modbus serial (RTU), safety PLCs XPS MF3022 and XPS MF3522 are slaves of the Premium automation platform and Magelis graphic terminals.
They are connected to the Modbus serial network via their SUB-D 9-pin connector (FB3).


1 Graphic terminal XBT GT: Modbus serial (RTU) master.
2 Premium automation platform: Modbus serial (RTU) master.
3 Graphic terminal XBT GT: Modbus serial (RTU) client.
4 Safety PLC XPS MF3022 or XPS MF3522: Modbus serial (RTU) slave, Modbus TCP/IP server.
5 Safety remote I/O modules XPS MF1/2/3. They communicate with safety PLCs XPS MF3•e2 using the SafeEthernet protocol.

■ On PROFIBUS DP, safety PLC XPS MF3542 is a slave of the Premium automation platform and Magelis graphic terminal.
It is connected to the PROFIBUS DP network via its SUB-D 9-pin connector (FB3).


[^6]

## Description <br> Safety PLCs XPS MF31222 and XPS MF3022

## On the front face of the metal enclosure:

1 One terminal block (1) for --- 24 V supply.
2 Two terminal blocks (1) for connection of digital outputs, with output status LED (four LEDs per terminal block).
3 Five terminal blocks (1) for connection of digital inputs, with input status LED (four LEDs per terminal block).
4 Eight process status LEDs.
5 Four integrated RJ45 (type 10BASE-T/100BASE-TX) switched ports for programming, and for Safety and non-safety related communication on Ethernet (safety related using SafeEthernet protocol and Non-safety related using Modbus TCP/IP server protocol).
6 On XPS MF3022 only: two unused SUB-D connectors (FB1 and FB2).
7 On XPS MF3022 only: one SUB-D 9-pin connector for connection on Modbus serial (RTU) (FB3).
8 One earth connection screw.
9 On the top: one "Reset" button.
10 On the rear face: one spring operated fixing device for mounting on $35 \mathrm{~mm} \longleftarrow$ rail.

## Safety PLCs XPS MF35••

## On the front face of the metal enclosure:

1 One terminal block (1) for --- 24 V supply.
2 One terminal block (1) for connection of digital outputs, with four digital output status LEDs.
3 Three terminal blocks (1) for connection of digital inputs, with input status LED (eight LEDs per terminal block).
4 One terminal block (1) for connection of 2 counting input channels.
5 Four terminal blocks (1) for connection of analogue inputs.
6 One plate for securing shielded analogue input connection cables.
7 Eight process status LEDs.
8 Two unused SUB-D connectors (FB1 and FB2).
9 Four integrated RJ45 (type 10BASE-T/100BASE-TX) switched ports for programming, and for Safety and non-safety related communication on Ethernet (safety related using SafeEthernet protocol and Non-safety related using Modbus TCP/IP server protocol).
10 One type SUB-D 9-pin connector (FB3) for connection on PROFIBUS DP
(XPS MF3542) or Modbus serial (RTU) (XPS MF3522).
11 One earth connection screw.
12 On the top: one "Reset" button.
13 On the rear face: one spring operated fixing device for mounting on $35 \mathrm{~mm} \longleftarrow$ rail.

[^7]| Presentation: | Characteristics: | References: | Dimensions, mounting: |
| :--- | :--- | :--- | :--- |
| page $2 / 18$ | page $2 / 24$ | page $2 / 27$ | page $2 / 30$ |



| Status LED details |  |  |  |
| :---: | :---: | :---: | :---: |
| Compact safety PLCs XPS MF31222, XPS MF3022 and XPS MF35e® |  |  |  |
| LED | Colour | Status | Meaning |
| FB1, FB2 | - | - | Not used. |
| FB3 | Orange | On | Communication on Modbus serial or PROFIBUS DP (1) active. |
| Inputs 1 to 20 | Orange | On | Inputs active. |
| Outputs 1 to 8 | Orange | On | Outputs active. |
| 24 VDC | Green | On | --24 V voltage present. |
|  |  | Off | No voltage. |
| RUN | Green | On | Normal service mode, loaded program running, the PLC receives I/O messages, communication and hardware/software tests carried out. |
|  |  | Flashing | The CPU is in STOP and is not executing any user application. <br> All the outputs are reset to a safe, de-energised state. |
|  |  | Off | The CPU is in "ERROR" state (see ERROR). |
| ERROR | Red | On | Software error or hardware fault detected by the CPU. |
|  |  |  | The monitoring program (Watchdog) has triggered the STOP state of the process because the programmed cycle time has been exceeded. |
|  |  |  | The CPU has stopped the execution of the user application, ended all hardware and software tests and all outputs have been reset. |
|  |  |  | The process can only be started again from the PC. |
|  |  | Off | No errors detected. |
| PROG | Orange | On | The CPU is being loaded with a new configuration. |
|  |  | Flashing | The FLASH ROM is being loaded with a new operating system. |
|  |  | Off | No loading of configuration or operating system. |
| FORCE | Orange | On | The CPU is in RUN mode and force is active. |
|  |  | Flashing | The system is not processing (STOP), but force is prepared and is activated if the dual processor is started. |
|  |  | Off | Force mode not activated. |
| FAULT | Orange | On | Error display for line control. |
|  |  |  | The user application has caused an error. |
|  |  |  | The system configuration is defective. |
|  |  |  | The loading of a new operating system was defective and the operating system is corrupt. |
|  |  | Flashing | An error has occurred whilst writing to FLASH ROM memory (during updating of the operating system). |
|  |  |  | One or more I/O errors have occurred. |
|  |  | Off | None of the above errors have occurred. |
| OSL | Orange | Flashing | Emergency loading of the operating system is active. |
| BL | Orange | Flashing | COM in INIT_Fail state. |
| RJ45 | Green | On | Full duplex mode operation. |
|  |  | Flashing | Signal collision. |
|  |  | Off | Half duplex mode operation, no collision. |
|  | Yellow | On | Connection established. |
|  |  | Flashing | Interface active. |

[^8]| Environment |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Compact safety PLC type |  |  | XPS MF31222 | XPS MF3022 | XPS MF3502, XPS MF3522, XPS MF3542 |
| Products designed for max control systems (conform EN/IEC 61508) | ax. use in safety related parts of ing to EN 954-1, EN/ISO 13849-1 and |  | Category 4 (EN 954-1), <br> Performance level "e" (EN/ISO 13849-1), <br> Safety integrity level: SIL 3 (EN/IEC 61508) |  |  |
| Product certifications |  |  | IEC 61511: 2004, <br> DIN VDE 0116: 1989, <br> EN 50156-1: 2004, <br> EN 12067-2: 2004, <br> EN 298: 2003, <br> EN 230: 1990, <br> NFPA 85: 2001, <br> EN/IEC 61131-2: 2003, <br> EN 61000-6-2: 2001, <br> EN 61000-6-4: 2001 |  | IEC 61511: 2004, <br> DIN VDE 0116: 1989, <br> EN 50156-1: 2004, <br> EN 12067-2: 2004, <br> EN 298: 2003, EN 230: 1990, <br> NFPA 85: 2001, <br> EN/IEC 61131-2: 2003, <br> EN 61000-6-2: 2001, <br> EN 61000-6-4: 2001, <br> EN 54-2: 1997, <br> NFPA 72: 2002 |
| Ambient air temperature conforming to EN 61131-2 | For operation | ${ }^{\circ} \mathrm{C}$ | 0...+60 |  |  |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+85$ |  |  |
| Relative humidity |  |  | $95 \%$ (supply not connected) |  |  |
| Degree of protection Enclosure |  |  | IP 20 |  |  |
| Pollution |  |  | Degree of pollution II |  |  |
| Altitude |  | m | <2000 |  |  |
| Protection class |  |  | Class II, conforming to EN/IEC 61131-2 |  |  |
| Electromagnetic compatibility |  |  | Conforming to IEC 61131-2 |  |  |
| Vibration resistanceconforming to EN 61131-2 |  |  | 1 g , frequency $9 . .150 \mathrm{~Hz}$ |  |  |
| Shock resistance Operating conforming to EN 61131-2 |  |  | 15 g (duration 11 ms ), unit test whilst operating, 2 cycles per axis |  |  |
| Resistance to electrostatic discharges conforming to EN/IEC 61000-4-2 |  | kV | 4 contact, 8 air discharge |  |  |
| Immunity to high frequency interference conforming to EN/IEC 61000-4-3 |  | V/m | 10 (80 MHz...2 2 GHz ), amplitude modulation $80 \%$ |  |  |
| Electrical characteristics |  |  |  |  |  |
| Supply | Voltage | v | --. 24 (external supply with separate protection conforming to EN/IEC 60950, SELV (Safety Extra Low Voltage) or PELV (Protection Extra Low Voltage) rated) |  |  |
|  | Voltage limits |  | -15... $+20 \%$ |  |  |
| Maximum consumption |  | A | 8 | 8 | 9 |
| Idle current |  | A | 0.4 | 0.5 | 0.75 |
| Immunity to momentary supply interruptions |  | ms | 10 |  |  |
| Protection |  |  | Internal fuse |  |  |
| Response time |  | ms | Depending on size of application |  |  |
| Clock |  |  | Supplied by backup capacitor for 1 week following loss of supply |  |  |
| User memory | Application | kB | 250 |  |  |
|  | Data | kB | 250 |  |  |
| LED display |  |  | Yes |  |  |
| Digital inputs |  |  |  |  |  |
| Number | Inputs not electrically isolated |  | 20 |  | 24 |
| Permissible current | At state 0 | mA | 1.5 max., 1 mA at 5 V | 1.5 max., 1.25 mA at 5 V | 1.5 max., 1 mA at 5 V |
|  | At state 1 | mA | $\geqslant 2$ at-. 15 V | > 2 at - 15 V | Approx. 3.5 at $-=24 \mathrm{~V}$ <br> Approx. 4.5 at $=30 \mathrm{~V}$ |
| Input supply |  |  | $5 \times 20 \mathrm{~V} / 100 \mathrm{~mA}$ (on 24 V ) |  | $20 \mathrm{~V} / 100 \mathrm{~mA}$ |
| Input protection |  |  | Protected against short-circuits, short-circuits to earth |  |  |
| Overvoltage protection |  | v | 500 , conforming to IEC 61000-4-5 |  |  |
| Switching point |  | V | Typically 7.5 |  | - |
| Current |  | mA | $>2$ (-. 15V) |  | - |
| LED display |  |  | Yes |  |  |
| Maximum distance of equipment |  | m | 100 |  |  |
| Digital outputs |  |  |  |  |  |
| Number | Outputs not electrically isolated |  | 8, configurable for line con |  | 8 |
|  |  | v | - $-24 \pm 2$ |  |  |
| Output current | Channels 1 to 3 and 5 to 7 | A | 0.5 at $60^{\circ} \mathrm{C}$ |  |  |
|  | Channels 4 and 8 | A | 1 at $60^{\circ} \mathrm{C}, 2$ at $50^{\circ} \mathrm{C}$ |  |  |
| Minimum load |  | mA | 2 per channel |  |  |
| Leakage current at state 0 |  | mA | 1 max. at 2 V |  |  |
| Response to overload |  |  | Shutdown of outputs concerned with cyclic reconnection |  |  |
| Total output current |  | A | 7 max., shutdown of all outputs if exceeded with cyclic reconnection |  |  |
| LED display |  |  | Yes |  |  |
| Distance maximale des équipements |  | m | 100 |  |  |
| $\begin{aligned} & \text { Characteristics: } \\ & \text { page } 2 / 24 \\ & \hline \end{aligned}$ | References: page $2 / 27$ | $\begin{aligned} & \text { Dimensions, mounting: } \\ & \text { page } 2 / 30 \end{aligned}$ |  | $\begin{aligned} & \hline \text { nnections: } \\ & \text { ge } 2 / 32 \\ & \hline \end{aligned}$ | Presentation: page 2/18 |

Electrical characteristics (continued)
Compact safety PLC type


| Number | Counter |  | 2, not electrically isolated |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inputs |  | 3 on each pole (A, B, Z) |  |  |
| Input voltages | High threshold 5 V | V | 4...6 |  |  |
|  | High threshold 24 V | V | 13... 33 |  |  |
|  | Low threshold 5 V | V | 0...0.5 |  |  |
|  | Low threshold 24 V | V | -3... 5 |  |  |
| Input currents |  | mA | $\begin{aligned} & 1.4 \text { at } 5 \mathrm{~V} \\ & 6.5 \text { at } 24 \mathrm{~V} \\ & \hline \end{aligned}$ |  |  |
| Input impedance |  | k $\Omega$ | 3.7 |  |  |
| Maximum distance of equipment |  | m | 500, with shielded dual twisted pair cable |  |  |
| Up/down counting resolution |  |  | 24-bit |  |  |
| Input frequency |  | kHz | 100, at 5 and 24 V |  |  |
| Triggering |  |  | On falling edge |  |  |
| Edge steepness |  | V/ $/ \mathrm{s}$ | 1 |  |  |
| LED display |  |  | Yes |  |  |
| Communication |  |  |  |  |  |
| Compatibility |  |  | XPS MF31222 | XPS MF3022 | XPS MF3502, XPS MF3522, XPS MF3542 |

Ethernet network: safety communication using SafeEthernet protocol

| Transmission | Communication ports |  | Integrated 4 RJ45 switched Ethernet communications ports |
| :---: | :---: | :---: | :---: |
|  | Baud rate | Mbps | 100 Half duplex, 10 Full duplex, Autonegotiation |
| Structure |  |  | 10BASE-T/100BASE-TX |
| Medium |  |  | Dual twisted pair cable, category 5D or better (Ethernet) |

Ethernet network: Non-safety related communication using Modbus TCP/IP protocol

| Connection Ports | Number and type |  | Integrated 4 RJ45 switched Ethernet communication ports |
| :---: | :---: | :---: | :---: |
|  | Baud rate | Mbps | 100 Half Duplex, 10 Full Duplex, Autonegotiation |
|  | Master/Slave |  | Server (slave) |
| Structure |  |  | 10BASE-T/100BASE-TX |
| Medium |  |  | Dual twisted pair cable, category 5D or better (Ethernet) |
| Transparent Ready Services | Class |  | A10 |
|  | Standard Ethernet TCP/IP communication services |  | Modbus TCP/IP Server |
|  |  |  | Modbus TCP/IP messaging (reading/writing of data words) |
|  |  |  | Modbus identification request |
|  | TCP port |  | Standard 502 |
|  | Max. number of Modbus TCP |  | 1 to 20 |

## Modbus serial (RTU)

| Serial link ports | Number and type |  | - | $1 \times$ SUB-D 9-pin female (FB3) |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Master/Slave |  | - | Slave |  |
| Addressing |  | - | 122 slave addresses |  |  |
| Physical layer |  | - | RS 485 |  |  |
| Medium |  | - | Shielded dual twisted pair cable |  |  |
| PROFIBUS DP |  |  |  |  |  |
| Serial link ports | Number and type |  | - | $1 \times$ SUB-D 9-pin female |  |
| Master/Slave |  | - | - | Slave, V0 |  |
| Physical layer |  | - | - | Shielded dual twisted pair cable |  |


| Connections (1) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Safety PLC type |  |  | XPS MF31222 | XPS MF3022 | XPS MF3502, XPS MF3522, XPS MF3542 |
| Type of connection |  |  | Screw clamp terminal blocks (2) |  |  |
| Supply connection | Number of terminal blocks |  | 1 |  |  |
|  | For 1 cable without cable end |  | Solid or flexible 0.2... $2.5 \mathrm{~mm}^{2}$, AWG 24-12 |  |  |
|  | For 1 flexible cable with or without plastic cable end |  | 0.25...2.5 mm², AWG 22-16 |  |  |
|  | For 2 cables of same diameter, without cable end |  | Solid or flexible 0.2..1.5 mm², AWG 24-12 |  |  |
|  | For 2 cables of same diameter, flexible without cable end |  | 0.25...1.0 mm², AWG 22-18 |  |  |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | 0.5... $1.5 \mathrm{~mm}^{2}$, AWG 22-16 |  |  |
| Digital input channel and output channel connection | Number of terminal blocks |  | 5 (inputs) and 2 (outputs) | 5 (inputs) and 2 (outputs) | 3 (inputs) and 1 (output) |
|  | For 1 cable without cable end |  | Solid or flexible 0.14..1.5 $\mathrm{mm}^{2}$, AWG 28-16 |  |  |
|  | For 1 flexible cable without cable end |  | 0.25..1.5 mm², AWG 22-16 |  |  |
|  | For 1 flexible cable with plastic cable end |  | 0.25...0.5 mm ${ }^{2}$, AWG 22-20 |  |  |
|  | For 2 cables of same diameter, without cable end |  | Solid: 0.14...0.5 mm ${ }^{2}$, AWG 28-20 <br> Flexible: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$, AWG 28-18 |  |  |
|  | For 2 cables of same diameter, flexible without cable end |  | 0.25...0.34 mm ${ }^{2}$, AWG 22 |  |  |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | $0.5 \mathrm{~mm}^{2}$, AWG 20 |  |  |
| Analogue input channel connection | Number of terminal blocks |  | - | - | 4 |
|  | For 1 cable without cable end |  | - | - | Solid or flexible $0.14 \ldots 1.5 \mathrm{~mm}^{2}$, AWG 28-16 |
|  | For 1 flexible cable without cable end |  | - | - | 0.25...1.5 mm², AWG 22-16 |
|  | For 1 flexible cable with plastic cable end |  | - | - | 0.25...0.5 mm ${ }^{2}$, AWG 22-20 |
|  | For 2 cables of same diameter, without cable end |  | - | - | Solid: $0.14 \ldots 0.5 \mathrm{~mm}^{2}$, AWG 28-20 Flexible: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$, AWG 28-18 |
|  | For 2 cables of same diameter, flexible without cable end |  | - | - | 0.25...0.34 mm², AWG 22 |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | - | - | $0.5 \mathrm{~mm}^{2}$, AWG 20 |
| Counting channel connection | Number of terminal blocks |  | - | - | 1 |
|  | For 1 cable without cable end |  | - | - | Solid or flexible $0.14 \ldots 1.5 \mathrm{~mm}^{2}$, AWG 28-16 |
|  | For 1 flexible cable without cable end |  | - | - | 0.25..1.5 mm², AWG 22-16 |
|  | For 1 flexible cable with plastic cable end |  | - | - | 0.25...0.5 mm ${ }^{2}$, AWG 22-20 |
|  | For 2 cables of same diameter, without cable end |  | - | - | Solid: 0.14...0.5 mm², AWG 28-20 Flexible: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$, AWG 28-18 |
|  | For 2 cables of same diameter, flexible without cable end |  | - | - | 0.25...0.34 mm², AWG 22 |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | - | - | $0.5 \mathrm{~mm}^{2}$, AWG 20 |
| Cable connection | Tightening torque | Nm | 0.22... 0.25 |  |  |
|  | Bared length | mm | 9 |  |  |

(1) AWG: American Wire Gauge.
(2) Removable screw terminals are provided with compact safety PLCs XPS MF31/30/35.

| Characteristics: | References: | Dimensions, mounting: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 24$ | page $2 / 27$ | page $2 / 30$ | page $2 / 32$ |



## Configuration software

$\square$ Reference SSV1XPSMFWIN is the full version of software XPSMFWIN version 4.1 and must be installed if no previous version of this software has been installed.
$\square$ Reference SSVXPSMFWINUP is an update for software XPSMFWIN and can be used if SSV1XPSMFWIN has been installed using Safety Suite V1. An update from version 4.1 to version 4.1-6150 for the software XPSMFWIN will then be performed.

| Description | Operating <br> system | Details | Languages | Reference | Weight <br> kg |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Configuration software | Windows 2000, | Software available on <br> XPSMFWIN for | Windows XP |  |  |
| programming compact |  |  |  |  |  |
| safety PLCs |  |  |  |  |  |
| CD-ROM + user manual |  |  |  |  |  |



ABL 1REM24025


XBT GT2130, XBT GT2330


XBT GT4330


XBT GT5•30


XBT GT6330


XBT GT7340

| Phaseo regulated switch mode power supplies |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mains input <br> voltage | Output <br> voltage | Nominal <br> power | Nominal <br> current | Auto-protect <br> reset | Conformity to <br> standard <br> IEC EN 61000-3-2 <br> and IEC EN 60950 | Reference |$\quad$ Weight

Universal range, single-phase (N-L1) or 2-phase (L1-L2) connection

| $\begin{aligned} & \sim 100 \ldots 120 \mathrm{~V} / 200 \ldots 500 \\ & -15 \%,+10 \% \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ | 24...28.8 | 72 | 3 | Auto/Manual | Yes | ABL 8RPS24030 | 0.300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 120 | 5 | Auto/Manual | Yes | ABL 8RPS24050 | 0.700 |
|  |  | 240 | 10 | Auto/Manual | Yes | ABL 8RPS24100 | 1.000 |
| Dedicated range, single-phase connection |  |  |  |  |  |  |  |
| ~ 100... 240 (1) <br> wide range, $47 \ldots 63 \mathrm{~Hz}$ | 12 | 60 | 5 | Auto | No | ABL 1REM12050 | 0.440 |
|  | 24 | 60 | 2,5 | Auto | No | ABL 1REM24025 | 0.440 |
| ~ 100...120/200... 240 (2) | 24 | 240 | 10 | Auto | No | ABL 1REM24100 | 0.880 |

Magelis multifunction graphic terminals with touch sensitive screen and on-board Ethernet (1) (2)
Supply voltage --- 24 V

| Description |  | Ports: serial and communication (type of link) | Application | Reference | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.7" | Monochrome black and white STN | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to PLCs) <br> $1 \times$ RJ45 (RS 485 serial link) <br> $1 \times$ USB (peripheral connection and application transfer) <br> $1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX) | 16 Mb | XBT GT2130 | 1.000 |


| Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 16 Mb | XBT GT2330 | 1.000 |
| :--- | :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$1 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)


| $10.4 "$ | Colour STN | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT5230 | 3.000 |
| :--- | :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

| Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT5330 | 3.000 |
| :--- | :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times \operatorname{RJ45}$ (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)
12.1" Colour TFT $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to $32 \mathrm{Mb} \quad$ XBT GT6330 $\quad 3.000$

PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)
15" Colour TFT $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to $\quad 32 \mathrm{Mb} \quad$ XBT GT7340 $\quad 5.600$
PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)
(1) Service instructions, USB connectors locking device and fixing kit included.
(2) Other operator dialogue terminals, industrial PCs: please refer to our "Human Machine Interface" catalogue.

| Characteristics: | References: | Dimensions, mounting: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 24$ | page $2 / 27$ | page $2 / 30$ | page $2 / 32$ |

# Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF31/30/35 

| Connecting cables for network and bus |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Connection to Ethernet network |  |  |  |  |
| Description | Pre-fitted connectors | Length (m) | Reference | Weight kg |
| Shielded twisted pair cables, straight through | 2 RJ45 connectors For connection to DTE (Data Terminal Equipment) | 2 | 490 NTW 00002 (1) |  |
|  |  | 5 | 490 NTW 00005 (1) |  |
|  |  | 12 | 490 NTW 00012 (1) |  |
|  |  | 40 | 490 NTW 00040 (1) |  |
|  |  | 80 | 490 NTW 00080 (1) |  |
| Shielded twisted pair cables, crossed wires | 2 RJ45 connectors <br> For connection between hubs, switches and transceivers | 5 | 490 NTC 00005 (1) | - |
|  |  | 15 | 490 NTC 00015 (1) | - |
|  |  | 40 | 490 NTC 00040 (1) | - |
|  |  | 80 | 490 NTC 00080 (1) |  |



TSXPBY 100


490 NAD 91103

| Connection to Modbus serial link |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Use |  | Length(m) | Reference | Weight kg |
|  | From | To |  |  |  |
| Modbus serial link connecting cables | Compact PLCs XPS MF3022/3522 + adaptor XPS MFADAPT (RJ45) | Modbus splitter box LU9 GC3 (RJ45) | 0.3 | VW3 A8 306 R03 | 0.025 |
|  |  |  | 1 | VW3 A8 306 R10 | 0.060 |
|  |  |  | 3 | VW3 A8 306 R30 | 1.130 |
|  |  | Premium module TSX SCY 21601 (SUB-D 25-pin) | 0.3 | XPS MCSCY |  |
|  | Graphic terminals XBT GT (SUB-D 9-pin) | Modbus splitter box LU9 GC3 (RJ45) | 2.5 | XBT Z938 (2) | 0.210 |
| Adaptor for cable XBT Z938 | SUB-D 9-pin (XBT GT) | $\begin{aligned} & \hline \text { XBT Z938 } \\ & \text { (SUB-D 25-pin) } \\ & \hline \end{aligned}$ | 0.2 | XBT ZG909 |  |
| Adaptor <br> SUB-D 9-pin/RJ45 | Compact PLCs (SUB-D 9-pin) | Connecting cables for Modbus serial link (RJ45) |  | XPS MFADAPT |  |
| Description | Characteristics | Sold in lots of |  | Unit reference | Weight kg |
| End of line adaptors For RJ45 connector | $\begin{aligned} & \mathrm{R}=120 \Omega, \\ & \mathrm{C}=1 \mathrm{nF} \end{aligned}$ | 2 |  | VW3 A8 306 RC | 0.200 |
|  | $\mathrm{R}=150 \Omega$ | 2 |  | VW3 A8 306 R | 0.010 |


| PROFIBUS DP bus connection components |  |  | Reference |
| :--- | :--- | :--- | :--- | | Weight |
| :---: |
| Description |
| Profile |

Master, 12 Mb
unctions, see characteristics.
Profibus FMS messaging not supported

| Description | Use | Reference | Weight kg |
| :---: | :---: | :---: | :---: |
| Remote inputs/outputs on PROFIBUS DP bus | Advantys STB network interface module | STB NDP 2112 | 0.140 |
|  | Momentum communication module | 170 DTN 11000 |  |
| Connectors for remote I/O communication module | Line terminators | 490 NAD 91103 |  |
|  | Intermediate connection | 490 NAD 91104 |  |
|  | Intermediate connection and terminal port | 490 NAD 91105 |  |
| Description | Length <br> (m) | Reference | Weight kg |
| PROFIBUS DP connecting cables | 100 | TSX PBS CA 100 |  |
|  | 400 | TSX PBS CA 400 |  |
| Description |  | Reference | Weight kg |
| Replacement parts | Main bus junction box | 490 NAE 91100 |  |
|  | PCMCIA card | 467 NHP 81100 |  |

(1) Cable conforming to standard EIA/TIA-568 category 5 and IEC 1180/EN 50173 class D. For UL and CSA 22.1 approved
cables, add the letter $\boldsymbol{U}$ to the end of the reference.
(2) Requires adaptor XBT ZG909.


## XPS MF3022


(1) Removable screw terminals are provided with compact safety PLC XPS MF3022.

## XPS MF35••


(1) Removable screw terminals are provided with compact safety PLC XPS MF35•e.

## Mounting

Mounting precautions relating to connectors


## Access to Ethernet network

RJ45 socket (SafeEthernet protocol, Modbus TCP/IP server protocol)


## Mounting in panel or enclosure



[^9]

Connection examples
Actuator connections to the outputs


## Emergency stop connections (line control)



| Characteristics: | References: | Dimensions, mounting: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 24$ | page $2 / 27$ | page $2 / 30$ | page $2 / 32$ |

# Safety automation system solutions <br> Preventa safety PLCs <br> Compact, XPS MF31/30/35 




Modular safety PLC XPS MF60, fitted with 6 different "in rack" l/O cards

## Presentation

Safety PLC XPS MF60 offers a modular solution for monitoring simple to complex safety functions for all industrial applications relating to the protection of personnel and machine safety.

Designed for use with numerous machine safety functions, this modular safety PLC is intended for use in safety related parts of control systems.
It can manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.


## Modularity

The safety PLC XPS MF60 is a modular system comprising a metal housing or rack, fitted with a power supply module, a CPU and "in rack" I/O cards.

- Various types of "in rack" I/O cards are catalogue listed and are selected according to the application.
- Mounting the "in rack" cards is a simple operation using the guide rails ( 6 slots). Electrical connection is automatic and assured by the back plane bus of the rack. - The mounting order of the "in rack" I/O cards is open to the user, but the order, however, must correspond to the programming software.
- The removal of the "in rack" cards, performed with the supply switched-off, is facilitated by a grip at the base of the cards.
■ Covering plates for unused "in rack" I/O card slots are available to protect the system in polluted environments.

Composition of the modular safety PLC XPS MF60

| Minimum basic equipment | Optional "in rack" I/O cards |  |
| :---: | :---: | :---: |
|  | Type | Details |
| Metal rack XPS MFGEH01 <br> with back plane bus assuring electrical connection of components installed + metal securing plate for shielded cables (EMC), <br> two cooling fans $+$ a power supply module (-- 24 V ) XPS MFPS01, | XPS MFAI801 | 8 single-pole analogue inputs or 4 2-pole analogue inputs |
|  | XPS MFA0801 | 8 analogue outputs |
|  | XPS MFCIO2401 | 2 counting inputs, 4 digital outputs |
|  | XPS MFDI2401 | 24 digital inputs $(=110 \mathrm{~V} / \sim 127 \mathrm{~V})$ |
| a central processing unit XPS MFCPU22 | XPS MFDI3201 | 32 digital inputs |
| with $4 \times$ RJ45 integrated switched Ethernet ports for Programming, and for Safety and non-safety related | XPS MFDIO241601 | 24 digital inputs, 16 digital outputs |
| communication on Ethernet (safety related using SafeEthernet protocol and | XPS MFDO801 | 8 relay outputs $(\sim 6 \ldots 250 \mathrm{~V})$ |
| Non-safety related using Modbus TCP/IP server protocol) and in addition a SUB-D (FB2) connector for communication on Modbus serial (RTU) |  |  |

## Safety PLCs

In order to meet safety requirements, the modular safety PLC XPS MF60 incorporates two essential functions (Redundancy and Self-monitoring) complying to category 4 conforming to EN 954-1 and performance level "e" conforming to EN/ISO 13849-1 in addition to the SafeEthernet safety communication protocol between the safety PLCs and the safety remote I/O modules (Special Switch). ■ Redundancy: the 2 processors integrated in the modular safety PLC analyse and compare the data received from the safety inputs and outputs.
The incoming and outgoing data (programmed values and received values) are received in parallel by the two processors and compared in real-time.
■ Self-monitoring ("Watchdog"): the modular safety PLC continuously monitors the data processing cycle and the execution of tasks, and intervenes if the cycle time does not conform to the predefined value.
■ The integrated switch (Special Switch) stores for a very short time and sends at very high speed the data provided by the inputs and outputs of the safety PLC on the Ethernet network, whilst avoiding signal collisions and excessive amounts of data on the network.

| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 34$ | page $2 / 42$ | page $2 / 44$ | page $2 / 48$ |

## Safety automation system solutions Preventa safety PLCs <br> Modular, XPS MF60 <br> Rack, power supply and CPU

Functional synoptics
Central processing unit XPS MFCPU22


Power supply module XPS MFPS01


Line control for "in rack" I/O card XPS MFDIO241601 and "in rack" input card XPS MFDI3201

Line control is a means of short-circuit and line break monitoring.
Using line control outputs enables SIL 3 (EN/IEC 61508) and category 4 (EN 954-1) safety to be achieved. The line control outputs send a high signal with a very short low signal, thus enabling a wiring fault (short-circuit, line break) to be seen at the inputs of the safety PLCs.
The digital outputs 1 to 16 of card XPS MFDIO241601 are connected to the digital inputs of the same card or to the digital inputs of card XPS MFDI3201
(1) FB1 not used.


XPS MFDI2401

## Safety inputs and outputs (continued) Programming automated safety functions

Software XPSMFWIN (reference SSV1XPSMFWIN) running on a PC enables the programming of all safety remote I/O modules and the modular safety PLCs, as well as configuration of the communication settings.

## Safety inputs and outputs

The modularity of the PLC XPS MF60 allows the user to select and install, in the six slots of the rack, various input, output and input/output cards to alter the number and type of safety inputs and/or outputs to be monitored.
6 identical cards can be installed in the same rack.
The cards listed (see below and next page) indicate the number of inputs and outputs available for connection to the machines to be monitored.

Digital input cards (1)

| Cards |  | Digital inputs |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{N}^{\circ}$ | Type | Safety detection | Safety dialogue |
| XPS MFDI2401 | 24 | Limit switches, <br> Guard switches, with reset and <br> with actuator, <br> Safety light curtains type 2 and <br> type 4, <br> Safety mats and sensing edges... | Mushroom head emergency <br> stops, <br> Enclosures for control and <br> signalling units, <br> Two-hand control stations... |  |
| XPS MFDI3201 | 32 |  |  |  |

Analogue input card (1) (2)

| Card | Analogue measuring inputs |  |
| :--- | :--- | :--- |
|  | $\mathbf{N}^{\circ}$ | Functions |
| XPS MFAI801 | 8 single-pole <br> or <br> 4 | Closed circuit scanning of input channels, <br> Single-pole measuring of 0 to 10 V voltages, <br> 2-pole measuring of -10 to +10 V voltages, <br> Single-pole measuring of 0 to 20 mA currents |

[^10]| Presentation: | Characteristics: | References: | Cimensions, mounting: |
| :--- | :--- | :--- | :--- |
| page $2 / 34$ | page $2 / 42$ | page $2 / 44$ | page $2 / 48$ |

# Safety automation system solutions <br> Preventa safety PLCs <br> Modular, XPS MF60 <br> Rack, power supply and CPU 



# Safety automation system solutions <br> Preventa safety PLCs <br> Modular, XPS MF60 <br> Rack, power supply and CPU 

## Communication <br> Safety communication on Ethernet network

Communication between the PC, Magelis graphic terminals or automation platform (Premium) and the modular safety PLC is achieved by the Ethernet network connection via the integrated RJ45 switched Ethernet communications ports of the modular safety PLC.


Communication on Modbus serial (RTU) fieldbus
On Modbus serial (RTU), the modular safety PLC is a slave of the Premium automation platform and Magelis graphic terminal.
It is connected to the Modbus serial network via its SUB-D 9-pin connector (FB2).


1 Graphic terminal XBT GT: Modbus serial (RTU) master.
2 Premium automation platform: Modbus serial (RTU) master.
3 Modular safety PLC: Modbus serial (RTU) slave, Modbus TCP/IP server.
4 Safety remote I/O modules XPS MF1/2/3. They communicate with the modular safety PLC using the SafeEthernet protocol.
5 Graphic terminal XBT GT: Modbus serial (RTU) client.

| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 34$ | page $2 / 42$ | page $2 / 44$ | Dimensions, mounting: |

# Safety automation system solutions <br> Preventa safety PLCs <br> Modular, XPS MF60 <br> Rack, power supply and CPU 



## Power supply module XPS MFPS01 and Central processing unit <br> \section*{XPS MFCPU22 comprising:}

1 Four voltage status LEDs (FAULT, $24 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5 V ).
2 ARESTART button (accessible using fine pointed tool).
3 A 3-pole terminal block (3 captive screws) for "Fault contact" function (1).
$4 \mathrm{~A}-\mathrm{-} 24 \mathrm{~V}$ supply terminal block, including earth connection (2).
5 A grip to assist installation/removal of the power supply module.
6 Seven process status LEDs.
7 Four integrated RJ45 (type 10BASE-T/100BASE-TX) switched ports for Programming, and for Safety and non-safety related communication on Ethernet. (safety related using SafeEthernet protocol and Non-safety related using Modbus TCP server protocol).
8 Two process status LEDs.
9 A SUB-D 9-pin connector (FB2) for connection on Modbus serial (RTU) (FB1 not used), with process status LED.
10 A grip to assist installation/removal of the CPU.
(1) "Fault contact" function: the power supply module incorporates a volt-free changeover contact. Operating errors occurring in the system are read and displayed by the LEDs. The errors are analysed on the programming PC:

| $\begin{array}{\|l\|} \hline 01 \\ 02 \\ 03 \\ \hline \end{array}$ | fault L | Contact positions | Status |
| :---: | :---: | :---: | :---: |
|  |  | 1-2 closed (2-3 open) | Normal operation of the PLC. |
|  |  | 1-2 open (2-3 closed) | Absence of supply to the PLC or the CPU is in ERROR STOP mode. |

Rack, power supply and CPU


| LED details |  |  |  |
| :---: | :---: | :---: | :---: |
| Power supply module XPS MFPS01 |  |  |  |
| LED | Colour | Status | Meaning |
| 24 VDC | Green | On | --2 24 V voltage present. |
|  |  | Off | No voltage. |
| 3.3 VDC | Green | On | --- 3.3 V voltage present. |
|  |  | Off | No voltage. |
| 5 VDC | Green | On | --5 5 voltage present. |
|  |  | Off | No voltage. |
| FAULT | Orange | On | Operating error. |
|  |  |  | The user application has caused an error. |
|  |  |  | The system configuration is defective. |
|  |  |  | Replace module. |
|  |  | Off | None of the above errors have occurred. |


| Presentation: | Characteristics: | References: | Dimensions, mounting: | Connections: |
| :--- | :--- | :--- | :--- | :--- |
| page 2/34 | page 2/42 | page 2/44 | page 2/48 | page 2/49 |



| LED details (continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| Central processing unit XPS MFCPU22 |  |  |  |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Program in operation: CPU in STOP or RUN mode. |
|  |  | Flashing | A new programming system will be downloaded. |
|  |  | Off | The CPU is in "ERROR" state (see ERROR). |
| ERR | Red | On | Software error or hardware fault detected by the CPU. The monitoring program (Watchdog) has triggered the STOP state of the process because the programmed cycle time has been exceeded. The CPU has stopped the execution of the user application, ended all hardware and software tests and all outputs have been reset. The process can only be started again from the PC. |
|  |  | Flashing | In the event of all the LEDs being on, restarting has detected a system error, a new operating system (OS) must be loaded. |
|  |  | Off | No error detected. |
| FB1 | - | - | Not used. |
| FB2 | Orange | On | Communication on Modbus serial link active. |
| RUN | Green | On | Normal service mode, loaded program running, the PLC receives I/O messages, communication and hardware/ software tests carried out. |
|  |  | Off | The CPU is in "ERROR" state (see ERROR). |
| STOP | Red | On | The CPU is in STOP mode and no program can be executed. |
|  |  |  | The outputs are in the waiting state for the correct supply. |
|  |  |  | The CPU has stopped the execution of the user application, ended all hardware and software tests and all outputs have been reset. |
|  |  |  | The process can only be started again from the terminal. |
|  |  | Off | CPU operating. <br> A new programming system will be downloaded. |
| PROG | Orange | On | The CPU is being loaded with a new configuration. |
|  |  | Flashing | CPU changing from INIT state to STOP state. <br> The FLASH ROM is being loaded with a new operating system. |
|  |  | Off | No loading of configuration or operating system. |
| FAULT | Orange | On | Program error. |
|  |  |  | The loading of a new operating system was defective and the operating system is corrupt. |
|  |  | Flashing | An error has occurred whilst writing to FLASH ROM memory (during updating of the operating system). |
|  |  |  | One or more I/O errors have occurred. |
|  |  | Off | None of the above errors have occurred. |
| FORCE | Orange | On | CPU in RUN mode and force is active. |
|  |  | Flashing | Program in STOP mode, but force is prepared and activated if the program restarts. |
|  |  | Off | Force not activated. |
| OSL | Orange | Flashing | Operating system and backup loading active. |
| BL | Orange | Flashing | COM in INIT_Fail state. |
| RJ45 | Green | On | Full duplex mode operation. |
|  |  | Flashing | Signal collision. |
|  |  | Off | Half duplex mode operation, no collision. |
|  | Yellow | On | Connection established. |
|  |  | Flashing | Interface active. |

## Environment

Modular safety PLC
Products designed for max. use in safety related parts of control systems (conforming to EN 954-1, EN/ISO 13849-1 and EN/IEC 61508)
Product certifications
Ambient air temperature
conforming to EN 61131-2 $\quad$ Operating

Relative humidity

| Relative humidity <br> Degree of protection Enclosure |  |
| :--- | :--- |
| Pollution | m |
| Altitude |  |
| Protection class |  |
| Electromagnetic compatibility |  |
| Vibration resistance <br> conforming to EN 61131-2 | Operating |
| Shock resistance <br> conforming to EN 61131-2 | KVerating |
| Resistance to electrostatic discharges <br> conforming to EN/IEC 61000-4-2 | V/m |
| Immunity to high frequency interference <br> conforming to EN/IEC 61000-4-3 |  |
| Rack material |  |

## Electrical characteristics

| Supply | Voltage | V | -- 24 (External supply with separate protection conforming to EN/IEC 60950, SELV (Safety Extra Low Voltage) or PELV (Protection Extra Low Voltage) rated) |
| :---: | :---: | :---: | :---: |
|  | Voltage limits |  | $\begin{aligned} & -15 \ldots+20 \% \text { (power supply module) } \\ & -20 \ldots+25 \% \end{aligned}$ |
| Output voltage of power supply module |  | V | $=3.3 / 10 \mathrm{~A}$ |
|  |  | V | --5/2A |
| Maximum consumption |  | A | 30 max., 32 A external fuse |
| Immunity to momentary supply interruptions |  | ms | 10 |
| Protection |  |  | Internal fuse |
| Response time |  | ms | Depending on size of application |
| Backup capacitor |  |  | Approximately 1 week for diagnostics and time information Program is not effected |
| Clock |  |  | Yes |
| Operational data of CPU |  |  | -- $3.3 \mathrm{~V} / 1.5 \mathrm{~A}$ |
|  |  |  | --5V/1 A |
| User memory | Application | kB | 500 |
|  | Data | kB | 500 |
| LED display |  |  | Yes |
| Communication |  |  |  |
| Ethernet network: safety communication using SafeEthernet protocol |  |  |  |
| Compatibility |  |  | Central processing unit XPS MFCPU22 |
| Transmission | Communication ports |  | Integrated 4 RJ45 switched Ethernet communications ports |
|  | Baud rate | Mbps | 100 Half duplex, 10 Full duplex, Autonegotiation |
| Structure |  |  | 10BASE-T/100BASE-TX |
| Medium |  |  | Dual twisted pair cable, category 5D or better (Ethernet) |
| Functions | Control of: |  | Transmitted data: duplication, loss, bit changing. Addressing of transmitted and received messages. Data sequence: repetition, loss of data, change. Data reception time: delay, repetition, echo |
|  | Diagnostics on: |  | CPU, user program, communication, operating voltage and temperature, inputs \& outputs |

Presentation:
page $2 / 34$

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
Rack, power supply and CPU

| Communication (continuous) |  |  |  |
| :---: | :---: | :---: | :---: |
| Compatibility |  |  | Central processing unit XPS MFCPU22 |
| Ethernet network: Non-safety related communication using Modbus TCP/IP protocol |  |  |  |
| Connection Ports | Number and type |  | Integrated 4 RJ45 switched Ethernet communication ports |
|  | Baud rate | Mbps | 100 Half duplex, 10 Full duplex, Autonegotiation |
|  | Master/Slave |  | Server (slave) |
| Structure |  |  | 10BASE-T/100BASE-TX |
| Medium |  |  | Dual twisted pair cable, category 5D or better (Ethernet) |
| Transparent Ready Services | Class <br> Standard Ethernet TCP/IP communication services |  | A10 |
|  |  |  | Modbus TCP/IP Server |
|  |  |  | Modbus TCP/IP messaging (reading/writing of data words) |
|  |  |  | Modbus identification requests |
|  | TCP port |  | standard 502 |
|  | Max. number of Modbus TCP/IP connections |  | 1 to 20 |
| Modbus serial (RTU) |  |  |  |
| Serial link ports | Number and type |  | $1 \times$ SUB-D 9-pin female (FB2) |
|  | Master/Slave |  | Slave |
| Addressing |  |  | 122 slave addresses |
| Physical layer |  |  | RS 485 |
| Connections (1) |  |  |  |
| Power supply module |  |  | XPS MFPS 01 |
| Type of connection |  |  | Removable screw terminal blocks (2) |
| Supply connection | Number of terminal blocks |  | 1 |
|  | For 1 cable without cable end |  | Solid or flexible 0.75...16 mm², AWG 19 |
|  | For 1 flexible cable with or without plastic cable end |  | $0.5 \ldots 16 \mathrm{~mm}^{2}$, AWG 20 |
|  | For 2 cables of same diameter, without cable end |  | Solid or flexible 0.75... $6 \mathrm{~mm}^{2}$, AWG 19 |
|  | For 2 cables of same diameter, flexible without cable end |  | 0.5... $\mathrm{mm}^{2}$, AWG 20 |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | 0.5... $\mathrm{mm}^{2}$, AWG 20 |
| "In rack" I/O card |  |  | XPS MFAI801, XPS MFAO801, XPS MFCIO2401, XPS MFDI2401, XPS MFDI3201, XPS MFDIO241601, XPS MFDO801 |
| Type of connection |  |  | Removable screw terminal blocks (2) |
| Digital input channel and output channel connection | Number of terminal blocks |  | Depending on "in rack" I/O card type |
|  | For 1 cable without cable end |  | Solid or flexible: 0.14...1.5 mm², AWG 28-16 |
|  | For 1 flexible cable without cable end |  | 0.25...1.5 mm², AWG 22-16 |
|  | For 1 flexible cable with plastic cablee end |  | 0.25...0.5 mm², AWG 22-20 |
|  | For 2 cables of same diameter, without cable end |  | Solid: $0.14 \ldots 0.5 \mathrm{~mm}^{2}$, AWG $28-20$ <br> Flexible: 0.14... $0.75 \mathrm{~mm}^{2}$, AWG 28-18 |
|  | For 2 cables of same diameter, flexible without cable end |  | $0.25 \ldots 0.34 \mathrm{~mm}^{2}$, AWG 22 |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | $0.5 \mathrm{~mm}^{2}$, AWG 20 |
| Analogue input channel and output channel connection | Number of terminal blocks |  | Depending on "in rack" I/O card type |
|  | For 1 cable without cable end |  | Solid or flexible: 0.14...1.5 mm², AWG 28-16 |
|  | For 1 flexible cable without cable end |  | 0.25...1.5 mm², AWG 22-16 |
|  | For 1 flexible cable with plastic cable end |  | 0.25...0.5 mm², AWG 22-20 |
|  | For 2 cables of same diameter, without cable end |  | Solid: $0.14 \ldots 0.5 \mathrm{~mm}^{2}$, AWG 28-20 Flexible: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$, AWG 28-18 |
|  | For 2 cables of same diameter, flexible without cable end |  | $0.25 . . .0 .34 \mathrm{~mm}^{2}$, AWG 22 |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | $0.5 \mathrm{~mm}^{2}$, AWG 20 |
| Counting channel connection | Number of terminal blocks |  | Depending on "in rack" I/O card type |
|  | For 1 cable without cable end |  | Solid or flexible: 0.14...1.5 mm ${ }^{2}$, AWG 28-16 |
|  | For 1 flexible cable without cable end |  | 0.25..1.5 mm², AWG 22-16 |
|  | For 1 flexible cable with plastic cable end |  | 0.25...0.5 mm ${ }^{2}$, AWG 22-20 |
|  | For 2 cables of same diameter, without cable end |  | Solid: 0.14... $0.5 \mathrm{~mm}^{2}$, AWG 28-20 <br> Flexible: 0.14...0.75 $\mathrm{mm}^{2}$, AWG 28-18 |
|  | For 2 cables of same diameter, flexible without cable end |  | 0.25...0.34 mm ${ }^{2}$, AWG 22 |
|  | For 2 cables of same diameter, flexible with plastic cable end |  | $0.5 \mathrm{~mm}^{2}$, AWG 20 |
| Cable connection | Tightening torque | Nm | 0.22...0.25 |
|  | Bared length | mm | 9 |

(2) Removable screw terminal blocks are provided with the power supply and "in rack" I/O cards.


| Modular PLC (-- $\mathbf{2 4}$ V supply) |  |  |
| :--- | :--- | ---: | ---: |
| Minimum basic equipment |  |  |
| Description | Reference | Weight |
| kg |  |  |

CPU (1) fitted with:
XPS MFCPU22 0.280
■ $4 \times$ integrated RJ45 (type 10BASE-T/100BASE-TX) switched
ports for Programming, and for Safety and non-safety related communication on Ethernet. (safety related using SafeEthernet protocol and Non-safety related using Modbus TCP/IP server protocol
ㅁ 1 x SUB-D 9-pin port (FB2) for access to Modbus serial (RTU)

| Optional "in rack" //O cards |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Functions |  | Reference | Weight |
|  | Inputs | Outputs |  | kg |
| "In rack" $/ / \mathbf{O}$ card <br> (1) | Analogue: <br> 8 single-pole or 42 -pole, configurable | - | XPS MFAI801 | 0.240 |
|  | - | 8 analogue | XPS MFAO801 | 0.280 |
|  | 2 counting | 4 digital | XPS MFCIO2401 | 0.260 |
|  | $\begin{aligned} & 24 \text { digital } \\ & (=-110 \mathrm{~V} / \sim 127 \mathrm{~V}) \end{aligned}$ | - | XPS MFDI2401 | 0.260 |
|  | 32 digital | - | XPS MFDI3201 | 0.260 |
|  | 24 digital | 16 digital <br> (2) | XPS MFDIO241601 | 0.260 |
|  | - | $\begin{aligned} & 8 \text { relay } \\ & \sim 6 \ldots 250 \mathrm{~V} \end{aligned}$ | XPS MFDO801 | 0.600 |

[^11]| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 34$ | page $2 / 42$ | page $2 / 44$ | Dimensions, mounting: |

# Safety automation system solutions Preventa safety PLCs Modular, XPS MF60 <br> Rack, power supply and CPU 

## Configuration software

■ Reference SSV1XPSMFWIN is the full version of software XPSMFWIN version 4.1 and must be installed if
no previous version of this software has been installed.
■ Reference SSVXPSMFWINUP is an update for software XPSMFWIN and can be used if SSV1XPSMFWIN
has been installed using Safety Suite V1. An update from version 4.1 to version 4.1-6150 for the software
XPSMFWIN will then be performed.

| Description | Operating system | Details | Languages | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration software XPSMFWIN for programming modular safety PLCs <br> CD-ROM + user manual | Windows 2000, Windows XP | Software available on Safety Suite V2 software pack | English, German, French | SSV1XPSMFWIN | 0.520 |


| XPSMFWIN software | Windows 2000, | Software update | English, | SSVXPSMFWINUP |
| :--- | :--- | :--- | :--- | :--- |
| update | Windows XP | available on Safety | German, |  |
| CD-ROM + user manual |  | Suite V2 software <br> pack | French |  |


| Accessories for modular PLC |  |  |
| :--- | :--- | :--- |
| Description | For use with | Reference |
| Covering plate | Unused "in rack" I/O card slots | XPS MFBLK |



ABL 1REM24025


XBT GT2130, XBT GT2330


XBT GT4330


XBT GT5•30


XBT GT6330


XBT GT7340

| Mains input voltage | Output voltage | Nominal power | Nominal current | Auto-protect reset | Conformity to standard IEC EN 61000-3-2 and IEC EN 60950 | Reference | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | - V | W | A |  |  |  | kg |

Universal range, single-phase (N-L1) or 2-phase (L1-L2) connection

| $\begin{aligned} & \sim 100 \ldots 120 \mathrm{~V} / 200 \ldots 500 \\ & -15 \%,+10 \% \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ | 24... 28.8 | 72 | 3 | Auto/Manual | Yes | ABL 8RPS24030 | 0.300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 120 | 5 | Auto/Manual | Yes | ABL 8RPS24050 | 0.700 |
|  |  | 240 | 10 | Auto/Manual | Yes | ABL 8RPS24100 | 1.000 |
| Dedicated range, single-phase connection |  |  |  |  |  |  |  |
| ~ 100... 240 (1) <br> wide range, $47 \ldots 63 \mathrm{~Hz}$ | 12 | 60 | 5 | Auto | No | ABL 1REM12050 | 0.440 |
|  | 24 | 60 | 2.5 | Auto | No | ABL 1REM24025 | 0.440 |
| $\sim 100 . .120 / 200 \ldots 240$ (2) | 24 | 240 | 10 | Auto | No | ABL 1REM24100 | 0.880 |

Magelis multifunction graphic terminals with touch sensitive screen and on-board Ethernet (1) (2)
Supply voltage --- 24 V

| Description |  | Ports: serial and communication (type of link) | Application | Reference | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.7" | Monochrome black and white STN | 1 x SUB-D 9-pin (RS 232C or RS 422/485 serial link to PLCs) <br> $1 \times$ RJ45 (RS 485 serial link) <br> $1 \times$ USB (peripheral connection and application transfer) <br> $1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX) | 16 Mb | XBT GT2130 | 1.000 |


| Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 16 Mb | XBT GT2330 | 1.000 |
| :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times \operatorname{RJ45}$ (RS 485 serial link)
$1 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)


| $10.4 "$ Colour STN | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT5230 | 3.000 |
| :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

| Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT5330 | 3.000 |
| :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times \operatorname{RJ45}$ (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

| 12.1" Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT6330 | 3.000 |
| :--- | :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)

| $15 "$ | Colour TFT | $1 \times$ SUB-D 9-pin (RS 232C or RS 422/485 serial link to | 32 Mb | XBT GT7340 | 5.600 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PLCs)
$1 \times$ RJ45 (RS 485 serial link)
$2 \times$ USB (peripheral connection and application transfer)
$1 \times$ RJ45 (Ethernet TCP/IP, 10BASE-T/100BASE-TX)
(1) Service instructions, USB connectors locking device and fixing kit included.
(2) Other operator dialogue terminals, industrial PCs: please refer to our "Human Machine Interface" catalogue.

| Presentation: <br> page 2/34 | Characteristics: | References: | Dimensions, mounting: | Connections: <br> page 2/42 |
| :--- | :--- | :--- | :--- | :--- |

490 NTW 000••



490 NAD 91103

Dimensions, mounting

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
Rack, power supply and CPU

(1) Removable screw terminal blocks are provided with the power supply and "in rack" I/O cards.

Mounting precautions relating to connectors
Access to Modbus serial link (RTU) and Ethernet network


| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 34$ | page $2 / 42$ | page $2 / 44$ | page $2 / 48$ |


| Connections |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Power supply module and CPU |  | Screw | Function |

## Connection examples

Actuator connections to the outputs


Emergency stop connections (line control)


Presentation, description

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" analogue input card

## Presentation

The "in rack" analogue input card XPS MFAI801 is designed to manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.
- It incorporates 8 analogue inputs:
- electrically isolated from the back plane bus of rack XPS MFGEH01,
$\square$ configured by choice of connection for managing eight single-pole or four 2-pole functions.

■ The card can be installed in rack XPS MFGEH01 as many times as required in the six slots available.


## Description

## On the front face of the card:

1 Two process status LEDs (RUN, ERR).
2 Two removable screw terminal blocks (9 terminals per block) for connection of inputs (4).
3 Grip to assist installation/removal
4 On the rear: terminals for automatic electrical connection to the back plane bus of rack XPS MFGEH01.

| LED details |  |  |  |
| :--- | :--- | :--- | :--- |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Voltage present. |
|  |  | Off | No voltage. |
| ERR | Red | On | Card defect or external error, diagnostics response. |

[^12]Characteristics, references, connections

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" analogue input card

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Card type |  |  | XPS MFAI801 |
| Number of analogue inputs |  |  | 8 single-pole inputs ( $\pm 10 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA}$ ) or 4 2-pole inputs ( $\pm 10 \mathrm{~V}$ ), electrically isolated, configurable by choice of connection |
| Supply | Voltage | V | -- 24, supplied by rack XPS MFGEH01 incorporating power supply module XPS MFPS01 |
|  | Voltage limits |  | -15...+20\% |
| Signal | Usable range | V | $\pm 10.25$ |
|  |  | mA | 0... 20.5 (with shunt) |
|  | Nominal value | V | $\pm 10$ |
|  |  | mA | $0 . . .+20$ (with shunt) |
| Maximum input signal |  | V | $\pm 10.7$ |
| Shunt for current measurement |  | $\Omega$ | 250 or 500 |
| Overvoltage protection |  | V | --- -15...+15 (30 V range) |
| Input resistance | d.c. | M $\Omega$ | 1 |
| Operational data |  |  | $\begin{aligned} & =-24 \mathrm{~V} / 380 \mathrm{~mA} \\ & -=3.3 \mathrm{~V} / 150 \mathrm{~mA} \\ & \hline \end{aligned}$ |
| Ambient air temperature conforming to EN 61131-2 | Operating | ${ }^{\circ} \mathrm{C}$ | 0... +60 |
|  | Storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+85$ |
| Resolution | Effective |  | 9-bit |
|  | Maximum |  | 12-bit |
| Output voltage |  |  | $\pm 1 \%$ max. |
| Safety accuracy |  |  | $\pm 1 \%$ max. |
| Transient deviation |  |  | $\pm 1 \%$ max. |
| Value acquisition renewal |  |  | Once per CPU cycle |
| Processing time |  |  | Approximately $45 \mu \mathrm{~s}$ |
| Connections |  |  | See page 2/43 |



| References |  |  | Reference | Weight <br> $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- | ---: |
| Description | Number of <br> channels | Voltage <br> Current | XPS MFAI801 | 0.240 |
| Analogue input card | 8 single-pole | $\pm 10 \mathrm{~V}$ |  |  |
|  |  | $0 . .20 \mathrm{~mA}(1)$ |  |  |
|  | 4 2-pole | $\pm 10 \mathrm{~V}$ |  |  |


| Connections |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item | Connection |  |  | Screw ${ }^{\circ}$ Screw | Function |  |  |  |
| A | Analogue inputs |  | 01 | L1+ | Analogue input 1 |  |  |  |
|  |  |  | 02 |  | Input 1 (reference pole) |  |  |  |
|  |  |  | 03 | L2+ | Analogue input 2 |  |  |  |
|  |  |  | 04 |  | Input 2 (reference pole) |  |  |  |
|  |  |  | 05 | L3+ | Analogue input 3 |  |  |  |
|  |  |  | 06 |  | Input 3 (reference pole) |  |  |  |
|  |  |  | 07 |  | Analogue input 4 |  |  |  |
|  |  |  | 08 |  | Input 4 (reference pole) |  |  |  |
|  |  |  | 09 | $\stackrel{1}{\square}$ | Earth/Shielding |  |  |  |
| B | Analogue inputs |  | 10 | L5+/L1-Analogue input 5 |  |  |  |  |
|  |  |  | 11 |  | Input 5 (reference pole) |  |  |  |
|  |  |  | 12 | L6+/L2- Analogue input 6 |  |  |  |  |
|  |  |  | 13 |  | Input 6 (reference pole) |  |  |  |
|  |  |  | 14 | L7+/L3- Analogue input 7 |  |  |  |  |
|  |  |  | 15 | L- | Input 7 (reference pole) |  |  |  |
|  |  |  | 16 | L8+/L4- Analogue input 8 |  |  |  |  |
|  |  |  | 17 | L- | Input 8 (reference pole) |  |  |  |
|  |  |  | 18 |  | Earth/Shielding |  |  |  |
| Configuration of analogue inputs |  |  |  |  |  |  |  |  |
| Connection |  | ... | with | Connection |  | ... | with | ... |
| 8 sing | -pole inputs | L1+ | L- | 4 2-pole inputs |  | L1+ |  | L5+/L1- |
|  |  | L2+ | L- |  |  | L2+ |  | L6+/L2- |
|  |  | L3+ | L- |  |  | L3+ |  | L7+/L3- |
|  |  | L4+ | L- |  |  | L4+ |  | L8+/L4- |


| $L 5+/ L 1-$ $L-$ <br> $L+/ L 2-$ $L-$ <br> $L 7+/ L 3-$ $L-$ <br> L8+/L4- $L-$ |  |
| :--- | :--- |

(1) With a $250 \Omega$ or $500 \Omega$ external shunt.

Presentation, description

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" analogue output card


## Presentation

The analogue output card XPS MFAO801 is designed to manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.

■ It incorporates 8 configurable analogue outputs ( $0 \ldots 20 \mathrm{~mA}, 0 \ldots+10 \mathrm{~V}$ or
$-10 \ldots+10 \mathrm{~V}$ ):
$\square$ For selection of the type of voltage/current measurement: a switch enables selection of 6 functions for each output channel.

| Switch position | Outputs |  |
| :--- | :--- | :--- |
| 1 | Voltage $\pm \mathbf{1 0} \mathbf{V}$ | Current 0... $\mathbf{2 0 m A}$ |
| 2 | - | On |
| 3 | - | On |
| 4 | On | On |
| 5 | On | - |
| 6 | On | - |

$\square$ Selection of measuring scale using software XPSMFWIN: the "Properties" submenu displays the scale options in the "Type" window (...FS1000 or ...FS2000).

| Configurable output values |  |  |  |  | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Type | Voltage | Current | Value range |  |
| Half scale <br> (version FS1000) | Full scale <br> (version FS2000) |  |  |  |
| 8 analogue <br> outputs | - | $0 \ldots 20 \mathrm{~mA}$ | $0 \ldots+1000$ | $0 \ldots+2000$ | | $0 \ldots+10 \mathrm{~V}$ | - | $0 \ldots+1000$ | $0 \ldots+2000$ |
| :--- | :--- | :--- | :--- |

The card can be installed in rack XPS MFGEH01 as many times as required in the six slots available

## Functional synoptic

Output channels 1 to 8


## Description

## On the front face of the card:

1 Two process status LEDs (RUN, ERR).
2 Two removable screw terminal blocks (9 terminals per block) for connection of outputs (1).
3 Grip to assist installation/removal.
4 On the rear: terminals for automatic electrical connection to the back plane bus of rack XPS MFGEH01.

| LED details |  |  |  |
| :--- | :--- | :--- | :--- |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Voltage present. |
|  |  | Off | No voltage. |
| ERR | Red | On | Card defect or external error, diagnostics response. |
|  |  | Off | No error regarding the card or on the channels. |

[^13]Characteristics, references, connections

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" analogue output card


Presentation, description

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" mixed card: counting inputs/digital outputs


## Presentation

The mixed counting input and digital output card XPS MFCIO2401 is designed to manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.

■ It incorporates:

- 2 24-bit independent and configurable counting channels (one channel for counting and one channel for increasing or decreasing counting direction). They are configured using software XPSMFWIN.
$\square 4$ digital outputs.
■ The card can be installed in rack XPS MFGEH01 as many times as required in the six slots available.


## Functional synoptic



## Description

On the front face of the card:
1 Two process status LEDs (RUN, ERR).
2 Two removable screw terminal blocks (9 terminals per block) for connection of inputs (1).
3 One removable screw terminal block (9 terminals) for connection of outputs (1) with four output status LEDs.
4 Grip to assist installation/removal.
5 On the rear: terminals for automatic electrical connection to the back plane bus of rack XPS MFGEH01.

| LED details |  |  |  |
| :--- | :--- | :--- | :--- |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Voltage present. |
|  |  | Off | No voltage. |
| ERR | Red | On | Card defect or external error, diagnostics response. |

[^14]Characteristics, references, connections

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" mixed card: counting inputs/digital outputs


Presentation, description

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" digital input card

## Presentation

The digital input card XPS MFDI2401 is designed to manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.
- It incorporates $24-110$ / ~ 127 V digital inputs that are configurable using software XPSMFWIN.
- The card can be installed in rack XPS MFGEH01 as many times as required in the six slots available.


## Functional synoptic



## Description

On the front face of the card:
1 Two process status LEDs (RUN, ERR).
2 Three removable terminal blocks (9 terminals per block) for connection of inputs (1), each with eight input status LEDs.
3 Grip to assist installation/removal.
4 On the rear: terminals for automatic electrical connection to the back plane bus of rack XPS MFGEH01.

| LED details |  |  |  |
| :--- | :--- | :--- | :--- |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Voltage present. |
|  |  | Off | No voltage. |
| ERR | Red | On | Card defect or external error, diagnostics response. |

(1) Removable screw terminals are provided with the "in rack" card XPS MFDI2401.

Characteristics, references, connections

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" digital input card

| Characteristics |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input card type |  |  | XPS MFDI2401 |  |  |  |
| Supply | Voltage | V | -- 24 (supplied by rack XPS MFGEH01 incorporating power supply module XPS MFPS01) |  |  |  |
|  | Voltage limits |  | -15. |  |  |  |
| Ambient air temperature conforming to EN 61131-2 | Operating | ${ }^{\circ} \mathrm{C}$ | 0... +60 |  |  |  |
|  | Storage | ${ }^{\circ} \mathrm{C}$ | -40. |  |  |  |
| Number of inputs |  |  | 24, electrically isolated |  |  |  |
| Nominal voltage |  | V | --- 110/~ 127 (single-phase) |  |  |  |
| Input voltage | At state 0 | V | $\leqslant 20$ |  |  |  |
|  | At state 1 | V | $\geqslant 79$ |  |  |  |
| Input current | At state 1 | mA | $\geqslant 2.2$ at 79 V |  |  |  |
| Operational data |  |  | $\begin{array}{\|l\|} \hline=3.3 \mathrm{~V} / 0.05 \mathrm{~A} \\ =-24 \mathrm{~V} / 0.1 \mathrm{~A}(79 \mathrm{~V} \text { at state } 1) \\ \hline \end{array}$ |  |  |  |
| LED display |  |  | Yes |  |  |  |
| Connections |  |  | Shielded dual twisted pair cable recommended to provide protection against electromagnetic interference, or $\varnothing 12 \mathrm{~mm}$ max. cable with connection to earth of rack XPS MFGEH01 |  |  |  |
|  |  | References |  |  |  |  |
|  |  | Des | tion | Characteristics | Reference | Weight kg |
|  |  | Input |  | 24 digital inputs $=110 \mathrm{~V} / \sim 127 \mathrm{~V}$ | XPS MFDI2401 | 0.260 |

## Connections

Item Connection
A Digital inputs


|  |  | 03 | 13 | Input 3 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 04 | 14 | Input 4 |
|  |  | 05 | 15 | Input 5 |
|  |  | 06 | 16 | Input 6 |
|  |  | 07 | 17 | Input 7 |
|  |  | 08 | 18 | Input 8 |
|  |  | 09 | N/- | Common reference pole |
| B | Digital inputs | 10 | 19 | Input 9 |
|  |  | 11 | 110 | Input 10 |
|  |  | 12 | 111 | Input 11 |
|  |  | 13 | 112 | Input 12 |
|  |  | 14 | 113 | Input 13 |
|  |  | 15 | 114 | Input 14 |
|  |  | 16 | 115 | Input 15 |
|  |  | 17 | 116 | Input 16 |
|  |  | 18 | N/- | Common reference pole |
| C | Digital inputs | 19 | 117 | Input 17 |
|  |  | 20 | 118 | Input 18 |
|  |  | 21 | 119 | Input 19 |
|  |  | 22 | 120 | Input 20 |
|  |  | 23 | 121 | Input 21 |
|  |  | 24 | 122 | Input 22 |
|  |  | 25 | 123 | Input 23 |
|  |  | 26 | 124 | Input 24 |
|  |  | 27 | N/- | Common reference pole |

Presentation, description

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" digital input card

## Presentation

The digital input card XPS MFDI3201 is designed to manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.
- It incorporates 32 digital inputs that are configurable using programming software


## XPSMFWIN.

- The card can be installed in rack XPS MFGEH01 as many times as required in the six slots available.


## Functional synoptic



## Line control for card XPS MFDI3201

Line control is a means of short-circuit and line break monitoring. Using line control outputs enables SIL 3 (EN/IEC 61508) and category 4 (EN 954-1) safety to be achieved. The line control outputs send a high signal with a very short low signal, thus enabling a wiring fault (short-circuit, line break) to be seen at the inputs of the safety PLCs.

## Description

## On the front face of the card:

1 Two process status LEDs (RUN, ERR).
2 Five removable terminal blocks ( 9 terminals per block) for connection of inputs (1), with a status LED for each input terminal.
3 Grip to assist installation/removal.
4 On the rear: terminals for automatic electrical connection to the back plane bus of rack XPS MFGEH01

| LED details |  |  |  |
| :--- | :--- | :--- | :--- |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Voltage present. |
|  |  | Off | No voltage. |
| ERR | Red | On | Card defect or external error, diagnostics response. |
|  |  | Off | No error regarding the card or on the channels. |

[^15]Characteristics, references, connections

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" digital input card

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Input card type |  |  | XPS MFDI3201 |
| Supply | Voltage | V | --. 24, supplied by rack XPS MFGEH01 incorporating power supply module XPS MFPS01 |
|  | Voltage limits |  | -15...+20\% |
| Ambient air temperature conforming to EN 61131-2 | Operating | ${ }^{\circ} \mathrm{C}$ | 0...+ 60 |
|  | Storage | ${ }^{\circ} \mathrm{C}$ | -40... +85 |
| Number of digital inputs |  |  | 32, electrically isolated |
| Nominal voltage |  | V | --2 24 |
| Input voltage | At state 0 | V | 5 max. |
|  | At state 1 | V | 10... 30 |
| Input current | At state 0 | mA | 1.0 at 5 V |
|  | At state 1 | mA | 2 at $10 \mathrm{~V}, 5$ at 24 V |
| Operational data |  |  | --3.3V/0.05 A, =-2 $24 \mathrm{~V} / 0.2 \mathrm{~A}$ |
| LED display |  |  | Yes |
| Connections |  |  | Shielded dual twisted pair cable recommended to provide protection against electromagnetic interference, or Ø 12 mm max. cable with connection to earth of rack XPS MFGEH01 |




Presentation, description

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" digital I/O card

## Presentation

The digital I/O card XPS MFDIO241601 is designed to manage up to:

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.

■ It incorporates 24 digital inputs and 16 digital outputs.

- The card can be installed in rack XPS MFGEH01 as many times as required in the six slots available.


## Functional synoptics

- 24 digital inputs

- 16 digital outputs

Digital outputs 1 to 16


## Line control for card XPS MFDIO241601

Line control is a means of short-circuit and line break monitoring. Using line control outputs enables SIL 3 (EN/IEC 61508) and category 4 (EN 954-1) safety to be achieved. The line control outputs send a high signal with a very short low signal, thus enabling a wiring fault (short-circuit, line break) to be seen at the inputs of the safety PLCs.

## Description

## On the front face of the card:

1 Two process status LEDs (RUN, ERR).
2 Three removable terminal blocks (9 terminals per block) for connection of inputs (1) each with eight input status LEDs.
3 Two removable screw terminal blocks (9 terminals per block) for connection of outputs (1), each with eight output status LEDs.
4 Grip to assist installation/removal.
5 On the rear: terminals for automatic electrical connection to the back plane bus of rack XPS MFGEH01

| LED details |  |  |  |
| :--- | :--- | :--- | :--- |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Voltage present. |
|  |  | Off | No voltage. |
| ERR | Red | On | Card defect or external error, diagnostics response. |
|  |  | Off | No error regarding the card or on the channels. |

(1) Removable screw terminals are provided with the "in rack" card XPS MFDIO241601.

Characteristics, references, connections

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" digital I/O card


Presentation, description

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" relay output card


## Presentation

The relay output card XPS MFDO801 is designed to manage up to :

- category 4 conforming to EN 954-1,
- performance level "e" conforming to EN/ISO 13849-1,
- SIL 3 (safety integrity level) conforming to EN/IEC 61508.

■ It incorporates 8 relay safety outputs (3.15 A fuse) that are configurable using software XPSMFWIN

- The card can be installed in rack XPS MFGEH01 as many times as required in the six slots available.


## Functional synoptic

Relay outputs 1 to 8


## Description

On the front face of the card:
1 Two process status LEDs (RUN, ERR).
2 Eight output status LEDs.
3 Eight removable screw terminal blocks (2 terminals per block) for connection of outputs (1).
4 Grip to assist installation/removal.
5 On the rear: terminals for automatic electrical connection to the back plane bus of rack XPS MFGEHO.

| LED details |  |  |  |
| :--- | :--- | :--- | :--- |
| LED | Colour | Status | Meaning |
| RUN | Green | On | Voltage present. |
|  |  | Off | No voltage. |
| ERR | Red | On | Card defect or external error, diagnostics response. |
|  |  | Off | No error regarding the card or on the channels. |

Characteristics, references, connections

Safety automation system solutions
Preventa safety PLCs
Modular, XPS MF60
"In rack" relay output card

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Output card type |  |  | XPS MFDO801 |
| Supply | Voltage | V | ---24, supplied by rack XPS MFGEH01 incorporating power supply module XPS MFPS01 |
|  | Voltage limits |  | -15... $+20 \%$ |
| Ambient air temperature conforming to EN 61131-2 | Operating | ${ }^{\circ} \mathrm{C}$ | 0... +50 (1) |
|  | Storage | ${ }^{\circ} \mathrm{C}$ | -40... +85 |
| Number and type of outputs |  |  | 8 relay outputs, volt-free, with N/O contact |
| Relay | Type |  | 2 safety relays with positively guided contacts |
|  | Degree of protection |  | IP 40 |
|  | Contact material |  | Silver alloy, gold flashed |
|  | Switching time | ms | 30 approx. |
|  | Reset time | ms | 20 approx. |
|  | Bounce time | ms | 30 approx. |
|  | Mechanical life |  | $\geqslant 10$ million operating cycles |
|  | Electrical durability |  | $\geqslant 250000$ operating cycles on full load (resistive) and $\leqslant 0.1$ operating cycles/s |
| Switching voltage |  | V | $\sim 6 \mathrm{~V} . . .250 \mathrm{~V}$ |
| Switching current |  | A | 3.15 A with internal fuse Breaking capacity 100 A |
| Switching capacity | a.c. | VA | 700 max., $\cos \phi=1$ |
|  | d.c. (non inductive) |  | $\begin{aligned} & \leqslant-30 \mathrm{~V}: 95 \mathrm{~W} \max \cdot(3.15 \mathrm{~A}) \\ & \leqslant-70 \mathrm{~V}: 40 \mathrm{~W} \text { max. }(0.5 \mathrm{~A}) \\ & \leqslant-110 \mathrm{~V}: 33 \mathrm{~W} \text { max. }(315 \mathrm{~A}) \end{aligned}$ With suitable external fuse |
| Operational data |  |  | --3.3V/0.2 A, =- $24 \mathrm{~V} \pm 10 \%$ (1) / 0.7 A |
| LED display |  |  | Yes |
| Connections |  |  | Shielded dual twisted pair cable recommended to provide protection against electromagnetic interference, or $\varnothing 12 \mathrm{~mm}$ max. cable with connection to earth of rack XPS MFGEH01 |

(1) Limited system data.

| References | Characteristics | Reference | Weight <br> $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- |
| Description | 8 relay outputs | XPS MFDO801 | 0.600 |
| Output card | $\approx 6 \mathrm{~V} \ldots 250 \mathrm{~V}$ |  |  |



| Connections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Item | Connection | Screw ${ }^{\text { }}$ | Screw | Function |
| A | Relay output | 01 | 1 | Contact 1, terminal A |
|  |  | 02 |  | Contact 1, terminal B |
| B | Relay output | 03 | 2 | Contact 2, terminal A |
|  |  | 04 |  | Contact 2, terminal B |
| C | Relay output | 05 | 3 | Contact 3, terminal A |
|  |  | 06 |  | Contact 3, terminal B |
| D | Relay output | 07 | 4 | Contact 4, terminal A |
|  |  | 08 |  | Contact 4, terminal B |
| E | Relay output | 09 | 5 | Contact 5, terminal A |
|  |  | 10 |  | Contact 5, terminal B |
| F | Relay output | 11 | 6 | Contact 6, terminal A |
|  |  | 12 |  | Contact 6, terminal B |
| G | Relay output | 13 | 7 | Contact 7, terminal A |
|  |  | 14 |  | Contact 7, terminal B |
| H | Relay output | 15 | 8 | Contact 8, terminal A |
|  |  | 16 |  | Contact 8, terminal B |

XPS MFDO801

# Safety automation system solutions <br> Preventa safety PLCs 

Compact and modular, XPS MF
Communication on network and bus

## Presentation

To communicate, Preventa compact and modular safety PLCs XPS MF are fitted with:
■ Integrated 2 or 4 RJ45 Ethernet switched ports for transfer Safety and Non-
safety related data (Safety Related using SafeEthernet protocol, Non-Safety Related using Modbus TCP/IP protocol),
■ and/or serial communication ports for transferring non safety related data

## Safety communication on a single network

The Ethernet network supports the SafeEthernet protocol: physically, a single network is possible for communication between:
$\square$ safety products (SafeEthernet protocol),

- non safety related products (Modbus TCP/IP and other protocols),
$\square$ safety related and non safety related products (Modbus TCP/IP protocol).

Communication on more than one network: a minimum of two separate cabling systems are established.
$\square$ An Ethernet network with Modbus TCP/IP protocol is used for communication between non safety related products and the safety PLCs.
$\square$ An Ethernet network with SafeEthernet protocol is used for communication between the safety PLCs XPS MF and safety remote I/O modules XPS MF1/2/3. $\square$ A Modbus serial network with Modbus serial (RTU) protocol is used for communication between the safety PLCs XPS MF and non safety related products. $\square$ APROFIBUS DP network with PROFIBUS protocol is used for communication between the safety PLCs XPS MF and non safety related products.

| Safety PLCs | Communication on Ethernet network |  |  | Communication on fieldbus |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Compact | Port (number x type) | SafeEthernet protocol: safe communication | Modbus TCP/IP protocol: non safe communication | Modbus serial (RTU) protocol | PROFIBUS DP protocol |
| XPS MF31222 | $4 \times \mathrm{RJ} 45$ | yes | yes | no | no |
| XPS MF3022 | $4 \times \mathrm{RJ} 45$ | yes | yes | $\begin{aligned} & \text { yes (slave) } / 1 \times \text { SUB-D } \\ & \text { (9-pin) } \end{aligned}$ | no |
| XPS MF3502 | $4 \times \mathrm{RJ} 45$ | yes | yes | no | no |
| XPS MF3522 | $4 \times \mathrm{RJ} 45$ | yes | yes | $\begin{aligned} & \text { yes (slave) } / 1 \times \text { SUB-D } \\ & \text { (9-pin) } \end{aligned}$ | no |
| XPS MF3542 | $4 \times \mathrm{RJ} 45$ | yes | yes | no | $\begin{aligned} & \text { yes (slave) } / 1 \times \text { SUB-D } \\ & \text { (9-pin) } \end{aligned}$ |
| XPS MF4000 | $2 \times \mathrm{RJ} 45$ | yes | no | no | no |
| XPS MF4002 | $2 \times \mathrm{RJ} 45$ | yes | yes | no | no |
| XPS MF4020 | $2 \times \mathrm{RJ} 45$ | yes | no | yes (slave)/ $1 \times \mathrm{RJ45}$ | no |
| XPS MF4022 | $2 \times \mathrm{RJ} 45$ | yes | yes | yes (slave)/ $1 \times$ RJ45 | no |
| XPS MF4040 | $2 \times \mathrm{RJ} 45$ | yes | no | no | $\begin{aligned} & \text { yes (slave) } / 1 \times \text { SUB-D } \\ & \text { (9-pin) } \end{aligned}$ |
| XPS MF4042 | $2 \times \mathrm{RJ} 45$ | yes | yes | no | yes (slave) $/ 1 \times$ SUB-D (9-pin) <br> (9-pin) |
| Modular |  |  |  |  |  |
| XPS MFCPU22 <br> (central processing unit) | $4 \times \mathrm{RJ} 45$ | yes | yes | $\begin{aligned} & \text { yes (slave) } / 1 \times \text { SUB-D } \\ & (9-\mathrm{pin}) \end{aligned}$ | no |



1 Premium processor TSX P57 $\mathbf{6 3 4 M} / \bullet 623 M$ or module TSX ETY 4103 on Premium automation platform: Modbus TCP/IP client (master).
2 Graphic supervision terminal XBT GT5230: Modbus TCP/IP client (master).
3 Modular safety PLC XPS MF60: Modbus TCP/IP server (slave).
4 Safety remote I/O modules XPS MF1/2/3.
5 Graphic supervision terminal XBT GT2130: Modbus TCP/IP client (master).
6 Compact safety PLCs XPS MF31/30/35: Modbus TCP/IP server (slave).
7 Shielded twisted pair cables 490 NTW $000 \bullet \bullet$, lengths $2 \ldots 80 \mathrm{~m}$.
8 Compact safety PLCs XPS MF40: Modbus TCP/IP server (slave).
9 Programming PC.
10 Ethernet connector.

## Characteristics

| Protocol |  | SafeEthernet |  |
| :---: | :---: | :---: | :---: |
| Compatibility with compact and modular safety PLCs |  | XPS MF4000, XPS MF4002, | XPS MF31222, |
| Transmission | Speed (Baud rate) | 100 Mbps Half duplex, 10 Mbps Full duplex, Autonegotiation |  |
|  | Communication ports | Integrated 2 RJ45 switched Ethernet communications ports | Integrated 4 RJ45 switched Ethernet communications ports |
|  | Medium | Dual twisted pair cable, category 5D or better |  |
| Structure |  | 10BASE-T/100BASE-TX |  |
| Transparent Ready service | Class | A10 |  |
|  | Standard Ethernet TCP/IP | Modbus TCP/IP |  |
|  | by compact and modular safety PLCs) | Modbus TCP/IP messaging (reading/writing of data words) Modbus identification requests |  |
|  | TCP port | Standard 502 |  |
|  | Max. number of TCP/IP connections | 1 to 20 |  |

Connection on Modbus serial (RTU)


1 Premium module TSX SCY 21601: access to Modbus serial, on a Premium automation platform: Modbus serial (RTU) master.
2 Cable TSX SCY CM6030.
3 Graphic supervision terminal XBT GT5230: Modbus serial (RTU) master.
4 Cable XBT Z938 + adaptor XBT ZG909.
5 Cables VW3 A83 •6R•๑ for Modbus serial, lengths 0.3... 3 m .
6 Modbus serial splitter box LU9 GC3 for equipment connection.
7 Cables TSX CSA 000 for Modbus serial, lengths 100... 500 m .
8 Compact safety PLCs XPS MF4020/MF4022: Modbus serial (RTU) slaves, Modbus TCP/IP server.
9 Programming PC.
10 Graphic supervision terminal XBT GT2130: Modbus serial (RTU) client.
11 Safety remote I/O modules XPS MF1/2/3.
12 Compact safety PLCs XPS MF3022/3522: Modbus serial (RTU) slaves, Modbus TCP/IP server.
13 Modular safety PLC XPS MF60, Modbus serial (RTU) slaves, Modbus TCP/IP server.
14 Direct connection cables XPS MCSCY for safety PLCs to Premium module TSX SCY 21601, length 0.3 m .
15 Connector XPS MFADAPT (RJ45/SUB-D 9-pin male) for connector FB2 or FB3, depending on PLC.

| Characteristics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bus type |  |  | Modbus serial (RTU) |  |  |
| Compatibility with compact and modular safety PLCs |  |  | XPS MF3022, XPS MF3522 | XPS MF4020, XPS MF4022 | XPS MFCPU22 (CPU of modular PLC XPS MF60) |
| Serial link port |  | Number and type | $1 \times$ SUB-D 9-pin female (FB3) | $1 \times \mathrm{RJ45}$ (Modbus) | $1 \times$ SUB-D 9-pin female (FB2) |
|  |  | Master/Slave | Slave |  |  |
| Addressing |  |  | 122 slave addresses. Addressing range: 1... 247 |  |  |
| Medium |  |  | Shielded twisted pair cable |  |  |
| Physical layer |  |  | RS 485 |  |  |
| Services |  |  | 13 Modbus functions (reading/writing of bits and words, event counters, connection events, diagnostics, identification) |  |  |
|  | Functions | Code | Modbus slave <br> Reading $n$ bits of output |  |  |
|  |  | 01 |  |  |  |
|  |  | 02 | Reading n bits of inputs |  |  |
|  |  | 03 | Reading n words of output |  |  |
|  |  | 04 | Reading n words of inputs |  |  |
|  |  | 23 | Reading/writing variables |  |  |
|  |  | 15 | Writing bit variables |  |  |
|  |  | 16 | Writing word variables |  |  |
|  |  | 05 | Writing 1 bit of output |  |  |
|  |  | 06 | Writing 1 word of output |  |  |
|  |  | 08 | Diagnostics |  |  |
|  |  | 43 | Reading equipment identification |  |  |
| Transmission | Binary transfer rate (bps) |  | $\begin{aligned} & 115200,76800,62500,57600,38400,19200,9600,4800,2400,1200,600,300 . \\ & \text { Default value: } 57600 \end{aligned}$ |  |  |
| Elements | Parity |  | None. Odd. Even. Default value: even |  |  |
|  | Stop bit |  | Standard. 1 stop bit. 2 stop bits. Default value: standard |  |  |

Connection on PROFIBUS DP

1 Graphic terminal connected to TER/AUX port of Premium automation platform: PROFIBUS DP master.
2 Connecting cable XBT Z968 (RS 485) + adaptor XBT ZG909.
3 PROFIBUS module TSX PBY 100 on Premium processor: PROFIBUS DP master.
4 Connecting cable TSX PBS CA $\bullet 00$, lengths 100 and 400 m .
5 Connector 490 NAD 91103 (SUB-D 9-pin male) on the FB3 connector of safety PLC XPS MF3542 or on the "PROFIBUS" connector of safety PLC XPS MF4040/MF4042.
6 Compact safety PLC XPS MF3542: PROFIBUS DP slaves, Modbus TCP/IP server.
7 Compact safety PLCs XPS MF4040/MF4042: PROFIBUS DP slaves, Modbus TCP/IP server.
8 Graphic supervision terminal XBT GT2130: Modbus TCP/IP client.
9 Safety remote I/O modules XPS MF1/2/3.

## Characteristics

| Bus type <br> Compatibility with compact safety PLCs | PROFIBUS DP <br> XPS MF3542 | XPS MF4040, XPS MF4042 |
| :--- | :--- | :--- |

## Presentation

Conforming to standard IEC 61131-3, programming software XPSMFWIN is designed for programming all safety PLCs XPS MF and safety remote I/O modules. This safety software is part of the Safety Suite V2 software pack.

To create a program the user can use predefined function blocks, such as the elementary logic functions and certified function blocks, by dragging the blocks into the software programming area.
The "drag and drop" operation of the Windows programming environment enables quick and simple creation of configurations.

Using the XPSMFWIN software, it is possible to program complete systems comprising several safety PLCs and safety remote I/O modules. The conditions detailed in the software manual must be adhered to and a complete report accompanying the certificate should be established.

## Reference

■ Reference SSV1XPSMFWIN is the full version of software XPSMFWIN version 4.1 and must be installed if no previous version of this software has been installed.
■ Reference SSVXPSMFWINUP is an update for software XPSMFWIN and can be used if SSV1XPSMFWIN has been installed using Safety Suite V1. An update from version 4.1 to version 4.1-6150 for the software XPSMFWIN will then be performed.

| Description | Operating system | Composition | Language | Reference |
| :--- | :--- | :--- | :--- | :--- |
| Configuration software XPSMFWIN <br> for programming compact <br> XPS MF40॰e, XPS MF3॰ and <br> modular XPS MF60 safety PLCs |  | Windows 2000, | Windows XP |  |

Installation


Software XPSMFWIN: project management

Software XPSMFWIN uses an electronic key (dongle) for protection against unauthorised use.

A USB dongle is available. It must be connected to the PC before the software is installed.
Drivers must also be installed on the computer to recognise the dongle. These drivers are included with software XPSMFWIN and are automatically installed during installation.
To install software XPSMFWIN:
$\square$ Connect the dongle.

- Insert the SSV1XPSMFWIN software CD-ROM into the computer.
$\square$ Launch installation.
$\square$ Select the preferred language from the configuration menu.
$\square$ Follow the guided installation procedure for the software.
$\square$ Restart the computer.
- Launch the software by clicking on the Safety Suite icon on the desktop.


## The computer hardware requirements are as follows:

■ Processor (Intel Pentium II 400 MHz minimum, Intel
Pentium III 800 MHz recommended).

- RAM ( 128 Mb minimum, 256 Mb recommended).

■ Graphics card (2 Mb XGA, $1024 \times 768,256$ colours minimum, 8 Mb XGA, $1280 \times 1024$ True colour recommended).

- Hard disk (1 Gigabyte minimum).
- Operating system:
$\square$ Windows 2000 Professional with Service Pack 1 or higher.
- Windows XP with Service pack 1.


# Safety automation system solutions Programming software XPSMFWIN for Preventa compact and modular safety PLCs XPS MF 

## Safety related communication

Safety related communication for the safety systems is performed using SafeEthernet protocol.
SafeEthernet is a TCP/IP based protocol that uses highly intelligent switches to provide extremely reliable deterministic communication.
Connection is made automatically between the master and slaves when assigning the slaves to the corresponding masters. Transmission speeds of up to 100 Mbps in Half duplex mode and 10 Mbps in Full duplex mode can be achieved and using Autonegotiation ensures the correct baud rates for the connection. Each safety PLC can manage up to 64 safety connections. These 64 connections can comprise safety remote I/Os and other safety PLCs.
Communication between two safety PLCs is established via a Peer-Peer link. This Peer-Peer communication enables data between two or more safety PLCs to be communicated safely.
The connectivity of all the equipment enables centralised or decentralised networks to be established. It also enables safety PLCs and safety remote I/O modules to be connected anywhere on the network with only the assigning of an IP address, to each module, in the software.

## Interface

XPSMFWIN features two distinct windows, one for internal configuration and one for hardware management.

Project management
This window enables creation, archiving and recalling of all the user programs. It contains all the logic functions and predefined certified function blocks. - Hardware management

This window enables all hardware specific data, inputs and outputs and signal transfer between safety controllers to be defined, as well as the various safety PLCs being used or safety remote I/O modules

## Items included in the XPSMFWIN interface

- Menu and title bar
- Toolbar and status bar

■ Windows layout, structure window and work space

- Error display window

XPSMFWIN is a program offering numerous functions and features intuitive, Windows style, operation, making it a very user-friendly programming environment.

## Project Management window layout

On launching software XPSMFWIN, the standard screen shown below opens.
This screen generally includes the following items:


1 Title bar.
2 Structure window.
3 Menu bar
4 Project management toolbar
5 Work space.
6 FBD (Function Block Diagram) editor toolbar.
7 Error display window.
8 Status bar with coordinate information of the function plan editor.

## Structure window

$\qquad$
［122］Resource 1 2 3
$\underset{\text { Mr Modbus Slave }}{ }$
$\square$ Remote l／0 4
靳［0］HIMatix F1 DI 1601＿1 — 5
 B CPU ［1＋［1］DI 16 DI 16
告［0］HIMatix F2 DO 801＿1 COM －CPU $\cdots$［1］DO 8 DO 8
．［0］［0］XPSMF 40 $\qquad$ 7 ：COM Ethernet switch － $\mathrm{B}_{\mathrm{B}} \mathrm{CPU}$ －$\vec{L}_{[1] \text { DIO 12／12 DIO 12／12 }}$ ［ $\overrightarrow{\text {［ }}$［2］DIO 12／12 DIO 12／12
退 ${ }^{[ }$test 01
－ 29 NewResource
$\square$ Protocols
－－Remote I／O
－退Typelnstance［0］XPSMF
－ BPL
－$\rightarrow$［1］DO 801 DO 801 ＿1

［ B ［3］DIO 24／16 01 DIO 24／16 01＿1
［ + ［4］Al 801 FS2000Al 801 FS2000＿1
－ H （5］ClO $2 / 401$ ClO 2／401＿1
＋［6］DI 3201 DI 3201 ＿1
EProgramming Terminal
㙔 HH－Network＿1
－MCP Configuration

1 Configuration．
2 Resource folder．
3 Communication protocols．
4 Remote I／O folder．
5 Remote I／O type．
6 Components and modules．
7 Resource type．

The structure window displays the hierarchical structure of the project． Selecting one of three views provides the user with different levels of detail．

| FROJ | POU | TYPE | SIG |
| :---: | :---: | :---: | :---: |
| $\square \rightarrow$ Trainin＿Proied |  |  |  |
| －－$\triangle$ Configuration |  |  |  |
| －Resoure 11 |  |  |  |
| $\stackrel{\oplus-\text {－}}{\square}$ |  |  |  |
|  |  |  |  |
| －車 2003 |  |  |  |
| 臨 |  | Functic | Block |
|  |  | Progran |  |
| （\＃）Standardlibs |  |  |  |
| \％signalcsv |  |  |  |
| （e）signaltxt |  |  |  |



All data types

## FBD（Function Block Diagram）editor

Using this editor，the user can create function blocks in FBD（Function Block Diagram）language or SFC（Sequential Function Chart）language． The FBD editor comprises the following panes：


1 Drawing field．
2 Variable declaration editor．
3 Overview window．
4 Interface declaration editor．

# Safety automation system solutions Programming software XPSMFWIN for Preventa compact and modular safety PLCs XPS MF 

## Programming

Software XPSMFWIN enables programming of the entire range of Preventa safety PLCs XPS MF
The powerful and easy to use methodology of this software enables users to quickly and simply familiarise themselves with the product. The Windows based look and user-friendliness provides users with trouble free operation of the software.

On launching the software, the program's start-up assistant opens simultaneously. This assistant enables the user to easily open a new or existing file, delete a file or archive a file. Once a new or existing file is opened, the user quickly accesses the working environment.

## Configuration

The user can begin creating a configuration as soon as a personal library is set-up, that will contain the user configuration(s)
Once the personal library is opened, the user can use the standard library function blocks (And, Or, Not, Flip-Flop, etc.) to create exactly what is required

The user drags the function blocks into the configuration environment and places them where required. Once the function blocks are placed, the user can define specific signals or variables for the inputs and outputs.

The Hardware menu enables assigning of all the signals to the relevant inputs and outputs.

From within the Hardware menu the relevant safety PLCs are selected using the pull-down menu of each resource.
To add additional safety PLCs a new resource is easily created and assigned with the type of safety PLC

Up to 64 remote inputs/outputs can be assigned to each safety PLC
Once all the safety PLCs and remote I/Os have been selected, the signals can be simply connected to the relevant safety modules.
The "drag and drop" function enables defining of the inputs and outputs.
Therefore, configuration is very quick and simple.
Once all the inputs and outputs have been defined the user can compile the entire program, which is performed in the configuration menu.
Compilation must be performed twice and the results of both compilations printed and compared. If both results match, the program can be downloaded via the Ethernet RJ45 communication port on any of the safety PLCs.

## Program execution

The program will automatically be stored in all the safety PLCs.
The safety PLCs can then execute the configuration and full diagnostics can be viewed on screen.
The software incorporates various diagnostic options that can be used to quickly identify the presence of errors. Some of these diagnostic options are "On-line test": which displays the logic condition of all the I/Os. Others allow the user to view the status of the transmission line, the cycle time and errors that have occurred on the communication line.

The programming tool enables the user to create and design to suit their needs. Other certified function blocks are available, which enable the overall configuration time to be further reduced. Included in these additional blocks are "Muting" and "Emergency stop" functions, together with 12 other certified functions.

Modbus TCP/IP, Modbus serial (RTU) and PROFIBUS DP protocols are included in software XPSMFWIN. They can be used for non safety related data transfer.

# Safety automation system solutions Programming software XPSMFWIN for Preventa compact and modular safety PLCs XPS MF 

## Non safety related communication protocols Modbus TCP/IP server (slave)

The XPS MF range of safety PLCs (XPS MFCPU22, XPS MF402, XPS MF35•2, XPS MF3022 and XPS MF31222) allow the communication of non safety related data on an Ethernet network via a Modbus TCP/IP link.


On the Ethernet network, several masters (clients) can read data provided by several slaves (servers).

Creation of Modbus TCP/IP servers is quick and simple: Select Protocols / New / Modbus Slave.

Modbus serial (RTU)

The XPS MF range of safety PLCs (XPS MFCPU22, XPS MF402•, XPS MF352• and XPS MF3022) allow the communication of non safety related data on a Modbus serial (RTU) link.
On the Modbus serial network, a master can read the data provided by several slaves on a network segment.


Creation of Modbus (RTU) servers is quick and simple: Select Protocols / New / Modbus Slave.
Select the serial option in the properties window to activate, then select the signals to send and receive from your standard automation system equipment.

## Safety automation system solutions Programming software XPSMFWIN for Preventa compact and modular safety PLCs XPS MF

## Non safety related communication protocols PROFIBUS DP

To create a PROFIBUS DP slave on a resource (PLC), a project must be created Safety PLCs XPS MF404• and XPS MF3542 are PROFIBUS DP V0 slaves. Within hardware management, assignment of PROFIBUS DP slaves is simple: Select Protocols / New / PROFIBUS DP slave from the protocol tag of a resource



The PROFIBUS DP Slave menu contains the following fields:
$\square$ Connect signals tab: for connecting the inputs and outputs to and from the safety PLC, and predefined signals for diagnostics.

- Import and Export tool: used for importing and exporting the signal list to/from a CSV format file (format that can be imported into a standard automation PLC). $\square$ Properties tab: enabling setting of the station address, interface, baud rate and data refresh rate

Selection guide
Safety automation system solutions
Preventa safety PLCs
Compact and modular，XPS MF
Safety remote input，output and input／output modules XPS MF1／2／3

| User memory |  | Application |
| :---: | :---: | :---: |
|  |  | Data |
| Response time |  |  |
| Maximum consumption |  |  |
| Supply |  |  |
| Inputs | Digital | Number of channels |
|  |  | Current at state 0 |
|  |  | Current at state 1 |
|  | Analogue | Number of channels |
|  |  | Range：voltage／current |
|  | Counting | Number of channels |
|  |  | Current |
| Outputs | Digital | Number of channels |
|  |  | Output current |
|  | Analogue | Number of channels |
|  |  | Range：voltage／current |
|  | Relay | Number |
|  |  | Switching voltage |
|  | Line control | Number |
|  |  | Current／Voltage |

Input／output connections

| Safety communication on Ethernet network using |
| :--- |
| SafeEthernet protocol |
| Safety remote I／O module type |

## See page

## Remote input，output and input／output modules： <br> －Location：within the vicinity of machines to be monitored． <br> －Extension of the I／O capacity of compact and modular safety PLCs． <br> －Designed for use in safety related parts of control systems up to category 4 conforming to <br> EN 954－1，up to performance level＂e＂conforming to EN／ISO 13849－1，and up to SIL 3 <br> conforming to EN／IEC 61508.



Products referenced XPS MF1DI1601 and XPS MF2•eゃeゃゃ are marked HIMatrix F1DI and HIMatrix F2DI （manufactured by Hima，sold by Schneider Electric）．

| - |  |
| :--- | :--- |
| - |  |
| Depending on size of application |  |
| 0.8 A | 0.5 A |

External -24 V supply（with separate protection conforming to EN／IEC 60950，SELV（Safety Extra Low Voltage）or PELV（Protection Extra Low Voltage）rated）


Removable screw terminal blocks（1）

Yes，access to network via integrated 2 RJ45 switched Ethernet communications ports

| XPS MF1Dl1601 | XPS MF2DO401 | XPS MF2DO1601 |
| :--- | :--- | :--- |
|  |  |  |
| 2／78 | $2 / 85$ |  |
| （1）Removable screw terminal blocks are provided with safety remote I／O modules XPS MF1／2／3． |  |  |




| - |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - |  |  |  |  |  |
| Depending on size of application |  |  |  |  |  |
| 0.6 A | 0.6A | 8A | 14A | 8A | 0.8 A |
| External -- 24 V supply (with separate protection conforming to EN/IEC 60950, SELV (Safety Extra Low Voltage) or PELV (Protection Extra Low Voltage) rated) |  |  |  |  |  |
| - | - | 8, not electrically isolated | 16, not electrically isolated | 20, not electrically isolated | - |
| - | - | 1.5 mA max. <br> 1.25 mA at $=5 \mathrm{~V}$ | $\begin{aligned} & 1.5 \mathrm{~mA} \text { max. } \\ & 1 \mathrm{~mA} \text { at }=-5 \mathrm{~V} \end{aligned}$ | 1.5 mA max. <br> 1.25 mA at $=5 \mathrm{~V}$ | - |
| - | - | $>2 \mathrm{~mA}$ at $=15 \mathrm{~V}$ | $>2 \mathrm{~mA}$ at $=15 \mathrm{~V}$ | $\geqslant 2 \mathrm{~mA}$ at -15 V | - |
| - | - | - | - | - | 8 single-pole |
| - | - | - | - | - | $\begin{aligned} & \hline=0 . \ldots 10 \mathrm{~V} / 0 \ldots . .20 \mathrm{~mA} \\ & \text { (1) } \end{aligned}$ |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
| - | - | $8 \mathrm{DO}+$ (reference pole L-) <br> 2 DO- (reference pole $\mathrm{S}+$ ) | 8 2-pole or 16 single-pole, not electrically isolated | 8, not electrically isolated (2) | - |
| - | - | DO+: channels 1 to 3 and 5 to 7 : 0.5 A at $60^{\circ} \mathrm{C}$ channels 4 and 8 : 1 A at $60^{\circ} \mathrm{C}, 2$ A at $40^{\circ} \mathrm{C}$ DO-: channels 1 and 2: 1 A at $60^{\circ} \mathrm{C}$ | 2 A max. at $40^{\circ} \mathrm{C}$, <br> 1 A max. at $60^{\circ} \mathrm{C}$, 10 mA min. | Channels 1 to 3 and 5 to $7: 0.5 \mathrm{~A}$ at $60^{\circ} \mathrm{C}$ Channels 4 and 8 : 1 Aat $60^{\circ} \mathrm{C}$, $2 A$ at $50^{\circ} \mathrm{C}$ | - |
| - | - | - | - | - | 4 non safety related outputs |
| - | - | - | - | - | Usable range: $0 . . .20 \mathrm{~mA}$ Nominal range: 4... 20 mA |
| 8 | 16 | - | - | - | - |
| $\begin{aligned} & \geqslant 5 \mathrm{~V}, \\ & \leqslant--250 \mathrm{~V} / \sim 250 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \geqslant 5 \mathrm{~V}, \\ & \leqslant--30 \mathrm{~V} / \sim 60 \mathrm{~V} \end{aligned}$ | - | - | - | - |
| - | - | 2, not electrically isolated |  | - | - |
| - | - | $60 \mathrm{~mA} / 20 \mathrm{~V}$ | $60 \mathrm{~mA} / 20 \mathrm{~V}$ | - | - |

Removable screw terminal blocks (3)

Yes, access to network via integrated 2 RJ45 switched Ethernet communications ports

| XPS MF2DO801 | XPS MF2DO1602 | XPS MF3DIO8801 | XPS MF3DIO16801 | XPS <br> MF3DIO20802 |
| :--- | :--- | :--- | :--- | :--- | XPS MF3AIO8401

(1) With $500 \Omega$ shunt
(2) Configurable for Line control.
(3) Removable screw terminal blocks are provided with safety remote I/O modules XPS MF1/2/3.


XPS MF1DI1601
This product, referenced XPS MF1DI1601, is marked HIMatrix F1DI (manufactured by Hima, sold by Schneider Electric)

## Presentation

XPS MF1DI1601 is a compact safety remote input module which is designed to extend the input capacity of safety PLCs XPS MF, either compact or modular, to which it is associated.
The communication with either the compact or modular safety PLCs is managed via one of its' integrated 2 RJ45 switched Ethernet communications ports.
The safety remote input module XPS MF1DI1601 does not have a user program: it receives its instructions from its' parent safety PLC.
Safety remote input module XPS MF1DI1601

| Remote digital inputs |  |  |
| :--- | :---: | :---: |
| $\mathbf{N}^{\circ}$ |  |  |
| $\mathbf{1 6}$ |  |  |
| Safety detection <br> Limit switches, <br> Guard switches, with reset and <br> with actuator, <br> Safety light curtains type 2 and type 4, <br> Safety mats and sensing edges... |  |  |
| Remote line control outputs Mushroom head Emergency stops, <br> Enclosures for control and signalling <br> units, <br> Two-hand control stations... <br> $\mathbf{N}^{\circ}$  <br> $\mathbf{4}$ Short-circuit and line break monitoring |  |  |

## Line control

Line control is a means of short-circuit and line break monitoring.
Using line control outputs enables SIL 3 (EN/IEC 61508) and category 4 (EN 954-1) safety to be achieved. The line control outputs send a high signal with a very short low signal, thus enabling a wiring fault (short-circuit, line break) to be seen at the inputs of the safety modules.
Example: The line control outputs 1 to 4 are connected to the digital inputs 1 to 16 .

## Safety PLCs

In order to meet safety requirements, the safety remote input module
XPS MF1DI1601 incorporates two essential functions (Redundancy and Selfmonitoring) complying to category 4 conforming to EN 954-1 and performance level "e" conforming to EN/ISO 13849-1 in addition to the SafeEthernet safety communication protocol between this safety remote input module and the safety PLCs (Special Switch).
■ Redundancy: the dual processor integrated in the safety remote input module XPS MF1DI1601 analyses and compares the data received from the safety inputs and outputs. The incoming and outgoing data (programmed values and received values) are received in parallel by the two processors and compared in real-time.
■ Self-monitoring ("Watchdog"): the safety remote input module XPS MF1DI1601 continuously monitors the data processing cycle and the execution of tasks, and intervenes if the cycle time does not conform to the predefined value.

- The integrated switch (Special Switch) stores for a very short time and sends at very high speed the data provided by the inputs of the safety module on the Ethernet network, whilst avoiding signal collisions and excessive amounts of data on the network.


## Functional synoptic



Safety communication on Ethernet network
The safety input module XPS MF1DI1601 incorporates two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, that enable communication on the Ethernet network using SafeEthernet communication protocol and therefore, data exchange with compact or modular safety PLCs XPS MF.

| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 76$ | page $2 / 78$ | page 2/78 | Dimensions, mounting: |

# Safety automation system solutions <br> Preventa safety PLCs <br> Compact and modular <br> Safety remote input modules XPS MF1 



## Description

## Safety remote input module XPS MF1DI1601

## On the front face of the metal enclosure:

1 One terminal block (1) for -- 24 V supply.
2 Four terminal blocks (1) for connection of digital inputs, with input status LED (four LEDs per terminal block).
3 One terminal block (1) for connection of digital line control outputs, with four digital output status LEDs.
4 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
5 Eight process status LEDs.
6 One earth connection screw.
7 On the top: one "Reset" button.
8 On the rear face: one spring operated fixing device for mounting on 35 mm ப rail.

## Status LED details

Safety remote input module XPS MF1DI1601

| LED | Colour | Status | Meaning |
| :---: | :---: | :---: | :---: |
| Inputs 1... 16 | Orange | On | Inputs active. |
| Outputs 1... 4 | Orange | On | Outputs active. |
| 24 VDC | Green | On | --2 24 V voltage present. |
|  |  | Off | No voltage. |
| RUN | Green | On | Normal service mode, loaded program running, the PLC receives I/O messages, communication and hardware/ software tests carried out. |
|  |  | Flashing | The CPU is in STOP and is not executing any user application. All the outputs are reset to a safe, de-energised state. |
|  |  | Off | The CPU is in "ERROR" state (see ERROR). |
| ERROR | Red | On | Software error or hardware fault detected by the CPU. |
|  |  |  | The monitoring program (Watchdog) has triggered the STOP state of the process because the programmed cycle time has been exceeded. |
|  |  |  | The CPU has stopped the execution of the user application, ended all hardware and software tests and all outputs have been reset. |
|  |  |  | The process can only be started again from the PC. |
|  |  | Off | No errors detected. |
| PROG | Orange | On | The CPU is being loaded with a new configuration. |
|  |  | Flashing | The FLASH ROM is being loaded with a new operating system. |
|  |  | Off | No loading of configuration or operating system. |
| FORCE | Orange | On | The CPU is in RUN mode and force is active. |
|  |  | Flashing | The system is not processing (STOP), but force is prepared and is activated if the dual processor is started. |
|  |  | Off | Force mode not activated. |
| FAULT | Orange | On | Error display for line control. |
|  |  |  | The user application has caused an error. |
|  |  |  | The system configuration is defective. |
|  |  |  | The loading of a new operating system was defective and the operating system is corrupt. |
|  |  | Flashing | An error has occurred whilst writing to FLASH ROM memory (during updating of the operating system). |
|  |  |  | One or more I/O errors have occurred. |
|  |  | Off | None of the above errors have occurred. |
| OSL | Orange | Flashing | Emergency loading of the operating system is active. |
| BL | Orange | Flashing | COM in INIT_Fail state. |
| RJ45 | Green | On | Full duplex mode operation. |
|  |  | Flashing | Signal collision. |
|  |  | Off | Half duplex mode operation, no collision. |
|  | Yellow | On | Connection established. |
|  |  | Flashing | Interface active. |

(1) Removable screw terminals are provided with safety input module XPS MF1DI1601.

Characteristics, references

Safety automation system solutions
Preventa safety PLCs
Compact and modular
Safety remote input modules XPS MF1

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Safety remote input module type |  |  | XPS MF1DI1601 |
| Supply voltage |  | V | -- 24 (external supply with separate protection conforming to EN/IEC 60950, SELV (Safety Extra Low Voltage) or PELV (Protection Extra Low Voltage) rated) |
| Voltage limits |  | v | -15...+20\% |
| Ambient air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | $0 . . .+60$ |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+85$ |
| Degree of protection |  |  | IP 20 |
| Response time |  | ms | Depending on size of application |
| Current consumption |  | A | 0.8 max. |
| Backup battery |  |  | None |
| Digital inputs |  |  |  |
| Number |  |  | 16, not electrically isolated |
| Permissible current | At state 1 | mA | $\geqslant 2$ at - - 15 V |
|  | At state 0 | mA | 1.5 max., 1 mA at 5 V |
| Switching point |  | V | Typically 7.5 |
| Switching time |  | $\mu \mathrm{s}$ | 250 |
| Input supply |  |  | $4 \times 19.2 \mathrm{~V} / 40 \mathrm{~mA}$ (on 24 V ), protected against short-circuits |
| Line control outputs |  |  |  |
| Number |  |  | 4, not electrically isolated |
| Output voltage |  | V | 20 (approximately, depending on the supply voltage) |
| Output current |  | mA | 60 |
| Minimum load |  |  | None |
| Response to overload |  |  | $4 \mathrm{x} \geqslant 19.2 \mathrm{~V}$, short-circuit current 60 mA at 24 V |
| Connections |  |  | See page 2/26 |

Communication
Ethernet network: safety communication using SafeEthernet protocol

| Communication ports |  |  |
| :--- | :--- | :--- |
| Transmission | Baud rate | Integrated 2 RJ45 switched Ethernet communications ports |
| Structure |  |  |
| Medium |  | 100 Half duplex, 10 Full duplex, Autonegotiation |

References


| Safety remote input module (--- 24 V supply) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| For use with | Digital inputs | Line control outputs | Ports | Reference | Weight kg |
| Safety PLCs, modular XPS MF60 or compact <br> XPS MF40 and XPS <br> MF31/30/35 | 16 | 4 | Integrated 2 RJ45 switched Ethernet communications ports | XPS MF1DI1601 | 0.700 |


| Connecting cables | Reference | Weight <br> kg |  |
| :--- | :--- | :--- | ---: |
| Ethescription | For | See 2/29 | - |
| connecting cables | Connection between safety remote input <br> modules and modular or compact safety <br> PLCs XPS MF <br> RJ45 connector fitted at each end |  |  |


| Presentation: | Characteristics: | References: | page 2/78 | page 2/78 |
| :--- | :--- | :--- | :--- | :--- |
| page 2/76 |  |  |  |  |

## Dimensions

## XPS MF1DI1601



RJ45 connector for access to Ethernet network (SafeEthernet protocol)

(1) Removable screw terminals are provided with safety input module XPS MF1DI1601.

| Connections |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XPS MF1DI1601 |  |  |  |  |  |  |
|  |  | Item | Connection | Screw ${ }^{\circ}$ S | Screw | Function |
|  |  | A1 | Supply | - | L+ | --24V |
|  |  |  |  |  | $\underline{\text { L+ }}$ | --24V |
|  |  |  |  |  | L- | --- 24 V (reference pole) |
| $\begin{aligned} & \text { O 24V DC } \\ & \text { O RUN } \\ & \text { O ERROR } \\ & \text { OPROG } \\ & \text { OFORCE } \\ & \text { O FAULT } \\ & \text { O OSL } \\ & \text { OBL } \end{aligned}$ <br> 110/100BaseT 10/100BaseT 2 |  |  |  |  | L- | -. 24 V (reference pole) |
|  |  | A2 | Earth | - | $\stackrel{1}{\overline{+}}$ | Earth |
|  |  | B | Digital inputs | 1 | LS+ | Sensor supply for inputs 1 to 4 |
|  |  |  |  | 2 | 1 | Digital input 1 |
|  |  |  |  | 3 | 2 | Digital input 2 |
|  |  |  |  | 4 | 3 | Digital input 3 |
|  | F F |  |  | 5 | 4 | Digital input 4 |
|  | ${ }_{19202122324}$ |  |  | 6 | L- | Reference pole |
| G G |  | C | Digital inputs | 7 | LS+ | Sensor supply for inputs 5 to 8 |
|  |  |  |  | 8 | 5 | Digital input 5 |
|  |  |  |  | $9 \quad 6$ | 6 | Digital input 6 |
|  |  |  |  | 10 | 7 | Digital input 7 |
|  |  |  |  | 11 | 8 | Digital input 8 |
|  |  |  |  | 12 | L- | Reference pole |
|  |  | D | Digital inputs | 13 | LS+ | Sensor supply for inputs 9 to 12 |
|  |  |  |  | 14 | 9 | Digital input 9 |
|  |  |  |  | 15 | 10 | Digital input 10 |
|  |  |  |  | 16 | 11 | Digital input 11 |
|  |  |  |  | 17 | 12 | Digital input 12 |
|  |  |  |  | 18 | L- | Reference pole |
|  |  | $\bar{E}$ | Digital inputs | 19 | LS+ | Sensor supply for inputs 13 to 16 |
|  |  |  |  | 20 | 13 | Digital input 13 |
|  |  |  |  | 21 | 14 | Digital input 14 |
|  |  |  |  | 22 | 15 | Digital input 15 |
|  |  |  |  | 23 | 16 | Digital input 16 |
|  |  |  |  | 24 | L- | Reference pole |
|  |  | $\bar{F}$ | Line control outputs | 25 | L+ | Outputs common |
|  |  |  |  | 26 | 1 | Output 1 |
|  |  |  |  | 27 | 2 | Output 2 |
|  |  |  |  | 28 | 3 | Output 3 |
|  |  |  |  | 29 | 4 | Output 4 |
|  |  |  |  | 30 | L- | Outputs common |
|  |  | Item | Connection | Type |  | Function |
|  |  | G | Programming | Integrated 2 <br> RJ45 switched Ethernet Communication |  | Either of the two switched Ethernet ports can be used to create a connection between the safety remote I/O and the programming terminal in a point to point or via an Ethernet network for setting the IP address |
|  |  |  |  |  |  | Either of the two switched Ethernet ports can be used to create a connection between the safety PLC and other safety related components (e.g other XPSMF safety PLCs or Safety Remote I/O modules) this can be established in a point to point way or via an Ethernet network. |



XPS MF2DO401


XPS MF2DO1601


XPS MF2DO801


XPS MF2DO801

Products referenced XPS MF2・ゃゃゃゃゃ are marked HIMatrix F2 DO．．．（manufactured by Hima，sold by Schneider Electric）．

## Presentation

XPS MF2DOeeee are compact safety remote output modules which are designed to extend the output capacity of safety PLCs XPS MF，either compact or modular，to which they are associated．
The communication with either the compact or modular safety PLCs is managed via one of its＇integrated 2 RJ45 switched Ethernet communications ports． Safety modules XPS MF2DO・ゃゃ॰ do not have a user program：they receive their instructions from its＇parent safety PLC．

## Safety remote output modules XPS MF2DOゃゃゃ・

| Safety output modules | Remote outputs |  |  |
| :---: | :---: | :---: | :---: |
|  | Nb | Type |  |
| XPS MF2DO401 | 4 | Digital power outputs | Safety actuators： <br> Contactors－motors， Control relays， Variable speed drives．．． |
| XPS MF2DO1601 | 16 | Digital outputs |  |
| XPS MF2DO801 | 8 | Relay outputs | Safety dialogue： |
| XPS MF2DO1602 | 16 | Relay outputs | mirror beacons，sirens．．． |

## Safety PLCs

In order to meet safety requirements，the safety remote output modules XPS MF2DOeゃe७ incorporate two essential functions（Redundancy and Self－monitoring）complying to category 4 conforming to EN 954－1 and performance level＂e＂conforming to EN／ISO 13849－1 in addition to the SafeEthernet safety communication protocol between these safety remote output modules and the safety PLCs（Special Switch）．

■ Redundancy：the dual processor integrated in the safety remote output modules XPS MF2 analyses and compares the data received from the safety inputs and outputs．The incoming and outgoing data（programmed values and received values） are received in parallel by the two processors and compared in real－time．
■ Self－monitoring（＂Watchdog＂）：the safety remote output modules XPS MF2 continuously monitor the data processing cycle and the execution of tasks，and intervenes if the cycle time does not conform to the predefined value．
－The integrated switch（Special Switch）stores for a very short time and sends at very high speed the data provided by the outputs of the safety modules on the Ethernet network，whilst avoiding signal collisions and excessive amounts of data on the network．

Functional synoptics
Remote output module XPS MF2DO401


| Characteristics： | References： | Dimensions，mounting： | Connections： |
| :--- | :--- | :--- | :--- |
| page $2 / 84$ | page $2 / 85$ | page $2 / 86$ | page $2 / 88$ |

# Safety automation system solutions <br> Preventa safety PLCs <br> Compact and modular <br> Safety remote output modules XPS MF2 

Functional synoptics（continued）
Remote output module XPS MF2DO80


Remote output module XPS MF2DO801


Remote output module XPS MF2DO1602


[^16]

## Description <br> Remote output module XPS MF2DO401

## On the front face of the metal enclosure:

1 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
2 Eight process status LEDs.
3 One earth connection screw.
4 Four terminal blocks (1) for connection of digital outputs, with output status LED (one LED per terminal block).
5 On the top: one "Reset" button.
6 On the rear face: one spring operated fixing device for mounting on $35 \mathrm{~mm} \longleftarrow$ rail.

## Remote output module XPS MF2DO1601

## On the front face of the metal enclosure:

1 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
2 Eight process status LEDs.
3 One earth connection screw.
4 One terminal block (1) for - .- 24 V supply.
5 Four terminal blocks (1) for connection of digital outputs, with output status LED (four LEDs per terminal block).
6 One terminal block for connection of output channels.
7 On the top: one "Reset" button.
8 On the rear face: one spring operated fixing device for mounting on $35 \mathrm{~mm} \longleftarrow$ rail.

## Remote output module XPS MF2DO801

On the front face of the metal enclosure:
1 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
2 Eight process status LEDs.
3 One earth connection screw.
4 One terminal block (1) for --- 24 V supply.
5 Eight terminal blocks (1) for connection of relay outputs, with output status LED (one LED per terminal block).
6 On the top: one "Reset" button.
7 On the rear face: one spring operated fixing device for mounting on $35 \mathrm{~mm} \longleftarrow$ rail.

## Remote output module XPS MF2DO1602

## On the front face of the metal enclosure:

1 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
2 One terminal block (1) for - -- 24 V supply.
3 One earth connection screw.
4 Eight process status LEDs.
5 Four terminal blocks (1) for connection of relay outputs, with relay output status LEDs.
On the top: one "Reset" button.
7 On the rear face: one spring operated fixing device for mounting on 35 mm Ч rail.
(1) Removable screw terminals are provided with the safety output modules XPS MF2.

| Characteristics: | References: | Dimensions, mounting: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 84$ | page $2 / 85$ | page $2 / 86$ | page $2 / 88$ |


| Status LED details |  |  |  |
| :---: | :---: | :---: | :---: |
| Safety remote output modules XPS MF2DOゃゃゃ๑ |  |  |  |
| LED | Colour | Status | Meaning |
| Outputs <br> 1．．． 16 | Orange | On | Outputs active． |
| 24 VDC | Green | On | －－ 24 V voltage present． |
|  |  | Off | No voltage． |
| RUN | Green | On | Normal service mode，loaded program running，the PLC receives I／O messages，communication and hardware／ software tests carried out． |
|  |  | Flashing | The CPU is in STOP and is not executing any user application．All the outputs are reset to a safe，de－energised state． |
|  |  | Off | The CPU is in＂ERROR＂state（see ERROR）． |
| ERROR | Red | On | Software error or hardware fault detected by the CPU． |
|  |  |  | The monitoring program（Watchdog）has triggered the STOP state of the process because the programmed cycle time has been exceeded． |
|  |  |  | The CPU has stopped the execution of the user application， ended all hardware and software tests and all outputs have been reset． |
|  |  |  | The process can only be started again from the PC． |
|  |  | Off | No errors detected． |
| PROG | Orange | On | The CPU is being loaded with a new configuration． |
|  |  | Flashing | The FLASH ROM is being loaded with a new operating system． |
|  |  | Off | No loading of configuration or operating system． |
| FORCE | Orange | On | The CPU is in RUN mode and force is active． |
|  |  | Flashing | The system is not processing（STOP），but force is prepared and is activated if the dual processor is started． |
|  |  | Off | Force mode not activated． |
| FAULT | Orange | On | Error display for line control． |
|  |  |  | The user application has caused an error． |
|  |  |  | The system configuration is defective． |
|  |  |  | The loading of a new operating system was defective and the operating system is corrupt． |
|  |  | Flashing | An error has occurred whilst writing to FLASH ROM memory（during updating of the operating system）． |
|  |  |  | One or more I／O errors have occurred． |
|  |  | Off | None of the above errors have occurred． |
| OSL | Orange | Flashing | Emergency loading of the operating system is active． |
| BL | Orange | Flashing | COM in INIT＿Fail state． |
| RJ45 | Green | On | Full duplex mode operation． |
|  |  | Flashing | Signal collision． |
|  |  | Off | Half duplex mode operation，no collision． |
|  | Yellow | On | Connection established． |
|  |  | Flashing | Interface active． |

Safety automation system solutions
Preventa safety PLCs
Compact and modular
Safety remote output modules XPS MF2


## Schneider

| Connecting cables | Reference | Weight <br> kg |  |
| :--- | :--- | :--- | ---: |
| Description | For | See page 2/29 | - |
| Ethernet network <br> connecting cables | Connection between safety remote output <br> modules and modular or compact safety <br> PLCs XPS MF <br> RJ45 connector fitted at each end |  |  |
|  |  |  |  |

XPS MF2DO1602

Products referenced XPS MF2•••••• are marked HIMatrix F2 DO... (manufactured by Hima, sold by Schneider Electric).

## Dimensions

XPS MF2DO401

(1) Removable screw terminals are provided with the safety output modules XPS MF2DO401.

## XPS MF2DO1601


(1) Removable screw terminals are provided with the safety output modules XPS MF2DO1601.

(1) Removable screw terminals are provided with the safety output modules XPS MF2DO801.

XPS MF2DO1602

(1) Removable screw terminals are provided with the safety output modules XPS MF2DO1602.

RJ45 connector for access to Ethernet network (SafeEthernet protocol)


## Connections <br> XPS MF2DO401

| $\bigcirc \ominus$ A | 123456 ${ }^{18}$ | 789101112 ${ }^{7}$ |
| :---: | :---: | :---: |
|  | $\underset{\substack{\text { Do } 1+L+L-L-O L-}}{\circ}$ | $\begin{aligned} & \text { Dot } \underset{L+L+L-L-C L}{\circ} \end{aligned}$ |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | $\begin{aligned} & \mathrm{L+}+\mathrm{L}+\mathrm{L}-\mathrm{O}-\mathrm{L} \\ & \mathrm{DO3} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \mathrm{L+}+\mathrm{L}+\mathrm{L}-\mathrm{L}-\mathrm{OL} \\ & \mathrm{DO4} \mathrm{O} \\ & \hline \end{aligned}$ |
|  | D | E |
| 110/100BaseT 10/100BaseT 2 | 131415161718 | 192021222324 |


| Item | Connection | Screw ${ }^{\circ}$ | Screw | Function |
| :---: | :---: | :---: | :---: | :---: |
| A | Earth | - | $\stackrel{1}{\bar{L}}$ | Earth |
| B | Digital output 1 | 1 | L+ | Supply for output 1 |
|  |  | 2 | L+ | Supply for output 1 |
|  |  | 3 | L- | Reference pole |
|  |  | 4 | L- | Reference pole |
|  |  | 5 | 0 | Digital output 1 |
|  |  | 6 | L- | Reference pole |
| C | Digital output 2 | 7 | L+ | Supply for output 2 |
|  |  | 8 | L+ | Supply for output 2 |
|  |  | 9 | L- | Reference pole |
|  |  | 10 | L- | Reference pole |
|  |  | 11 | 0 | Digital output 2 |
|  |  | 12 | L- | Reference pole |
| D | Digital output 3 | 13 | L+ | Supply for output 3 |
|  |  | 14 | L+ | Supply for output 3 |
|  |  | 15 | L- | Reference pole |
|  |  | 16 | L- | Reference pole |
|  |  | 17 | O | Digital output 3 |
|  |  | 18 | L- | Reference pole |
| E | Digital output 4 | 19 | L+ | Supply for output 4 |
|  |  | 20 | L+ | Supply for output 4 |
|  |  | 21 | L- | Reference pole |
|  |  | 22 | L- | Reference pole |
|  |  | 23 | O | Digital output 4 |
|  |  | 24 | L- | Reference pole |






XPS MF3DIO8801


XPS MF3DIO16801


XPS MF3DIO20802


XPS MF3AIO8401

Products referenced XPS MF3••••••• are marked HIMatrix F3．．．（manufactured by Hima， sold by Schneider Electric）．

## Presentation

XPS MF3DIO／AIO are compact safety remote input／output modules which are designed to extend the I／O capacity of safety PLCs XPS MF，either compact or modular，to which they are associated．
The communication with either the compact or modular safety PLCs is managed via one of its＇integrated 2 RJ45 switched Ethernet communications ports． Safety modules XPS MF3DIO／AIO do not have a user program：they receive their instructions from its＇parent safety PLC．

| Safety remote <br> Mixed I／O safety modules | Remote inputs |  | Remote outputs |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{N}^{\circ}$ | Type | ${ }^{\circ}$ | Type |
| XPS MF3DIO8801 | 8 | Digital | 8 DO＋／ 2 DO－ | Digital |
|  |  |  | 2 | Line control |
| XPS MF3DIO16801 | 16 | Digital | 8 2－pole or 16 single－pole | Digital |
|  |  |  | 2 | Line control |
| XPS MF3DIO20802 | 20 | Digital | 8 | Digital |
| XPS MF3AIO8401 | 8 | Analogue | 4 | Analogue（non safety outputs） |

Examples of remote inputs of safety modules XPS MF3•1O・ゃゃゃゃ

| ■igital inputs | Safety detection | Safety dialogue |
| :--- | :--- | :--- |
| Safety actuators | Limit switches， <br> Guard switches，with reset <br> and with actuator， <br> Safety light curtains type 2 <br> and type 4， <br> Safety mats and sensing <br> edges．．． | Mushroom head Emergency <br> stops， <br> Enclosures for control and <br> signalling units， <br> Two－hand control stations．．． |
| Contactors－motors， <br> Control relays， <br> Variable speed drives．．． |  |  |
| Closed circuit scanning of input channels， <br> Single－pole measuring of 0 to 10 V voltages， <br> Measuring，using shunt， $0 / 4$ to 20 mA currents（with $500 \Omega$ external resistor）． |  |  |


| Examples of remote outputs of safety modules XPS MF3＾IOゃゃゃゃ७ |  |
| :---: | :---: |
| Safety actuators | Safety dialogue |
| Contactors－motors， Control relays， Variable speed drives．．． | Beacons and indicator banks， Rotating mirror beacons， Sirens．．． |
| －Line control outputs |  |
| Short－circuit and line break monitoring |  |
| －Analogue outputs |  |
| Closed circuit scanning of output channels， <br> Single－pole measuring of 0 to 10 V voltages， <br> Measuring，using shunt， $0 / 4$ to 20 mA currents（with $500 \Omega$ external resistor）． |  |


| Characteristics： | References： | Dimensions，mounting： | Connections： |
| :--- | :--- | :--- | :--- |
| page $2 / 95$ | page $2 / 97$ | page $2 / 98$ | page $2 / 100$ |

## Safety automation system solutions <br> Preventa safety PLCs <br> Compact and modular <br> Safety remote mixed I／O modules XPS MF3

## Safety PLCs

In order to meet safety requirements，the safety remote mixed I／O modules XPS MF3•IO•eゃゃゃ incorporate two essential functions（Redundancy and Self－monitoring）complying to category 4 conforming to EN 954－1 and performance level＂e＂conforming to EN／ISO 13849－1 in addition to the SafeEthernet safety communication protocol between these safety remote mixed I／O modules and the safety PLCs（Special Switch）．

■ Redundancy：the dual processor integrated in safety modules
XPS MF3•IO••••• analyses and compares the data received from the safety inputs and outputs．The incoming and outgoing data（programmed values and received values）are received in parallel by the two processors and compared in real－time．
■ Self－monitoring（＂Watchdog＂）：the safety remote mixed I／O modules XPS MF3 $10 \bullet \bullet \bullet \bullet \bullet$ continuously monitor the data processing cycle and the execution of tasks，and intervenes if the cycle time does not conform to the predefined value．
－The integrated switch（Special Switch）stores for a very short time and sends at very high speed the data provided by the inputs and outputs of the safety modules on the Ethernet network，whilst avoiding signal collisions and excessive amounts of data on the network．

Functional synoptics
Remote mixed I／O module XPS MF3DIO8801


Remote mixed I／O module XPS MF3DIO16801


Functional synoptics（continued）
Remote mixed I／O module XPS MF3DIO20802


Remote mixed I／O module XPS MF3AIO8401


## Line control

Line control is a means of short－circuit and line break monitoring．
Using line control outputs enables SIL 3 （EN／IEC 61508）and category 4 （EN 954－1） safety to be achieved．The line control outputs send a high signal with a very short low signal，thus enabling a wiring fault（short－circuit，line break）to be seen at the inputs of the safety modules．

## Examples

$\square$ For XPS MF3DIO8801 and XPS MF3DIO16801，the line control outputs 1 and 2 are connected to the digital inputs of the same circuit．
ㅁ For XPS MF3DIO20802，the digital outputs 1 to 8 are connected to the digital inputs of the same circuit．

## Safety communication on Ethernet network

The safety remote mixed I／O modules XPS MF3•IOゃゃゃe incorporate two RJ45（type 10BASE－T／100BASE－TX）integrated switched ports，that enable communication on the Ethernet network using SafeEthernet communication protocol and therefore，data exchange with compact or modular safety PLCs XPS MF．

| Characteristics： | References： | Dimensions，mounting： |
| :--- | :--- | :--- |
| page $2 / 95$ | page $2 / 97$ | page $2 / 98$ |

## Safety automation system solutions <br> Preventa safety PLCs <br> Compact and modular <br> Safety remote mixed I/O modules XPS MF3



Description
Remote mixed I/O module XPS MF3DIO8801

## On the front face of the metal enclosure:

1 One terminal block (1) for --. 24 V supply.
2 One terminal block (1) for connection of line control outputs, with four line control output status LEDs.
3 Two terminal blocks (1) for connection of digital outputs, with output status LED (four LEDs per terminal block).
4 Two terminal blocks (1) for connection of digital inputs, with input status LED (four LEDs per terminal block).

6 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
7 One earth connection screw.
8 One "Reset" button (on the top).
9 On the rear face: One spring operated fixing device for mounting on 35 mm ப rail.

## Remote mixed I/O module XPS MF3DIO16801

## On the front face of the metal enclosure:

1 One terminal block (1) for --. 24 V supply.
2 Three terminal blocks for connection of digital output channels.
3 One terminal block (1) for connection of line control outputs.
4 Four terminal blocks (1) for connection of digital inputs, with input status LED (four LEDs per terminal block).
5 Sixteen digital output status LEDs.
6 Eight process status LEDs.
7 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
8 One earth connection screw.
9 One "Reset" button (on the top).
10 On the rear face: One spring operated fixing device for mounting on 35 mm ப rail.

## Remote mixed I/O module XPS MF3DIO20802

## On the front face of the metal enclosure:

1 One terminal block (1) for --- 24 V supply.
2 Two terminal blocks (1) for connection of digital outputs, with output status LED (four LEDs per terminal block)
3 Five terminal blocks (1) for connection of digital inputs, with input status LED (four LEDs per terminal block).
4 Eight process status LEDs.
5 Two RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
6 One earth connection screw.
7 One "Reset" button (on the top).
8 On the rear face: One spring operated fixing device for mounting on 35 mm ப rail.

## Remote mixed I/O module XPS MF3AIO8401

## On the front face of the metal enclosure:

1 One terminal block (1) for -.. 24 V supply.
2 Four terminal blocks (1) for connection of analogue inputs.
3 One terminal block (1) for connection of analogue outputs.
4 One metal plate for securing shielded analogue input/output connection cables (EMC).
5 Eight process status LEDs.
6 TwTwo RJ45 (type 10BASE-T/100BASE-TX) integrated switched ports, for connection on Ethernet network and for configuring IP address.
7 One earth connection screw.
8 One "Reset" button (on the top).
9 On the rear face: one spring operated fixing device for mounting on $35 \mathrm{~mm} \longleftarrow$ rail.
(1) Removable screw terminals are provided with the safety remote mixed I/O modules XPS MF3DIO/AIO

| Status LED details |  |  |  |
| :---: | :---: | :---: | :---: |
| Safety remote mixed I／O modules XPS MF3•IO・ゃゃゃゃ |  |  |  |
| LED | Colour | Status | Meaning |
| 24 VDC | Green | On | －－2 24 V voltage present． |
|  |  | Off | No voltage． |
| RUN | Green | On | Normal service mode，loaded program running，the PLC receives I／O messages，communication and hardware／ software tests carried out． |
|  |  | Flashing | The CPU is in STOP and is not executing any user application．All the outputs are reset to a safe，de－energised state． |
|  |  | Off | The CPU is in＂ERROR＂state（see ERROR）． |
| ERROR | Red | On | Software error or hardware fault detected by the CPU． |
|  |  |  | The monitoring program（Watchdog）has triggered the STOP state of the process because the programmed cycle time has been exceeded． |
|  |  |  | The CPU has stopped the execution of the user application， ended all hardware and software tests and all outputs have been reset． |
|  |  |  | The process can only be started again from the PC． |
|  |  | Off | No errors detected． |
| PROG | Orange | On | The CPU is being loaded with a new configuration． |
|  |  | Flashing | The FLASH ROM is being loaded with a new operating system． |
|  |  | Off | No loading of configuration or operating system． |
| FORCE | Orange | On | The CPU is in RUN mode and force is active． |
|  |  | Flashing | The system is not processing（STOP），but force is prepared and is activated if the dual processor is started． |
|  |  | Off | Force mode not activated． |
| FAULT | Orange | On | Error display for line control． |
|  |  |  | The user application has caused an error． |
|  |  |  | The system configuration is defective． |
|  |  |  | The loading of a new operating system was defective and the operating system is corrupt． |
|  |  | Flashing | An error has occurred whilst writing to FLASH ROM memory（during updating of the operating system）． |
|  |  |  | One or more I／O errors have occurred． |
|  |  | Off | None of the above errors have occurred． |
| OSL | Orange | Flashing | Emergency loading of the operating system is active． |
| BL | Orange | Flashing | COM in INIT＿Fail state． |
| RJ45 | Green | On | Full duplex mode operation． |
|  |  | Flashing | Signal collision． |
|  |  | Off | Half duplex mode operation，no collision． |
|  | Yellow | On | Connection established． |
|  |  | Flashing | Interface active． |


| Characteristics： | References： | Dimensions，mounting： | Connections： |
| :--- | :--- | :--- | :--- |
| page 2／95 | page 2／97 | page 2／98 | page 2／100 |

Safety automation system solutions
Preventa safety PLCs
Compact and modular
Safety remote mixed I/O modules XPS MF3

| Characteristics |  |  |  |  |  |  |  |  | |
|---|---|---|---|---|---|---|---|---|---|
| Safety remote mixed I/O module type |  |  | XPS MF3DIO8801 | XPS | 3DIO16801 | XPS MF3DIO | 0802 | XPS MF3AIO8401 |
| Supply voltage |  | v | --- 24 (external supply with separate protection conforming toEN/IEC 60950, SELV (Safety Extra Low Voltage) or PELV (Protection Extra Low Voltage) rated) |  |  |  |  |  |
| Voltage limits |  | V | -15...+ 20\% |  |  |  |  |  |
| Ambient air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | 0... +60 |  |  |  |  |  |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+85$ | -40. <br> batte | 85 without | $-40 \ldots+85$ |  |  |
| Degree of protection |  |  | IP 20 |  |  |  |  |  |
| Response time |  | ms | Depending on size of application |  |  |  |  |  |
| Maximum current consumption |  | A | 8 | $\begin{aligned} & 14(n \\ & \text { Resi } \end{aligned}$ | $\begin{aligned} & \text { load) } \\ & \text { al: } 0.6 \end{aligned}$ | 8 (max. load) Residual: 0.4 |  | 0.8 |
| External fuse |  |  | 10A, slow blow | 16 A | w blow | - |  | - |
| Backup battery |  |  | None | - |  | None |  | None |
| Connections |  |  | See page 2/26 |  |  |  |  |  |
| Digital inputs |  |  |  |  |  |  |  |  |
| Safety remote mixed I/O module type |  |  | XPS MF3DIO8801 |  | XPS MF3DIO16801 |  | XPS MF3DIO20802 |  |
| Number | Inputs not electrically isolated |  | 8 |  | 16 |  | 20 |  |
| Voltage | At state 1 | V | --- 15... 30 |  |  |  |  |  |
|  |  | mA | $>2$ at $=-15 \mathrm{~V}$ |  |  |  | $\geqslant 2$ at $=-15 \mathrm{~V}$ |  |
|  | At state 0 | V | --5 max. |  |  |  |  |  |
|  |  | mA | $\begin{aligned} & 1.5 \mathrm{max} . \\ & 1.25 \mathrm{at}=-\mathrm{F} \end{aligned}$ |  | $\begin{aligned} & 1.5 \text { max. } \\ & 1 \text { at } \ldots 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 1.5 \text { max. } \\ & 1.25 \text { at } \ldots-5 \mathrm{~V} \end{aligned}$ |  |
| Switching voltage |  | V | 7.5 |  | 7.5 |  | 7.5 |  |
| Switching time |  | $\mu \mathbf{S}$ | - |  | 250 |  | - |  |
| Supply |  | V | $2 \times 20 \mathrm{~V} / 100 \mathrm{~mA}$ at 24 V , protected against short-circuits |  | $4 \times 20 \mathrm{~V} / 40 \mathrm{~mA}$ at 24 V , protected against short-circuits, buffered for 20 ms . <br> $20 \mathrm{~V} / 2 \mathrm{~A}$ total at 22 V , protected against short-circuits, not buffered Max. current 2 A at $60^{\circ} \mathrm{C}$ |  | $5 \times 20 \mathrm{~V} / 100 \mathrm{~mA}$ at 24 V , protected against short-circuits |  |
| LED display |  |  | Yes |  |  |  |  |  |
| Digital outputs |  |  |  |  |  |  |  |  |
| Safety remote mixed I/O module type |  |  | XPS MF3DIO8801 |  | XPS MF3DIO16801 |  | XPS MF3DIO20802 |  |
| Number | Outputs not electrically isolated |  | $\begin{aligned} & 8 \mathrm{DO}+ \\ & \text { (reference pole L-) } \end{aligned}$ |  | $\begin{aligned} & 8 \times 2 \text {-pole } \\ & \text { or } 16 \times \text { single-pole } \end{aligned}$ |  | 8 |  |
|  |  |  | $\begin{aligned} & \hline 2 \text { DO- } \\ & \text { (reference pole S+) } \end{aligned}$ |  |  |  |  |  |
| Output voltage |  | V | --24 $\pm 2$ |  | --24 $\pm 3$ |  | --24 $\pm 2$ |  |
| Output current | Channels 1 to 3 and 5 to 7 | A | DO+: 0.5 at $60^{\circ} \mathrm{C}$ |  | 2 max. at $40^{\circ} \mathrm{C}$ 1 max. at $60^{\circ} \mathrm{C}$ 10 mA min. |  | 0.5 at $60^{\circ} \mathrm{C}$ |  |
|  | Channels 4 and 8 | A | DO+: 1 at $60^{\circ} \mathrm{C}, 2$ at $40^{\circ} \mathrm{C}$ |  |  |  | 1 at $60^{\circ} \mathrm{C}, 2$ at $50^{\circ} \mathrm{C}$ |  |
|  | Channels 1 and 2 | A | DO-: 1 at $60^{\circ} \mathrm{C}$ |  | - |  | - |  |
| Lamp load | Channels 1 to 3 and 5 to 7 | W | DO+: 10 |  | 25 max. |  | - |  |
|  | Channels 4 and 8 |  | DO+: 25 |  |  |  |  |  |
|  | Channels 1 and 2 |  | DO-: 25 |  |  |  |  |  |
| Inductive load | Channels 1 to 3 and 5 to 7 |  | DO+: 500 |  | 500 mH max. |  | - |  |
|  | Channels 4 and 8 |  | DO+: 500 |  |  |  |  |  |
|  | Channels 1 and 2 |  | DO-: 500 |  |  |  |  |  |
| Line break |  | $\mathrm{k} \Omega$ | - |  | > 5 |  | - |  |
| Short-circuit threshold |  | $\Omega$ | - |  | < 10 |  | - |  |
| Minimum load |  | mA | 2 per channel |  |  |  |  |  |
| Leakage current at state 0 |  | mA | 1 max. at 2 V |  |  |  |  |  |
| Response to overload |  |  | Shutdown of outputs concerned with cyclic reconnection |  |  |  |  |  |
| Total output current |  | A | 7 max. |  | $9 \mathrm{max} .(14 \mathrm{~A}$ for 2 ms ) |  | 7 max. |  |
|  |  | Shutdown of all outputs if exceeded with cyclic reconnection |  |  |  |  |
| LED display |  |  |  | Yes |  |  |  |  |  |

Safety automation system solutions
Preventa safety PLCs
Compact and modular
Safety remote mixed I/O modules XPS MF3


| Characteristics: | References: <br> page 2/97 | Dimensions, mounting: <br> page 2/95 |
| :--- | :--- | :--- | | Connections: |
| :--- |
| page 2/108 |$\quad$|  |
| :--- |


| References |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Safety remote mixed I/O modules (-- 24 V supply) |  |  |  |  |  |  |  |  |
| For use with | Inputs |  | Outputs |  |  | Ports | Reference | Weight |
|  |  | tal Analogue | Digital | Line control | Analogue |  |  | kg |
| Safety PLCs, modular <br> XPS MF60 or compact <br> XPS MF40 and <br> XPS MF31/30/35 | 8 | - | $\begin{aligned} & 8 \text { DO+ } \\ & 2 \text { DO- } \end{aligned}$ | 2 | - | Integrated 2 <br> RJ45 switched Ethernet communications ports | XPS MF3DIO8801 | 1.000 |



XPS MF3DIO8801

XPS MF3DIO16801


XPS MF3DIO20802


XPS MF3AIO8401
Products referenced
XPS MF3•••••• are marked
HIMatrix F3... (manufactured by Hima, sold by Schneider Electric).


| 16 | - | $8 \times 2$ or $16 \times 1$ | 2 | - | Integrated 2 <br> RJ45 switched Ethernet communications ports | XPS MF3DIO16801 | 1.300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| 20 | - | $8(1)$ | - | - | $\begin{array}{l}\text { Integrated 2 } \\ \text { RJ45 switched }\end{array}$ | XPS MF3DIO20802 | 1.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | RJ45 switched

Ethernet
communications
ports

| 8 | - | - | 4 | Integrated 2 RJ45 switched Ethernet communications ports | XPS MF3AIO8401 | 0.950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Connecting cables <br> Description | For | Reference | Weight <br> kg |
| :--- | :--- | :--- | :--- |
| Ethernet network <br> connecting cables | Connection between safety remote mixed I/O <br> modules and modular or compact safety PLCs <br> XPS MF. <br> RJ45 connector fitted at each end | See page $2 / 29$ |  |

XPS MF3DIO8801


(1) Removable screw terminals are provided with the safety remote mixed I/O modules XPS MF3DIO8801.

## XPS MF3DIO16801


(1) Removable screw terminals are provided with the safety remote mixed I/O modules XPS MF3DIO16801.

| Characteristics: | References: | Dimensions, mounting: | Connections: |
| :--- | :--- | :--- | :--- |
| page 2/95 | page 2/97 | page 2/98 | page $2 / 100$ |

Dimensions, mounting

Safety automation system solutions
Preventa safety PLCs
Compact and modular
Safety remote mixed I/O modules XPS MF3

XPS MF3DIO20802


(1) Removable screw terminals are provided with the safety remote mixed I/O modules XPS MF3DIO20802.

## XPS MF3AIO8401


(1) Removable screw terminals are provided with the safety remote mixed I/O modules XPS MF3AIO8401.

RJ45 connector for access to Ethernet network (SafeEthernet protocol)


## XPS MF3DIO8801



| Item | Connection | Screw ${ }^{\circ}$ | Screw | Function |
| :---: | :---: | :---: | :---: | :---: |
| A1 | Supply | - | L- | --. 24 V (reference pole) |
|  |  | - | L- | -- 24 V (reference pole) |
|  |  | - | L+ | --24V |
|  |  | - | L+ | --- 24 V |
| A2 | Earth | - | $\stackrel{1}{\square}$ | Earth |
| B | Outputs - Line control/ Digital | 1 | L- | Reference pole |
|  |  | 2 | 1 | Line control output 1 |
|  |  | 3 | 2 | Line control output 2 |
|  |  | 4 | 4- | Digital output 4- (for increased load) |
|  |  | 5 | 8 - | Digital output 8- (for increased load) |
|  |  | 6 | S+ | Reference pole |
| C | Outputs - Digital | 7 | L- | Reference pole |
|  |  | 8 | 1 | Digital output 1 |
|  |  | 9 | 2 | Digital output 2 |
|  |  | 10 | 3 | Digital output 3 |
|  |  | 11 | 4+ | Digital output 4+ (for increased load) |
|  |  | 12 | L- | Reference pole |
| D | Outputs - Digital | 13 | L- | Reference pole |
|  |  | 14 | 5 | Digital output 5 |
|  |  | 15 | 6 | Digital output 6 |
|  |  | 16 | 7 | Digital output 7 |
|  |  | 17 | 8+ | Digital output 8+ (for increased load) |
|  |  | 18 | L- | Reference pole |
| E | Inputs - Digital | 19 | LS+ | Sensor supply for inputs 1 to 4 |
|  |  | 20 | 1 | Digital input 1 |
|  |  | 21 | 2 | Digital input 2 |
|  |  | 22 | 3 | Digital input 3 |
|  |  | 23 | 4 | Digital input 4 |
|  |  | 24 | L- | Reference pole |
| F | Inputs - Digital | 25 | LS+ | Sensor supply for inputs 5 to 8 |
|  |  | 26 | 5 | Digital input 5 |
|  |  | 27 | 6 | Digital input 6 |
|  |  | 28 | 7 | Digital input 7 |
|  |  | 29 | 8 | Digital input 8 |
|  |  | 30 | L- | Reference pole |
| Item | Connection |  |  | Function |
| G | Programming | Integrated 2 RJ45 switched Ethernet Communication ports |  | Either of the two switched Ethernet ports can be used to create a connection between the safety remote I/O and the programming terminal in a point to point or via an Ethernet network for setting the IP address |
|  | Safe Communication (all XPS MF Safety PLCs and Remote /(Os) |  |  | Either of the two switched Ethernet ports can be used to create a connection between the safety PLC and other safety related components (e.g other XPS MF safety PLCs or Safety Remote I/O modules) this can be established in a point to point way or via an Ethernet network. |


| Characteristics: <br> page 2/95 | References: <br> page 2/97 | Dimensions, mounting: <br> page 2/98 | Connections: <br> page 2/100 |
| :--- | :--- | :--- | :--- |
| $2 / 100$ |  | Schneider |  |
| Slectric |  |  |  |

Safety automation system solutions
Preventa safety PLCs
Compact and modular
Safety remote mixed I/O modules XPS MF3

## Connections <br> XPS MF3DIO16801



| $\begin{aligned} & \text { Item } \\ & \text { (cont.) } \end{aligned}$ | Connection | Screw N ${ }^{\text {S Screw }}$ |  | Function |
| :---: | :---: | :---: | :---: | :---: |
| F | Inputs - Digital | 33 | LS+ | Sensor supply for inputs 1 to 4 (not protected) |
|  |  | 34 | LS+ | Sensor supply for inputs 1 to 4 (protected) |
|  |  | 35 | 1 | Input 1 |
|  |  | 36 | 2 | Input 2 |
|  |  | 37 | 3 | Input 3 |
|  |  | 38 | 4 | Input 4 |
|  |  | 39 | L- | --. 24 V (reference pole) |
|  |  | 40 | L- | --. 24 V (reference pole) |
|  |  | 41 | PA | Electrically clean earth |
|  |  | 42 | PA | Electrically clean earth |
| G | Inputs - Digital | 43 | LS+ | Sensor supply for inputs 5 to 8 (not protected) |
|  |  | 44 | LS+ | Sensor supply for inputs 5 to 8 (protected) |
|  |  | 45 | 5 | Input 5 |
|  |  | 46 | 6 | Input 6 |
|  |  | 47 | 7 | Input 7 |
|  |  | 48 | 8 | Input 8 |
|  |  | 49 | L- | --24 V (reference pole) |
|  |  | 50 | L- | --. 24 V (reference pole) |
|  |  | 51 | PA | Electrically clean earth |
|  |  | 52 | PA | Electrically clean earth |
| H | Inputs - Digital | 53 | LS+ | Sensor supply for inputs 9 to 12 (not |


| Item | Connection | Screw $\mathrm{N}^{\circ}$ | Screw | Function |
| :---: | :---: | :---: | :---: | :---: |
| A1 | Supply | - | L+ | -- 24 V |
|  |  |  | L+ | --- 24 V |
|  |  |  | L- | -. 24 V (reference pole) |
|  |  |  | L- | --2 24 V (reference pole) |
| A2 | Earth | - | $\stackrel{\perp}{\square}$ | Earth |
| B | Supply of single-pole digital outputs | 1 | S+ | - |
|  |  | 2 | S+ | - |
|  |  | 3 | S+ | - |
|  |  | 4 | S+ | - |
|  |  | 5 | S- | - |
|  |  | 6 | S- | - |
|  |  | 7 | S- | - |
|  |  | 8 | S- | - |
| C | Outputs - Digital | 9 | 1 - | Output 1 |
|  |  | 10 | 1+ | Output 1 |
|  |  | 11 | 2 - | Output 2 |
|  |  | 12 | $2+$ | Output 2 |
|  |  | 13 | $3-$ | Output 3 |
|  |  | 14 | 3+ | Output 3 |
|  |  | 15 | 4- | Output 4 |
|  |  | 16 | 4+ | Output 4 |
| D | Outputs - Digital | 17 | 5- | Output 5 |
|  |  | 18 | $5+$ | Output 5 |
|  |  | 19 | 6 - | Output 6 |
|  |  | 20 | $6+$ | Output 6 |
|  |  | 21 | 7- | Output 7 |
|  |  | 22 | 7+ | Output 7 |
|  |  | 23 | 8 - | Output 8 |
|  |  | 24 | 8 - | Output 8 |
| E | Outputs - Line control | 25 | 1 | Output 1 |
|  |  | 26 | 1 | Output 1 |
|  |  | 27 | 1 | Output 1 |
|  |  | 28 | 1 | Output 1 |
|  |  | 29 | 2 | Output 2 |
|  |  | 30 | 2 | Output 2 |
|  |  | 31 | 2 | Output 2 |
|  |  | 32 | 2 | Output 2 |

## Connections XPS MFDIO20802



Item Connection Screw $N^{\circ}$ Screw Function

| A1 | Supply | - | L+ | --24V |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | L+ | -- 24 V |
|  |  |  | L- | --. 24 V (reference pole) |
|  |  |  | L- | --2 24 V (reference pole) |
| A2 | Earth |  | $\stackrel{+}{\square}$ | Earth |
| B | Outputs - Digital | 1 | L- | Outputs common |
|  |  | 2 | 1 | Output 1 |
|  |  | 3 | 2 | Output 2 |
|  |  | 4 | 3 | Output 3 |
|  |  | 5 | 4 | Output 4 (for increased load) |
|  |  | 6 | L- | Outputs common |
| C | Outputs - Digital | 7 | L- | Outputs common |
|  |  | 8 | 5 | Output 5 |
|  |  | 9 | 6 | Output 6 |
|  |  | 10 | 7 | Output 7 |
|  |  | 11 | 8 | Output 8 (for increased load) |
|  |  | 12 | L- | Outputs common |
| D | Inputs - Digital | 13 | LS+ | Sensor supply for inputs 1 to 4 |
|  |  | 14 | 1 | Digital input 1 |
|  |  | 15 | 2 | Digital input 2 |
|  |  | 16 | 3 | Digital input 3 |
|  |  | 17 | 4 | Digital input 4 |
|  |  | 18 | L- | Inputs common |
| E | Inputs - Digital | 19 | LS+ | Sensor supply for inputs 5 to 8 |
|  |  | 20 | 5 | Digital input 5 |
|  |  | 21 | 6 | Digital input 6 |
|  |  | 22 | 7 | Digital input 7 |
|  |  | 23 | 8 | Digital input 8 |
|  |  | 24 | L- | Inputs common |
| F | Inputs - Digital | 25 | LS+ | Sensor supply for inputs 9 to 12 |
|  |  | 26 | 9 | Digital input 9 |
|  |  | 27 | 10 | Digital input 10 |
|  |  | 28 | 11 | Digital input 11 |
|  |  | 29 | 12 | Digital input 12 |
|  |  | 30 | L- | Inputs common |
| G | Inputs - Digital | 31 | LS+ | Sensor supply for inputs 13 to 16 |
|  |  | 32 | 13 | Digital input 13 |
|  |  | 33 | 14 | Digital input 14 |
|  |  | 34 | 15 | Digital input 15 |
|  |  | 35 | 16 | Digital input 16 |
|  |  | 36 | L- | Inputs common |
| H | Inputs - Digital | 37 | LS+ | Sensor supply for inputs 17 to 20 |
|  |  | 38 | 17 | Digital input 17 |
|  |  | 39 | 18 | Digital input 18 |
|  |  | 40 | 19 | Digital input 19 |
|  |  | 41 | 20 | Digital input 20 |
|  |  | 42 | L- | Inputs common |
| Item | Connection |  |  | Function |
| J | Programming | Integrated 2 RJ45 switched Ethernet Communication ports |  | Either of the two switched Ethernet ports can be used to create a connection between the safety remote I/O and the programming terminal in a point to point or via an Ethernet network for setting the IP address |
|  | Safe Communication (all XPS MF Safety PLCs and Remote //Os) |  |  | Either of the two switched Ethernet ports can be used to create a connection between the safety PLC and other safety related components (e.g other XPS MF safety PLCs or Safety Remote I/O modules) this can be established in a point to point way or via an Ethernet network. |


| Characteristics: | References: <br> page 2/97 | Dimensions, mounting: <br> page 2/98 | Connections: <br> page $2 / 100$ |
| :--- | :--- | :--- | :--- |
| $2 / 102$ |  | Schneider |  |
| Electric |  |  |  |



Safety automation system solutions
Preventa safety controllers

## Applications


$\square$
Page

Controllers for monitoring 2 independent safety functions simultaneously. User selection of 2 functions from a choice of 15 Programmable from front face of controller.


- Enabling switch monitoring
- Sensing mat or edges monitoring
- Light curtain monitoring, relay output type
- etc.

EN 954-1 - category 4/ISO 13849-1,
EN/IEC 60204-1,
DIN V VDE 801 + A1,
EN/IEC 60947-1 + A11,
EN/IEC 60947-5-1

> UL, CSA, BIA

| 6 N/O (3 N/O per function) |
| :--- |
| 3 solid-state outputs for signalling to PLC |
| 12 LEDs |
| $-=24 \mathrm{~V}$ |
| - |
| - |
| - |

## XPS MP

2/108


Configurable controllers using software, for several independent safety functions: selection of safety functions using configuration software running on Windows (16 or 32 inputs and 8 independent safety outputs)


- Emergency stop monitoring
- Limit switch monitoring
- Two-hand control monitoring
- Safety light curtain monitoring, with or without "muting" function
- Enabling switch monitoring, coded magnetic switch monitoring
- Safety mat monitoring
- Hydraulic press solenoid valve monitoring
- Eccentric press safety stop at top dead centre monitoring. Zero speed detection
- Hydraulic press monitoring
- Eccentric press monitoring
- Foot switch monitoring
- Chain shaft breakage monitoring
- Safe tool
- Position selector

EN 954-1 - category 4/ISO 13849-1,
IEC 61508-SIL 3 ,
EN/IEC 60204-1,
EN 1760-1/ISO 13856-1,
EN/IEC 60947-5-1,
EN/IEC 61496-1,
EN 574/ISO 13851,
EN 954-1/ISO 13849-1
UL, CSA, TÜV

4 N/O (2 N/O per function) +6 solid-state
1 "muting" signalling output

LED display on front face
$-24 \mathrm{~V}$

Via SUB-D 9-pin male connector, only on XPS MC16ZC and XPS MC32ZC
Via SUB-D 9-pin female connector, only on XPS MC16ZP and XPS MC32ZP

Via RJ45 connector, on all controllers XPS MC•๑Z•
XPS MC

## Presentation

## Operating principle

Preventa safety controller modules XPS MP are designed to conform with category 4 of the standard EN 954-1/ISO 13849-1
They enable two independent safety functions (selected from a choice of 15 pre-defined configurations) to be performed using the same product. Configuration selection is easily made using 3 buttons on the front face of the module.

These 15 pre-programmed safety functions provide a solution for the majority of safety applications up to level 4 conforming to the standard EN 954-1/ISO 13849-1, for example: monitoring Emergency stops, limit switches, safety mats and sensing edges, enabling switches, coded magnetic switches, type 4 relay output safety light curtains conforming to EN/IEC 61496-1 (for example, light curtains type XUS L. Safety controllers XPS MP incorporate 6 safety outputs (3 per function) and 3 solid-state signalling outputs for signalling to the process PLC.

To aid diagnostics, the modules have LEDs on the front face which provide information on the monitoring circuit status. They also indicate and assist selection of the 2 required configurations.

|  | Configuration | Synchronisation time | Type of start (1) |  | Start test | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Automatic or unmonitored | Monitored |  |  |
| Functions disabled | 0 | - | - | - | - | Factory setting |
| Emergency stop monitoring, 1-channel wiring (category 2) | 1 | - | X | - | - | - |
|  | 2 | - | - | X | - | - |
| Emergency stop monitoring, 2-channel wiring, or guard monitoring (category 4) | 3 | Unlimited | X | - | X | - |
|  | 4 | Unlimited | - | X | X | - |
|  | 5 | 1.5 s | X | - | X | - |
|  | 6 | 1.5 s | - | X | X | - |
|  | 7 | Unlimited | X | - | - | - |
|  | 8 | Unlimited | - | X | - | - |
|  |  |  |  |  |  |  |
| Guard monitoring for injection press or blowing machine (category 4) | 9 | 1.5 s | - | X | X | Uses both safety outputs (2) |
| Enabling grip switch monitoring (3 position switch) (category 4) | 10 | - | X | - | X | The start button acts as start-up preparation |
|  |  |  |  |  |  |  |
| Sensing mat and edges monitoring (category 3) | 11 | - | X | - | - | Mats with circuit making contacts |
|  | 12 | - | - | X | - |  |
| Relay output safety light curtain monitoring (category 4) | 13 | 0.5 s | - | X | X | - |
|  |  |  |  |  |  |  |
| Coded magnetic switch monitoring (category 4) | 14 | 1.5 s | X | - | - | Magnetic switches with 2 contacts, 1 N/O and 1 N/C |
|  | 15 | 1.5 s | - | X | - |  |

(1) Automatic start: there is no start contact or it is shunted.

Unmonitored start: the output is activated on closing of the start contact.
Monitored start: the start input is monitored so that there is no start-up in the event of the start contact being shunted or the start circuit being closed for more than 10 seconds.
Start-up is triggered following activation of the start button (push-release function) on opening of the contact
(2) Tool zone guard with $3^{r d}$ switch.

Additional rear guard (optional) with automatic start. The opening of the guard cuts all outputs.

| Presentation: | Characteristics: | References: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 106$ | page $2 / 107$ | page 2/108 | Dimensions: |
| page 2/109 |  |  |  |

Safety automation system solutions
Preventa safety controllers type XPS MP With pre-defined functions


Safety automation system solutions
Preventa safety controllers type XPS MP
With pre-defined functions


XPS MP11123

[^17]| References |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Type of terminal block connection | Number of safety circuits | Additional outputs | Supply | Reference | Weight ${ }^{\text {r }}$ ( ${ }^{\text {kg }}$ |
| Modules for 2 independent safety functions | Integrated in module | 3 N/O per function ( $6 \mathrm{~N} / \mathrm{O}$ total) | 3 solid-state | --- 24 V | XPS MP11123 | 0.320 |


| Removable | 3 N/O per | 3 solid-state | $-=24 \mathrm{~V}$ | XPS MP11123P | 0.320 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| from module | function |  |  |  |  |
|  | (6 N/O total) |  |  |  |  |


| Presentation: | Characteristics: | References: | Dimensions: |
| :--- | :--- | :--- | :--- |
| page $2 / 106$ | page $2 / 107$ | page 2/108 | page 2/109 |

## Safety automation system solutions Preventa safety controllers type XPS MP <br> AM1 DP200 rail mounting




[^18]
## XPS MP

## Emergency stop monitoring, 1-channel wiring

Configuration 1 (1-channel Emergency stop, automatic or unmonitored start) = function 1.
Configuration 2 (1-channel Emergency stop, monitored start) = function 2.

(1) Automatic start.
(2) Function 1 safety outputs

(Y94)
(3) Function 2 safety outputs.

ESC $=$ External start conditions.

## Configuration 2

Monitored start
$\square$
Input 1, Emergency stop
C1-I1, (C4-I4)
Input 2, ESC C2-I2,
(C5-I5)
Start button C3-I3,
(C6-16)
N/O output 13-14/23-24/ 33-34, (43-44/53-54/63-64)
Signalling output Y 84 ,
(Y94)


Configuration 1
Unmonitored start
 (Y94)

XPS MP
Guard monitoring with start test
Configuration 3 (locking of guard with start test, automatic or unmonitored start) = function 1 .
Configuration 4 (locking of guard with start test, monitored start) = function 2.

(1) Automatic start.
(2) Function 1 safety outputs.

(3) Function 2 safety outputs.

ESC = External start conditions

## Configuration 3



Safety automation system solutions
Preventa safety controllers type XPS MP With pre-defined functions

## XPS MP

Guard monitoring with start test and synchronisation time $=1.5 \mathbf{~ m s}$
Configuration 5 (locking of guard with start test, automatic or unmonitored start) = function 1.
Configuration 6 (locking of guard with start test, monitored start) = function 2.


## Functional diagrams

## Configuration 5

Automatic start


## Configuration 6

Monitored start


## Configuration 5

Unmonitored start


[^19]
## XPS MP

## Emergency stop monitoring, 2-channel wiring

Configuration 7 (2-channel Emergency stop, automatic or unmonitored start) = function 1.
Configuration 8 (2-channel Emergency stop, monitored start) = function 2.

(1) Automatic start.
(2) Function 1 safety outputs.
(3) Function 2 safety outputs. ESC = External start conditions.

## Functional diagrams

Configuration 7
Automatic start

(Y94)

## Configuration 8

Monitored start


Configuration 7
Unmonitored start
 (Y94)
(1) Start button control: the start button must not be activated on power-up.

Safety automation system solutions
Preventa safety controllers type XPS MP With pre-defined functions

XPS MP
Guard monitoring for injection press or blowing machine
Configuration 9 (this configuration uses both functions of the controller. Only function 1 is configured).

(1) If sensors S4 and S5 are not used, terminals C4-14 and C5-15 must be linked.
(2) Safety outputs for tool zone.
(3) Safety outputs for rear access safety doors.

In configuration mode 9, the N/C contacts of the relays or contactors controlled via outputs 43-44, 53-54, 63-64 cannot be monitored by the feedback loop (ESC). ESC = External start conditions.

## Functional diagram

Configuration 9

Key $0=1$
End of travel 1 C1-I1
End of travel 2 C2-I1
End of travel 3 C3-I1 End of travel 4 C4-I1

End of travel 5 C5-I1
Start button C6-I6
N/O output
13-14/23-24/33-34
Signalling output Y84
N/O output
(43-44/53-54/63-64)
Signalling output Y94

(1) Prevention of start-up necessary: to check the sensors connected, open and reclose the guard.

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| Presentation: | Characteristics: | References: | Connections: |
| page $2 / 106$ | page $2 / 107$ | page $2 / 108$ | Dimensions: |

## XPS MP

Enabling switch monitoring, safety mat monitoring
Configuration 10 (enabling switch monitoring, with or without start-up preparation) = function 1.
Configuration 11 (safety mat monitoring, automatic or unmonitored start) = function 2.


| (1) Automatic start. | (3) Function 2 safety outputs. |
| :--- | :--- |
| (2) Function 1 safety outputs. | ESC = External start conditions. |



Safety automation system solutions
Preventa safety controllers type XPS MP With pre-defined functions

## XPS MP

Safety mat monitoring, safety light curtain monitoring
Configuration 12 (sensing mat monitoring, monitored start) = function 1 .
Configuration 13 (light curtain monitoring, monitored start; synchronisation time $=0.5 \mathrm{~s}$ ) = function 2 .

(1) Function 1 safety outputs.
(2) Function 2 safety outputs.

ESC = External start conditions.

(1) Start button control: the start button must not be activated on power-up.

## XPS MP

Coded magnetic switch monitoring
Configuration 14 (automatic or unmonitored start, synchronisation time $=1.5 \mathrm{~s}$ ) $=$ function 1 .
Configuration 15 (monitored start, synchronisation time $=1.5 \mathrm{~s}$ ) = function 2 .

(1) Automatic start.
(2) Function 1 safety outputs.
(3) Function 2 safety outputs.

ESC = External start conditions.


## Configuration 15

Monitored start



XPS MC16ZC


XPS MC32ZC

## Presentation

Configurable safety controllers XPS MC••Z• are designed to provide a solution for safety applications requiring conformity to category 4 of standard EN 954-1/EN/ ISO 13849-1 and SIL 3 requirements of standard IEC 61508.
The range of configurable safety controllers comprises 6 products, each with different technical characteristics.

| Configurable <br> controllers | Safety <br> inputs | Safety <br> outputs (1) | Communication via <br> CANopen bus Profibus bus | Modbus serial <br> link |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| XPS MC16Z | 16 | $6+2 \times 2$ | - | - | Yes, slave |
| XPS MC16ZC | 16 | $6+2 \times 2$ | Yes, slave | - | Yes, slave |
| XPS MC16ZP | 16 | $6+2 \times 2$ | - | Yes, slave | Yes, slave |
| XPS MC32Z | 32 | $6+2 \times 2$ | - | - | Yes, slave |
| XPS MC32ZC | 32 | $6+2 \times 2$ | Yes, slave | - | Yes, slave |
| XPS MC32ZP | 32 | $6+2 \times 2$ | - | Yes, slave | Yes, slave |

## Line control

The safety inputs are supplied by the various control outputs (2), in such a manner so as to monitor for short-circuits between the inputs, short-circuits between each input and earth or the presence of residual voltages.
The controller, assisted by the control outputs, continuously tests all the connected inputs. As soon as an error is detected on an input, all the outputs associated with this input are disconnected. Safety outputs associated with other inputs remain active.

## Configuration

Safety controllers XPS MCe»Z• are configurable and addressable using software XPS MCWIN running on a PC. Connection accessories required: see page 2/125.

## Connections

For connection of safety inputs and outputs, safety controllers XPS MC•eZ• can be fitted with a choice of:

- screw connectors type XPS MCTS $\bullet$, or
$\square$ spring clip connectors type XPS MCTC••.
These connectors are to be ordered separately, see page 2/124.
(1) 8 independent safety outputs $=6$ solid-state safety outputs $+2 \times 2$ relay outputs (4 relay outputs with guided contacts).
(2) 8 control outputs are available but they are not safety outputs.

| Presentation: | Characteristics: | References: | Functions: |
| :--- | :--- | :--- | :--- |
| page $2 / 118$ | page $2 / 122$ | page $2 / 124$ | Dimensions: |
| page $2 / 125$ | page $2 / 126$ |  |  |

## Safety automation system solutions Preventa configurable safety controllers type XPS MC

## Safety functions

Configuration of the safety functions is carried out using software XPSMCWIN which is available on the Safety Suite V2 CD-ROM.

30 certified safety functions are available with this software and they are easily assignable to the safety outputs. The safety functions have multiple combination possibilities and various starting conditions.

The safety functions are:
$\square$ certified in accordance with EN 954-1/EN/ISO 13849-1 and IEC 61508, $\square$ configurable in controller XPS MC using software XPSMCWIN which is available on the Safety Suite V2 software pack.

All 8 safety outputs are suitable for use in safety related parts of control systems conforming to category 4 of EN 954-1/EN/ISO 13849-1 and each output can disconnect one of its safety circuits.

## Main safety functions

■ Emergency stop monitoring, with or without time delay, 1 or 2-channel wiring
■ Two-hand control (type III-C conforming to EN 574/ISO 13851)
■ Guard monitoring with 1 or 2 limit switches

- Guard monitoring for injection presses and blowing machines
- Magnetic switch monitoring

■ Sensing mat monitoring

- Light curtain (type 4 conforming to EN/IEC 61496, relay or solid-state output) monitoring
■ Zero speed detection
■ Dynamic monitoring of hydraulic valves on linear presses
- Monitoring safety stop at top dead centre on eccentric press
- Safety time delays

■ "Muting" function of light curtains

- Enabling switch monitoring, 2 or 3 contact
- Hydraulic press
- Eccentric press
- Foot switch monitoring

■ Chain shaft breakage monitoring

- Position selector


## Application schemes and functional diagrams

See from page 2/126


## Modbus serial link

Configurable safety controllers XPS MC••Z• MC incorporate a Modbus communication interface (RJ45 connector) for configuration and diagnostics.
This interface enables connection of the controllers to: ㅁ a PC (configuration),

- a PLC (diagnostics), or
$\square$ an operator dialogue terminal (diagnostics).
The Modbus serial link comprises a master station (Premium automation platform) and slave stations (configurable controllers XPS MC16/32Z•).
Two exchange mechanisms are possible:
■ Question/response: the questions from the master are addressed to a given slave. The response is expected by return from the interrogated slave.
■ Distribution: the master distributes a message to all the stations of the Modbus serial link. The latter execute the order without transmitting a reply.

| Presentation: | Characteristics: | References: | Functions: |
| :--- | :--- | :--- | :--- |
| page $2 / 118$ | page $2 / 122$ | page $2 / 124$ | Dimensions: |



Configurable safety controller XPS MC••Z॰, with screw connectors


## Description <br> Configurable safety controllers XPS MC••Z• <br> Front face of controllers:

1 LED display and system diagnostics.
2 Two LEDs for CANopen or Profibus (1) connection status.
3 SUB-D 9-pin male connector for connection on CANopen bus (XPS MC16ZC/ MC32ZC)
or SUB-D 9-pin female connector for connection on Profibus bus (XPS MC16ZP/ MC32ZP).
4 Solid-state safety output and "muting" indicator light terminals.
5 Power supply (--24 V) and relay safety output terminals.
6 Control output terminals for power supply to safety inputs and safety input terminals.
7 RJ45 connector for connection on Modbus serial link.
8 RESET button (resetting of controller).
Rear face of controllers:
9 Fixing plate for mounting on rail.
(1) Depending on controller model.

| LED details |  |  |  |
| :---: | :---: | :---: | :---: |
| LED | Colour | Status | Meaning |
| 1 PWR | Green | On | Supply voltage present. |
| 2 CNF | Yellow | On | In configuration mode. |
|  |  | Flashing | Not configured, initial power-up. |
| 3 E In | Red | On | Internal error: all safety outputs deactivated. |
| 4 E Ex | Red | On | External error: all safety outputs associated with the defective circuit are deactivated. |
| 5 COM | Green | On | Controller communicating via the TER (RJ45) connection. |
| 6 R1, R2 | Green | On | Relay outputs 13/14, 23/24, 33/34 and 43/44 activated. |
|  |  | Flashing | Fault on these outputs. |
| 7 RUN | Green | Off | Hardware OK for the Profibus bus or the CANopen bus. |
|  |  | On | Communicating on Profibus bus or on CANopen bus. <br> Normal status. |
| 8 ERR | Red | On | Communication impossible, configuration error, damaged cabling or absence. <br> Bus deactivated |
|  |  | Off | Communicating on CANopen or Profibus bus. Normal status. |
|  |  | Flashing $(x 1)$ | Warning limit reach. |
|  |  | Flashing $(x 2)$ | Control event error on CANopen bus. |
|  |  | Flashing $(\times 3)$ | Synchronisation error on CANopen bus. |
| $91 \ldots 16$ | Green | On | Input circuit closed. |
| 1... 32 |  | Flashing | Error detected on input relating to LED. |
| 1001... 06 | Green | On | Solid-state output activated. |
|  |  | Flashing | Short-circuit, fault on output. |
| 11 RUN | Green | On | Run mode. |
|  |  | Flashing | Changing from run mode to stop mode. |

Safety automation system solutions
Preventa configurable safety controllers type XPS MC

| Characteristics |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Configurable safety controller type |  |  |  | XPS MC16Z and MC32Z, XPS MC16ZC and MC32ZC, XPS MC16ZP and MC32ZP |
| Conformity to standards |  |  |  | EN/IEC 60204-1, EN 1760-1/ISO 13856-1, EN/IEC 60947-5-1, EN/IEC 61496-1, EN 574/ISO 13851, EN 954-1/EN/ISO 13849-1, IEC 61508 |
| Product certifications |  |  |  | UL, CSA, TÜV |
| Products designed for max. use in safety related parts of control systems (conforming to EN 954-1/EN/ISO 13849-1 and IEC 61508) |  |  |  | Category 4 max. (EN 954-1/EN/ISO 13849-1), SIL 3 max. (IEC 61508) |
| Supply voltage |  |  | V | -- $24 \pm 20 \%$ |
| Maximum consumption |  |  | W | 12 |
| Fuse protection |  |  | A | 16 gL max. |
| Start button monitoring |  |  |  | Configurable |
| Control circuit voltage |  |  |  | 28.8 V/13 mA (between input terminals C1-11 to C8-I16, resp. I32) |
| Calculation of wiring resistance RL |  |  | $\Omega$ | 100 max, maximum cable length: 2000 m (Between input terminals) |
| Synchronisation time between inputs |  |  | s | Depending on configuration selected |
| Outputs | Relay | Voltage reference |  | Volt-free |
|  |  | Safety circuit |  | 2 N/O per function (4 N/O total) (13-14, 23-24, 33-34, 43-44) |
|  |  | Breaking capacity in AC-15 | VA | C300: inrush 1800, maintained 180 |
|  |  | Breaking capacity in DC-13 |  | $24 \mathrm{~V} / 1.5 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$ |
|  |  | Thermal current (Ithe) for each group of 2 outputs | A | 6 for 1 output and 2 for the other, or 4 for both outputs. |
|  |  | Current limit | A | Ith $\leqslant 16$ (with several relay output circuits simultaneously loaded) |
|  |  | Output fuse protection | A | 4 gL or 6 quick blow |
|  |  | Minimum current | mA | 10 (1) |
|  |  | Minimum voltage | V | 17 (1) |
|  | Solid-state | Breaking capacity |  | $24 \mathrm{~V} / 2 \mathrm{~A}$ |
|  |  | Safety circuit |  | 6 solid-state (01, O2, O3, O4, O5, O6) |
|  |  | Current limit | A | Ith $\leqslant 6.5$ (with several solid-state output circuits simultaneously loaded) |
| Electrical durability |  |  |  | See page 2/172 |
| Response time on input opening |  |  | ms | Response time $=20$ or 30, configurable using software XPSMCWIN <br> - if 20 for controllers XPS MC•eZ $\bullet$ : 30 for a safety mat <br> - if 30 for controllers XPS MC $\bullet \bullet$ Z: 45 for a safety mat |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to IEC 60647-5-1, DIN VDE 0110 part 1) |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to IEC 60647-5-1, DIN VDE 0110 part 1) |
| LED display |  |  |  | 30 (XPS MC16Z), 46 (XPS MC32Z) <br> 32 (XPS MC16ZC/MC16ZP, 48 (XPS MC32ZC/MC32ZP) |
| Tempera | Operating |  | ${ }^{\circ} \mathrm{C}$ | -10... +55 |
|  | Storage |  | ${ }^{\circ} \mathrm{C}$ | $-25 . . .+85$ |
| Degree of protection |  |  |  | IP 20 conforming to EN/IEC 60529 (connector and enclosure) |

[^20] (possible contamination or wear of the gold layer on the contact tips).

## Safety automation system solutions <br> Preventa configurable safety controllers type XPS MC

| Communication |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Modbus serial link |  |  |  |  |
| Compatibility |  |  | XPS MC16Z, XPS MC32Z, XPS MC16ZC, XPS MC32ZC, XPS MC16ZP, XPS MC32ZP |  |
| Serial link ports | Number and type |  | $1 \times$ RJ45 |  |
|  | Status |  | Slave |  |
| Data exchange |  |  | 14 words |  |
| Addressing |  |  | $1 . . .247$ |  |
| Baud rate |  | bps | 1200, 2400, 4800, 9600 or 19200 |  |
| Parity |  |  | Even, odd, none |  |
| Fixed parameters |  |  | RTU (Remote Terminal Unit) mode 1 start bit / 8 data bits 1 stop bit stop with "even" or "odd" parity 2 stop bits without parity |  |
| Functions supported |  |  | 01: 8-bit output data / 32-bit input data ( $0=O F F, 1=O N$ ) 02: 32-bit input data / 8 -bit output data ( $0=O F F, 1=O N$ ) 03: information and errors |  |
| CANopen bus |  |  |  |  |
| Compatibility |  |  | XPS MC16ZC, XPS MC32ZC |  |
| Serial link ports | Number and type |  | $1 \times$ SUB-D 9-pin male |  |
|  | Status |  | Slave |  |
| Data exchange |  |  | 14 words <br> By included dual port memory: only data addresses, diagnostics, but no baud rates |  |
| Parameters (adjustable using software XPSMCWIN) | Baud rate | Kbps | 20, 50, 125, 250, 500, 800 |  |
|  |  | Mbps | 1 |  |
|  | Address |  | 1... 127 |  |
| Profibus bus |  |  |  |  |
| Compatibility |  |  | XPS MC16ZP, XPS MC32ZP |  |
| Serial link ports | Number and type |  | 1 x SUB-D 9-pin female |  |
|  | Status |  | Slave |  |
| Data exchange |  |  | 14 words <br> By included dual port memory: only data addresses |  |
| Parameters | Baud rate | Mbps | 12 |  |
|  | Address |  | 1... 125 |  |
| Connections |  |  |  |  |
| Type |  |  | Separate plug-in screw connector XPS MCTS•• (1) | Separate plug-in spring clip connector XPS MCTS $\bullet$ (1) |
| Power supply and relay output terminals |  |  |  |  |
| 1 conductor | Without cable end |  | Solid or flexible cable: $0.2 \ldots . .2 .5 \mathrm{~mm}^{2}$, AWG 24-12 |  |
|  | With cable end | mm ${ }^{2}$ | Without bezel, flexible cable: $0.25 \ldots 2.5$ |  |
|  |  | mm ${ }^{2}$ | With bezel, flexible cable: $0.25 \ldots 2.5$ |  |
| 2 conductors | Without cable end | mm ${ }^{2}$ | Solid or flexible cable: $0.2 \ldots .1 .5$ | - |
|  | With cable end | $\mathrm{mm}^{2}$ | Without bezel, flexible cable: $0.25 \ldots 1.5$ | - |
|  |  | $\mathrm{mm}^{2}$ | Double, with bezel, flexible cable: $0.5 \ldots 1.5$ | Double, with bezel, flexible cable: 0.5... 1 |
| Tightening torque of screw terminals |  | Nm | 0.5...0.6 | - |
| Wire stripping length |  | mm | 10 |  |
| Other terminals |  |  |  |  |
| 1 conductor | Without cable end |  | Solid or flexible cable: $0.14 \ldots 1.5 \mathrm{~mm}^{2}$, AWG 28-16 |  |
|  | With cable end | mm ${ }^{2}$ | Without bezel, flexible cable: $0.25 \ldots 1.5$ |  |
|  |  | $\mathrm{mm}^{2}$ | With bezel, flexible cable: $0.25 \ldots 0.5$ |  |
| 2 conductors | Without cable end | mm ${ }^{2}$ | Solid cable: 0.14...0.5 <br> Flexible cable: 0.14... 0.75 | - |
|  | With cable end | mm ${ }^{2}$ | Without bezel, flexible cable: $0.25 \ldots 0.34$ | - |
|  |  | $\mathrm{mm}^{2}$ | Double, with bezel, flexible cable: 0.5 | - |
| Enclosure fixing (conforming to DIN EN 50022) |  |  | Metal adaptor for fixing on Ч 35 mm metal rail |  |

Enclosure fixing (conforming to DIN EN 50022)

## XPS MC16ZP, XPS MC32ZP

(1) To be ordered separately.


XPS MC16Z


XPS MC16ZC


XPS MC16ZP


XPS MC32Z


XPS MC32ZC


XPS MC32ZP

| References |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Configurable safety controllers (connector not included) |  |  |  |  |  |
| Number of inputs | Number of outputs |  | Communi- | Reference | Weight |
|  | Relay | Solid-state | cation <br> (Link and bus) |  | kg |
| 16 | $4(2 \times 2)$ | 6 | Modbus | XPS MC16Z | 0.820 |
|  |  |  | Modbus, CANopen | XPS MC16ZC | 0.820 |
|  |  |  | Modbus, Profibus | XPS MC16ZP | 0.820 |


| 32 | $\mathbf{4}(\mathbf{2 \times 2})$ | $\mathbf{6}$ | Modbus | XPS MC32Z | 0.840 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Modbus, | XPS MC32ZC | 0.840 |
| :--- | :--- | :--- |

CANopen

| Modbus, <br> Profibus | XPS MC32ZP | 0.840 |
| :--- | :--- | :--- |

Profibus

| Plug-in connectors for configurable safety controllers (1) |  |  |  |
| :---: | :---: | :---: | :---: |
| Description | For use with | Reference | Weight kg |
| Screw connectors | XPS MC16Z, MC16ZC, MC16ZP | XPS MCTS16 | 0.080 |
|  | XPS MC32Z, MC32ZC, MC32ZP | XPS MCTS32 | 0.110 |
| Spring clip connectors | XPS MC16Z, MC16ZC, MC16ZP | XPS MCTC16 | 0.080 |
|  | XPS MC32Z, MC32ZC, MC32ZP | XPS MCTC32 | 0.110 |

## Configuration software

- Reference XPS MCWIN is the full version of configuration software XPSMCWIN version 2.10 and must be installed if no previous version of this software has been installed.
- Reference SSVXPSMCWINUP is an update for software XPSMCWIN and can be used if SSVXPSMCWINUP has been installed using Safety Suite V1. An update from version 2.0 to version 2.10 for the software XPSMCWIN will then be performed.

| Description | Operating system | Details <br> (2) | Languages | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration software for controllers XPS MC••Z. CD-ROM + user manual | Windows 2000, <br> Windows XP | Software available on Safety Suite V2 software pack | EN, FR, DE, IT, ES, PT | XPS MCWIN | 0.520 |
| XPSMCWIN software update CD-ROM + user manual | Windows 2000, Windows XP | Software available on Safety Suite V2 software pack | EN, FR, DE, IT, ES, PT | SSVXPSMCWINUP | 0.520 |

(1) To be ordered separately to the controllers.
(2) EDS and GSD files are available on the XPSMCWIN configuration software CD-ROM.

| Presentation: | Characteristics: | References: | Functions: |
| :--- | :--- | :--- | :--- |
| page $2 / 118$ | page $2 / 122$ | page $2 / 124$ | Dimensions: |
| page $2 / 125$ |  |  |  |

## Preventa configurable safety controllers

 type XPS MC

TSX PCX 1031


TSX CAN TDM4


ABL 8RPS24100

| References <br> Connecting cables (1) <br> Function |
| :--- |
| Diagnostics using Magelis operator dialogue terminal type XBT GT |
| Configuration software |

(1) To be ordered separately.
(2) The converter TSX CUSB485 is installed using Driver Pack V2.3. This "driver" is available on the Safety Suite V2 software pack or downloadable from our site: www.schneider-electric.com
Dimensions, mounting XPS MC••Z•


[^21] (2) Metal adaptor for fixing on metal Ч 35 mm rail.

Emergency stop monitoring, with or without time delay, 1-channel wiring, with automatic start
Category 4 achieved with necessary precautions taken to eliminate input circuit faults.

## Application scheme



0 V 0 V
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

## Functional diagram



Key $0=1$
tv = delay time
Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Emergency stop monitoring, with or without time delay, 2-channel wiring, with start button
Category 4 conforming to standard EN 954-1.
Application scheme


A shunt between the two terminals of an emergency stop will not be detected.
Short-circuits between I1, I2, I3 will be detected.
0 V
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

Functional diagram


Key $0=1$
tv = delay time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Two-hand control (type III-C conforming to EN 574-1)
Category 4 conforming to standard EN 954-1.
Application scheme


0 V
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

Functional diagram


[^22]tv = delay time

Guard monitoring with 1 limit switch
Category 1 conforming to standard EN 954-1.
Application scheme

(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•.

Functional diagrams


Rising edge monitored start


## Start test $=$ YES <br> Automatic start

## Input

 Limit switch 1Output


Rising edge monitored start
Start-up

Input
Limit switch 1
Input
Start

Output


Key $0=1$

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Guard monitoring with 2 limit switches

Category 4 conforming to standard EN 954-1.

## Application scheme



ESC = external start conditions
EDM = external devices monitoring
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

## Guard monitoring with 2 limit switches (continued)

Functional diagrams

## Start test = NO <br> Automatic start



## Rising edge monitored start



## Falling edge monitored start



Key $\quad 0 \_1$
EDM = external devices monitoring
t EDM = maximum monitoring time of external devices
t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Guard monitoring with 2 limit switches, with guard locking
Category 4 conforming to standard EN 954-1.
Application scheme


ESC = external start conditions
EDM = external devices monitoring
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

## Guard monitoring with 2 limit switches, with guard locking (continued)

Functional diagrams

## Start test = NO

Automatic start


Start test $=$ YES
Automatic start

Input Limit switch 1
Input Limit switch 2

Input Locking

Output

## Rising edge monitored start



Rising edge monitored start

Input
Limit switch 1
Input
Limit switch 2
Input
Locking
Input Start

Output

Falling edge monitored start

Limit switch 1
Input
Limit switch 2
Input
Locking
Input
Start

Output

Falling edge monitored start

Input
Limit switch 1
Input
Limit switch 2
Input
Locking
Input
Start

Output


Key $\quad 0=1$
t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Guard monitoring for injection presses and blowing machines
Category 4 conforming to standard EN 954-1.
Application scheme


ESC $=$ external start conditions
EDM = external devices monitoring
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

Guard monitoring for injection presses and blowing machines (continued)

Functional diagrams

## Start test = NO

Automatic start


Start test = YES
Automatic start

Input
Limit switch 1
Input
Limit switch 2

Input
Valve monitoring

Output

## Rising edge monitored start



## Falling edge monitored start

Rising edge monitored start

Input
Limit switch 1
Input
Limit switch 2

Input
Valve monitoring
Input
Start

Output



Key $\quad 0=1$
t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Magnetic switch monitoring

Application scheme


ESC $=$ external start conditions
EDM = external devices monitoring
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

## Magnetic switch monitoring (continued)

Functional diagrams

## Start test = NO

Automatic start


## Rising edge monitored start



## Falling edge monitored start



Start test = YES
Automatic start


## Rising edge monitored start



Falling edge monitored start


Key $\quad 0=1$
EDM = external devices monitoring
t EDM = maximum monitoring time of external devices t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Sensing mat monitoring

■ Category 3 conforming to standard EN 954-1.

- Control outputs connected to a sensing mat cannot be used for other items.


ESC = external start conditions
EDM = external devices monitoring
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

## Sensing mat monitoring (continued)

## Functional diagrams

## Start-up test

Automatic start


## Rising edge monitored start



Falling edge monitored start


Key $\quad 0=1$
EDM = external devices monitoring
t EDM = maximum monitoring time of external devices

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Light curtain monitoring, relay output type

Category 4 conforming to standard EN 954-1.
Application scheme


ESC = external start conditions
ESPE = electro-sensitive protection equipment
OSSD1/OSSD2 = output signal switching device
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

Light curtain monitoring, relay output type (continued)
Functional diagrams


Start test = YES
Automatic start


## Rising edge monitored start



Rising edge monitored start



Falling edge monitored start


EDM = external devices monitoring
t EDM = maximum monitoring time of external devices t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Light curtain monitoring, solid-state output type
Category 4 conforming to standard EN 954-1.
Application scheme


ESC = external start conditions
ESPE = electro-sensitive protection equipment
OSSD1/OSSD2 = output signal switching device
(1) Technical characteristics for maximum rating of fuses, see page2/122.
(2) Only applicable to XPS MC32Z•

Light curtain monitoring, solid-state output type (continued)

Functional diagrams


## Rising edge monitored start



Start test = YES
Automatic start


Rising edge monitored start


Falling edge monitored start


Key $\quad 0=1$
EDM = external devices monitoring
t EDM = maximum monitoring time of external devices t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Zero speed detection

Category 4 conforming to standard EN 954-1.
Application scheme


The zero speed signal (validation of the output) will be activated only if:
1: one input is in a high state,
2: the other input is in a low state,
3: the frequency of the two inputs is less than the stated value.
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•
(3) Only one "Zero speed detection" function can be connected to an XPS MC controller, and only to the inputs i1 and i2.

Functional diagram
Sensor control


Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Dynamic monitoring of hydraulic valves on linear presses
Category 4 conforming to standard EN 954-1.
Application scheme


ESC = external start conditions
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•

Functional diagrams


Note: The valve sensor signals must function as described above.

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Monitoring safety stop at top dead centre on eccentric press

■ Category 4 conforming to standard EN 954-1.

- This function comprises several monitoring modes including:
$\square$ Safety stop at top dead centre (1),
$\square$ monitoring braking travel,
$\square$ as an option, dynamic monitoring of doubled-bodied solenoid valves (2).


## Application scheme



S8: Operating modes:
0 - stop,
1 - adjust,
2 - jog,
3 -automatic continuous run.
OTS = Limit switch associated with top dead centre (TDC)
UN = Limit switch associated with bottom dead centre (BDC)
PSV = safety valve
(3) Technical characteristics for maximum rating of fuses, see page 2/122.
(4) Only applicable to XPS MC32Z•


Key $\quad 0=1$
OTS = Limit switch associated with top dead centre (TDC)
UN = Limit switch associated with bottom dead centre (BDC)
PSV = safety valve
t sync $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers Type XPS MC

Monitoring safety stop at top dead centre on eccentric press (continued)
Functional diagram in jog mode


## Monitoring safety stop at top dead centre on eccentric press (continued) <br> Functional diagram in automatic continuous run mode



[^23]
## BDC $=$ Bottom Dead Centre

TDC = Top Dead Centre
OTS = Limit switch associated with top dead centre (TDC)
UN = Limit switch associated with bottom dead centre (BDC)
PSV = safety valve
t sync = synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Safety time delays

Category 4 conforming to standard EN 954-1.
Application scheme

(1) Technical characteristics for maximum rating of fuses, see page 2/122. (2) Only applicable to XPS MC32Z•

## Functional diagrams

Control signal
Output signal for EV function
Output signal for AV function

Output signal for EW function

Output signal for AW function


Functions:
$\mathrm{EV}=\mathrm{On}$-delay
AV = Off-delay
EW = Pulse on energisation
AW = Pulse on de-energisation

## Pulse on energisation



Pulse on de-energisation


Key $0=1$

| Presentation: | Characteristics: | References: | Fimensions: |
| :--- | :--- | :--- | :--- |
| page $2 / 118$ | page $2 / 122$ | page $2 / 124$ | page $2 / 125$ |

"Muting" function for light curtains
Category 4 conforming to standard EN 954-1.
Application scheme


ESC = external start conditions
EDM = external devices monitoring
ESPE = electro-sensitive protection equipment
OSSD1/OSSD2 = output signal switching device
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•
(3) A light curtain with relay outputs can also be used with the "Muting" function.
(4) Only one "Muting" function can be connected to an XPS MC controller.
(5) Example using 2 safety outputs to control 2 contactors linked to one safety function.

Functional diagram

tM = "Muting" time
tF = free passage activation time
t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Enabling switch monitoring, 2 contact type

Category 1 conforming to standard EN 954-1.
Application scheme

(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z $\bullet$.

Functional diagram

Input
Closing enabling switch 13-14

Input
Opening enabling switch 21-22

Output
Key $\quad 0 \_1$
$t Z=$ enabling time

Enabling switch monitoring, 3 contact type
Category 4 conforming to standard EN 954-1.
Application scheme

(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z $\bullet$.

Functional diagram


Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Hydraulic press
Category 4 conforming to standard EN 954-1.

## Application scheme



## Functional diagram

Hydraulic press, adjust mode
Emergency stop
Adjust mode
Jog mode
Automatic mode
Hydraulic pump (1) Opening command Closing command (1) Safety device OT NWK (1)
UT
Closing valve (1)
Opening valve (1)
Closing + Opening valve (1)
Output-opening
Output - closing
Overtravel OK
(1) Not used.


Key $0=1$


Hydraulic press, mode = automatic, with overtravel monitoring and
opening and closing control coming from the automation platform


## Hydraulic press, mode = automatic



Ove
(1)
Key $\quad 0=1$
(1) Not used.

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Eccentric press

Category 4 conforming to standard EN 954-1.

## Application scheme



## S8: Operating modes:

0 - stop,
1 - adjust,
2 - jog,
3 -automatic continuous run.
OTS = Limit switch associated with top dead centre (TDC)
UN = Limit switch associated with bottom dead centre (BDC)
PSV = safety valve
B1 = sensor at tooth wheel in cam switch mechanism.
(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z• (117...I32).

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

## Eccentric press (continued)

Functional diagrams

## Eccentric press: Jog



## Eccentric press: Continuous



## Eccentric press: automatic continuous


t sync. $=$ synchronisation time
t tot. = dead time
(1) Not used.

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Foot switch monitoring
Application scheme

(1) Technical characteristics for maximum rating of fuses, see page 2/122. (2) Only applicable to XPS MC32Z•

Functional diagrams

Without start interlock


## With start interlock


Key 0 - 1
t sync. $=$ synchronisation time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

Chain shaft breakage monitoring
Application scheme

(1) Technical characteristics for maximum rating of fuses, see page 2/122. (2) Only applicable to XPS MC32Z•

Functional diagrams


Key $\quad 0=1$
tp = pulse time

Safety automation system solutions
Preventa configurable safety controllers
Type XPS MC

(1) Technical characteristics for maximum rating of fuses, see page 2/122.
(2) Only applicable to XPS MC32Z•.

## Position selector (continued)

Functional diagrams
Position of position selector
Status required of component $\mathrm{n}^{\circ} 1$ in the selected position

Status required of component $n^{\circ} 2$ in the selected position



Key
$0-1$

Selection guide
Safety automation system solutions
Preventa safety modules

Applications
Modules

## Conformity to standards

Product certifications


| Synchronisation time between inputs |  |
| :--- | :--- |
| Input channel voltage | $24 \mathrm{~V} / 48 \mathrm{~V}$ version <br> $24 \mathrm{~V} / 48 \mathrm{~V}$ <br> or $110 \mathrm{~V} / 120 \mathrm{~V} / 230 \mathrm{~V}$ <br> version |

## Module type

## Pages



For Emergency stop and switch monitoring


EN 954-1 - category 3/EN/ ISO 13849-1. EN/IEC 60204-1, EN 1088/ISO 14119, EN ISO 13850,
EN/IEC 60947-1 + A11,
EN/IEC 60947-5-1


## XPSAC

2/175


EN 954-1 - category 4/EN/ ISO 13849-1, (instantaneous contacts) EN 954-1 - category 3/ ISO 13849-1 (time delay contacts), EN/IEC 60204-1, EN/IEC 60947-5-1, EN/ISO 13850, EN 50082-2
UL, CSA, BG

| $2 \mathrm{~N} / \mathrm{O}$ instantaneous |
| :--- |
| $+3 \mathrm{~N} / \mathrm{O}$ time delay |
| 4 solid-state output for |
| signalling to PLC |
| 4 LEDs |
| $\sim$ and $=-24 \mathrm{~V}$ |
| $\sim 115 \mathrm{~V}$ |
| $\sim 230 \mathrm{~V}$ |


| 75 ms <br> (automatic start) |
| :--- |
| $=24 \mathrm{~V} /-$ |
| $\sim 48 \mathrm{~V} / 48 \mathrm{~V}$ |
| - |

## XPS ATE

2/180


Safety automation system solutions
Preventa safety modules

## Applications



| Synchronisation time between inputs |  |
| :--- | :--- |
| Input channel voltage | $24 \mathrm{~V} / 48 \mathrm{~V}$ version |
| $115 \mathrm{~V} / 230$ V version |  |

## Module type

## Pages



For enabling switch monitoring


EN 954-1 - category 4/EN/ISO 13849-1, EN/IEC 60204-1,
EN/IEC 60947-5-1,
EN 61326 +A1
DIN V VDE 0801 (1990),
DIN V VDE 0801 A1 (1994)
UL, CSA, BIA

| 2 N/O |
| :--- |
| 2 solid-state outputs for signalling to PLC |
| 3 LEDs |
| --24 V |


| - |
| :--- |
| $24 \mathrm{~V} /-$ |
| - |

## XPS VC



For electrical monitoring of two-hand control stations


EN 954-1 - category 1/EN/ISO 13849-1,
EN/IEC 60204-1,
EN/IEC 60947-5-1,
EN 574 type III A/ISO 13851,
EN 50082-2

UL, CSA

| $1 \mathrm{~N} / \mathrm{O}$ |
| :--- |
| $1 \mathrm{~N} / \mathrm{C}$ |
| 2 LEDs |
| $\sim$ and $-\mathrm{-} 24 \mathrm{~V}$ |
| $\sim 115 \mathrm{~V}$ |
| $\sim 230 \mathrm{~V}$ |


| 500 ms |
| :--- |
| $=24 \mathrm{~V} /-$ |
| $\sim 24 \mathrm{~V} / 24 \mathrm{~V}$ |

## XPS BA

2/211


EN 954-1 - category 4/EN/ISO 13849-1, EN/IEC 60204-1,
EN/IEC 60947-5-1,
EN 574 type III C/ISO 13851,
EN 50082-2

UL, CSA, INRS

| $2 \mathrm{~N} / \mathrm{O}$ |
| :--- |
| $1 \mathrm{~N} / \mathrm{C}$ |
| 3 LEDs |
| $=24 \mathrm{~V}$ |
| $\sim 24 \mathrm{~V}$ |
| $\sim 115 \mathrm{~V}$ |
| $\sim 230 \mathrm{~V}$ |

500 ms
$-24 \mathrm{~V}(--24 \mathrm{~V})$
$-48 \mathrm{~V}(\sim 24 \mathrm{~V})$
$\sim 48 \mathrm{~V} / 48 \mathrm{~V}$

## XPS BC

XP


EN 954-1 - category 4/EN/ISO 13849-1, EN/IEC 60204-1,
EN 574 type III C/ISO 13851,
EN/IEC 60947-1,
EN/IEC 60947-5-1,
DIN V VDE 0801 (1990),
DIN V VDE 0801 A1 (1994)
UL, CSA, BIA
$2 \mathrm{~N} / \mathrm{O}$
2 solid-state outputs for signalling to PLC

| 3 LEDs |
| :--- |
| $-=24 \mathrm{~V}$ |

500 ms
-. 24 V/-
$-\quad$

## XPS BF

2/211

Safety automation system solutions
Preventa safety modules

Applications


## Module type

Pages


For control of 1 to 4 single-beam photo-electric sensors XU2 S (transmitter-receiver pair)


Protects access to a hazardous zone by associating the module with 1 to 4 single-beam photo-electric sensors

Yes

EN 954-1 - category 2/EN/ISO 13849-1,
EN/IEC 60204-1,
EN/IEC 61496-1,
EN/IEC 60947-5-1,
EN/IEC 60947-1
UL, CSA, BIA

2 N/O
4 solid-state PNP N/O outputs for signalling to PLC

4 LEDs
$-24 \mathrm{~V}$

## XPS CM

3/134

For monitoring type 4 light curtains Compact and slim ranges


Protects access to a hazardous zone by associating the module with light curtains XUS L

2 transmitter-receiver pairs

Yes

EN 954-1 - category 4/EN/ISO 13849-1,
EN/IEC 61496-1,
EN/IEC 61496-2

UL, CSA, TÜV

2 solid-state
1 PNP + 1 NPN output for signalling to PLC

14 LEDs + 2-digit display

## XPS LCM

## 2/222

Safety automation system solutions
Preventa safety modules

## Applications

## Modules


Pages2/229


## Module type



UL, CSA

Allows additional safety contacts to be added to another module

EN 954-1 - category 4/EN/ISO 13849-1 (when connected to the appropriate module), EN/IEC 60204-1,
EN/IEC 60947-5-1

| $4 \mathrm{~N} / \mathrm{O}$ |
| :--- |
| 1 N/C + 1 solid-state output for signalling to PLC |
| 3 LEDs |
| $\sim$ and $-=24 \mathrm{~V} / \mathrm{O}$ |
| $\sim 115 \mathrm{~V}$ |
| $\sim 230 \mathrm{~V}$ |

## XPS ECM

## XPS ECP

EN 954-1 - category 4/EN/ISO 13849-1
(when connected to the appropriate module), EN/IEC 60204-1,
EN/IEC 60947-5-1

UL, CSA

8 N/O


For the monitoring of applications requiring safety time delays


Unlocking of guards after a safety time
delay for machines with long rundown time

EN 954-1 - category 3/EN/ISO 13849-1,
EN/IEC 60204-1,
EN/IEC 60947-5-1

UL, CSA, BG

| 1 N/O time delayed $\quad 1$ N/O pulse type |
| :--- |
| 2 N/C + 2 solid-state outputs for signalling to PLC |
| 4 LEDs |
| $\sim$ and $-=24 \mathrm{~V}$ |
| $\sim 115 \mathrm{~V}$ |
| $\sim 230 \mathrm{~V}$ |

EN 954-1 - category 3/EN/
ISO 13849-1,
EN/IEC 60204-1,
EN/IEC 60947-5-1

UL, CSA, BG

1 N/O pulse type

Shunting contact in association with XPS VNE modules for zero speed detection, solenoid valve monitoring, etc.

XPS TSW


EN 954-1 - category 4/EN/
ISO 13849-1,
EN/IEC 60204-1,
EN 1088/ISO 14119,
EN/IEC 60947-5-1,
EN/IEC 60947-5-3,
DIN V VDE 0801 (1990),
DIN V VDE 0801 A1 (1994)
UL, CSA, BIA

| 2 N/O |  |
| :--- | :--- |
| 2 solid-state outputs for signalling to PLC |  |
| 3 LEDs | 15 LEDs |
| --24 V |  |

## XPS DMB

XPS DME

## 2/237

Safety automation system solutions
Preventa safety modules

## Applications



## Conformity to standards

Product certifications

| Number of circuits | Safety |
| :--- | :--- |
|  | Additional |
| Display |  |
| Supply voltage |  |

## Module type



For zero speed detection of a.c. or d.c. motors which produce a remanent voltage in their windings due to residual magnetism


Detecting the stopping of the motor by measuring the remanent voltage in the stator windings (compatible with electronic motor control devices such as: variable speed drives, d.c. injection brakes, etc.)

EN 954-1 - category 3/EN/ISO 13849-1, EN/IEC 60204-1
EN/IEC 60947-5-1,
EN 50082-2

UL, CSA, BG
$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$

2 solid-state outputs for signalling to PLC

| 4 LEDs |
| :--- |
| $=24 \mathrm{~V}$ |
| $\sim 115 \mathrm{~V}$ |
| $\sim 230 \mathrm{~V}$ |

XPS VNE

2/243


## For lift control



Checks the height of the cabin when it stops at a landing in order to compensate for any difference generated by variation of the load in the cabin

EN 954-1 - category 4/EN/ISO 13849-1,
EN 81-1, EN 81-2,
EN/IEC 60947-5-1
EN 50082-2,
EN 12015,
EN 12016
UL, CSA, TÜV

## 2 N/O

## 4 LEDs

~ or $=24 \mathrm{~V}$
$\sim 115 \mathrm{~V}$
~ 230 V
XPS DA

2/249


For dynamic monitoring of hydraulic valves on linear presses


Dynamic monitoring of the position of the valve pistons of the hydraulic safety system on linear presses.
Dangerous movements of the machine are allowed when the correct change of signal occurs

EN 954-1 - category 4/EN/ISO 13849-1,
EN/IEC 60204-1,
EN/IEC 60947-5-1
EN 693,
EN 50082-2

UL, CSA
$2 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$

| - |
| :--- |
| 8 LEDs |
| --24 V |

## XPS PVT



Dynamic monitoring of double-bodied safety solenoid valves on eccentric presses. The device prevents engagement of the clutch and engages the brake if a fault occurs in the solenoid valve

EN 954-1 - category 4/EN/ISO 13849-1, EN/IEC 60204-1,
EN/IEC 60947-5-1,
EN 692,
EN 50082-2

UL, CSA
$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$
4 solid-state outputs for signalling to PLC
$=-24 \mathrm{~V}$
$\sim 115 \mathrm{~V}$
$\sim 230 \mathrm{~V}$

XPS PVK

2/255


For dynamic monitoring of double-bodied solenoid valves


Automatic monitoring of the stopping distance at each cycle + maintain open function for eccentric presses

EN 954-1 - category 4/EN/ISO 13849-1, EN/IEC 60204-1
EN/IEC 60947-5-1,
EN 692,
EN 50082-2

UL, CSA

3 N/O
~ 115 V
$\sim 230 \mathrm{~V}$

## XPS OT

2/260

## Preventa safety modules



## Safety automation system solutions Preventa safety modules

| Electrical durability (continued) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Definition of tests |  |  |  |  |  |  |  |
| Determination of electrical durability conforming to EN 60947-5-1 (table C2) |  |  |  |  |  |  |  |
| Type of current | Utilisation category | Start-up |  |  | Breaking |  |  |
|  |  | Current | Voltage | $\operatorname{Cos} \varphi$ | Current | Voltage | $\operatorname{Cos} \varphi$ |
| a.c. supply | AC-15 | $10 \times 1 \mathrm{e}$ | Ue | 0.7 | le | Ue | 0.4 |
| Type of current | Utilisation category | Start-up |  |  | Breaking |  |  |
|  |  | Current | Voltage | T0.95 | Current | Voltage | T0.95 |
| d.c. supply | DC-13 | le | Ue | 50 ms | le | Ue | 50 ms |

le: operational current measured.
Ue: operational voltage measured.
$\operatorname{Cos} \varphi$ : power factor.
T0.95: time taken to reach 95\% of nominal current.

The tests are carried out with a frequency of 6 switching operations per minute and with no additional protection of the components connected to the safety outputs. The use of additional protection for the components connected to the safety outputs significantly increases the durability of the safety outputs.

| Determina | reaki | apacity | nform | EN 60 | 7-5-1 (ta | e 4) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Utilisation | Start-up |  |  | Breaking |  |  | Total number | Switching | Switching | Minimum |
| category | Current | Voltage | $\operatorname{Cos} \varphi$ | Current | Voltage | $\boldsymbol{\operatorname { C o s }} \varphi$ | of switching operations | operations per minute for 1... 1000 switching operations | operations per minute for 1001... 6050 switching operations | duration of switching operation |
| AC-15 | $10 \times \mathrm{le}$ | Ue | 0.3 | le | Ue | 0.3 | 6050 | 60 | 6 | 50 ms |
| Utilisation | Start-up |  |  | Breaking |  |  | Total number | Switching | Switching | Minimum |
| category | Current | Voltage | T0.95 | Current | Voltage | T0.95 | of switching operations | operations per minute for 1... 1000 switching operations | operations per minute for 1001... 6050 switching operations | duration of switching operation |
| DC-13 | le | Ue | 50 ms | le | Ue | 50 ms | 6050 | 60 | 6 | 50 ms |

le: operational current measured.
Ue: operational voltage measured.
$\operatorname{Cos} \varphi$ : power factor.
T0.95: time taken to reach 95\% of nominal current.

## Notes:

The maximum values for the breaking capacity of the safety outputs in the various utilisation categories are not fixed and depend on the power factor and on the switching frequency. The test definition for the "breaking capacity" and "durability" tables in the European standard EN 60947-5-1 uses different values for the power factor and the switching frequency.

The power factor $(\cos \varphi)$ in the "breaking capacity" table ( 0.3 ) is greater than that in the "durability" table (0.7).

In the "breaking capacity" table, the switching frequency of the safety outputs is higher for the first 1000 switching operations ( 60 per minute) than that for 1001 to 6050 switching operations ( 6 per minute).

Consequently, the maximum breaking capacity values determined using the "breaking capacity" table are lower than those in the "durability" table.

Operating principle, characteristics

## Safety automation system solutions

## Preventa safety modules type XPS AC

For Emergency stop and switch monitoring

Safety modules XPS AC are used for monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and EN 60204-1 and also meet the safety requirements for the electrical monitoring of switches in protection devices conforming to standard EN 1088/ISO 14119. They provide protection for both the machine operator and the machine by immediately stopping the dangerous movement on receipt of a stop instruction from the operator, or on detection of a fault in the safety circuit itself.

To aid diagnostics, the modules have LEDs which provide information on the monitoring circuit status.

The XPS AC module has 3 safety outputs and a solid-state output for signalling to the PLC.

| Characteristics |  |  |
| :---: | :---: | :---: |
| Module type |  | XPS AC \| XPS AC・ャッ०P |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  | Category 3 max. |
| Conformity to standards |  | EN 60204-1, EN 1088/ISO 14119, EN/ISO 13850, EN/IEC 60947-1 + A11, EN/IEC 60947-5-1 |
| Product certifications |  | UL, CSA, BG |
| Supply Voltage | V | $\sim$ and --- 24, ~ 48, ~ 115, ~ 230 |
| Voltage limits |  | $\begin{aligned} & -20 \ldots+10 \%(\sim 24 \mathrm{~V}) \\ & -20 \ldots+20 \%(=24 \mathrm{~V}) \\ & -15 \ldots+10 \%(\sim 48) \\ & -15 \ldots+15 \%(115 \mathrm{~V}) \\ & -15 \ldots+10 \%(230 \mathrm{~V}) \\ & \hline \end{aligned}$ |
| Frequency | Hz | 50/60 |
| Consumption | W | $<1.2$ (-- 24 V ) |
|  | VA | $\begin{aligned} & <2.5(\sim 24 \mathrm{~V}) \\ & <6(\sim 48 \mathrm{~V}) \\ & <7(\sim 115 \mathrm{~V}) \\ & <6(\sim 230 \mathrm{~V}) \end{aligned}$ |
| Start button monitoring |  | No |
|  |  | Identical to supply voltage |
| (at nominal supply 24 V version | V | $\sim 24$ (approx. 90 mA ), --- 24 (approx. 40 mA ) |
| voltage) 48 V version | V | $\sim 48$ (approx. 100 mA ) |
| 115 V version | V | $\sim 115$ (approx. 60 mA ) |
| 230 V version | V | $\sim 230$ (approx. 25 mA ) |
| Outputs Voltage reference |  | Volt-free |
| Number and type of safety circuits |  | 3 N/O (13-14, 23-24, 33-34) |
| Number and type of additional circuits |  | 1 solid-state |
| Breaking capacity in AC-15 | VA | C300: inrush 1800, maintained 180 |
| Breaking capacity in DC-13 |  | $24 \mathrm{~V} / 2 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$ |
| Max. thermal current (Ithe) | A | 6 |
| Max. total thermal current | A | 10.5 |
| Output fuse protection, using fuses conforming to EN/IEC 60947-5-1, DIN VDE 0660 part 200 | A | $4 \mathrm{gG}(\mathrm{gl})$ or 6 fast acting |
| Minimum current | mA | 10 |
| Minimum voltage | V | 17 |
| Electrical durability |  | See page 2/172 |
| Response time on input opening | ms | < 100 |
| Rated insulation voltage (Ui) | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |
| Rated impulse withstand voltage (Uimp.) | kV | 3 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |
| LED display |  | 2 |
| Operating temperature | ${ }^{\circ} \mathrm{C}$ | $-10 \ldots+55$ |
| Storage temperature | ${ }^{\circ} \mathrm{C}$ | -25... +85 |
| Degree of protection Terminals conforming to EN/IEC Enclosure 60529 |  | IP 20 |
|  |  | IP 40 |

Characteristics (continued), references

Safety automation system solutions
Preventa safety modules type XPS AC For Emergency stop and switch monitoring


## XPS AC

Module XPS AC associated with an Emergency stop button with 1 N/C contact


Y1-Y2: Feedback loop.
ESC: External start conditions.
Module XPS AC associated with an Emergency stop button with 2 N/C contacts (recommended application)


Y1-Y2: Feedback loop.
ESC: External start conditions.

## XPS AC <br> Functional diagram of module XPS AC



LED details


1 Supply voltage A1-A2.
2 K1-K2 status (N/O safety outputs closed).

Operating principle, characteristics

## Safety automation system solutions <br> Preventa safety modules types XPS AV, XPS ATE <br> For Emergency stop and switch monitoring

## Operating principle

Safety modules XPS AV and XPS ATE are used for monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and EN/IEC 60204-1 and also meet the safety requirements for the electrical monitoring of switches in protection devices conforming to standard EN 1088/ISO 14119.
They provide protection for both the machine operator and the machine by immediately stopping the dangerous movement on receipt of a stop instruction from the operator, or on detection of a fault in the safety circuit itself.

In addition to the stop category 0 instantaneous opening safety outputs (3 for XPS AV and 2 for XPS ATE), the modules incorporate stop category 1 time delay outputs ( 3 for XPS AV and 3 for XPS ATE) which allow for controlled deceleration of the motor components until a complete stop is achieved (for example, motor braking by variable speed drive).
At the end of the preset delay, the supply is disconnected by opening the time delay output circuits.
For module XPS AV, the time delay of the 3 output circuits is adjustable, in 15 preset values, between 0 and 300 seconds using selector buttons.
For module XPS ATE, the time delay of the 3 output circuits is adjustable between 0 and 30 seconds using a 12-position selector switch.
Module XPS AV also incorporates 3 solid-state signalling outputs for signalling to the process PLC. Module XPS ATE incorporates 4 solid-state signalling outputs for signalling to the process PLC.
To aid diagnostics, the modules have LEDs which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Module type |  | XPS AV11113 and AV11113P |  |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/EN/ISO 13849-1) |  | Category 4 max. | Category 4 max. (instantaneous safety outputs) <br> Category 3 max. (time delay safety outputs) |
| Conformity to standards |  | EN/IEC 60204-1, DIN V VDE 801 + A1, EN/ISO 13850, EN 1088/ISO 14119, EN/IEC 60947-1 A11, EN/IEC 60947-5-1 | EN/IEC 60204-1, EN/IEC 60947-5-1, EN/ ISO 13850, EN 50082-2 |
| Product certifications |  | UL, CSA, BIA | UL, CSA, BG |
| Supply Voltage | V | -- 24 | $\begin{aligned} & \sim \text { and }--24, \\ & \sim 115, \\ & \sim 230 \end{aligned}$ |
| Voltage limits |  | -20... $+20 \%$ | $\begin{aligned} & -20 \ldots+10 \%(24 \mathrm{~V}) \\ & -15 \ldots+15 \%(115 \mathrm{~V}) \\ & -15 \ldots+10 \%(230 \mathrm{~V}) \end{aligned}$ |
| Frequency | Hz | - | 50/60 |
| Consumption | W | < 5 | < 8 |
| Module inputs fuse protection |  | Internal, electronic | Internal, electronic |
| Adjustable time delay | s | 0... 300 | 0... 30 |
| Start button monitoring |  | Yes/No (configurable by terminal connections) | Yes/No (configurable by terminal connections) |
| Control unit voltage (at nominal supply voltage) |  | Between input terminals S21-S22, S31S32 or S11-S12 | Between input terminals S11-S12, S21-S22 or S11-B1 |
| 24 V version | V | 24 | 24 |
| $115 \mathrm{~V}, 230 \mathrm{~V}$ version | V | - | 48 |
| Calculation of wiring resistance RL between input terminals | $\Omega$ | 100 max. <br> Maximum cable length: 2000 m | $\text { RL max. }=\frac{U \text { int }-U \min .}{I \min .}$ <br> Ue $=$ true voltage applied to terminals A1-A2 <br> U int (terminals S11-S21) $=$ supply voltage <br> Ue - 3 V (24 V version) <br> U int between 42 V and 45 V , with typical value $=45 \mathrm{~V}$ (115 V, 230 V version) Calculated max. RL must be equal to or greater than the true value |


| References: | Connections: | Dimensions: |
| :--- | :--- | :--- |
| page 2/180 | page 2/181 | page 2/262 |

Characteristics (continued)

Safety automation system solutions
Preventa safety modules types XPS AV, XPS ATE
For Emergency stop and switch monitoring

| Characteristics (continued) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS AV11113 | XPS AV11113P | XPS ATE••७๑ | ATE $\bullet \bullet \bullet$ P |
| Synchronisation time between inputs |  |  | s | For guard: 1.5 <br> For Emergency stop: unlimited |  | Approx. 0.075 <br> For automatic start, terminals S33-Y2 and Y3-Y4 linked |  |
| Outputs | Voltage reference |  |  | Volt-free |  | Volt-free |  |
|  | Number and type of instantaneous opening safety circuits |  |  | 3 N/O (03-04, 13-14, 23-24) |  | 2 N/O (13-14, 23-24, 33-34) |  |
|  | Number and type of time delay opening safety circuits |  |  | 3 N/O (37-38, 47-48, 57-58) |  | 3 N/O (57-58, 67-68, 77-78) |  |
|  | Number and type of additional circuits |  |  | 3 solid-state |  | 4 solid-state |  |
|  | Breaking capacity in AC-15 | Instantaneous outputs | VA | C300: inrush 1800, maintained 180 |  | C300: inrush 1800, maintained 180 |  |
|  |  | Time delay outputs | VA | C300: inrush 1800, maintained 180 |  | C300: inrush 1800, maintained 180 |  |
|  | Breaking capacity in DC-13 | Instantaneous outputs |  | $24 \mathrm{~V} / 1.25 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$ |  | $24 \mathrm{~V} / 1.0 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  |  | Time delay outputs |  | $24 \mathrm{~V} / 1.25 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$ |  | $24 \mathrm{~V} / 1.0 \mathrm{AL} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Breaking capacity of solid-state outputs |  |  | $24 \mathrm{~V} / 20 \mathrm{~mA}$ |  | - |  |
|  | Max. thermal current (Ithe) | Instantaneous outputs | A | 3.3 for all 3, or 6 for 1 and 2 for 2, or 4 for 2 and for 2 for 1 |  | 5 |  |
|  |  | Time delay outputs | A | 3.3 for all 3 , or 6 for 1 and 2 for 2 , or 4 for 2 and 2 for 1 |  | 2.5 |  |
|  | Max. total thermal current |  | A | 20 |  | 8 |  |
|  | Output fuse protection, using fuses conforming to EN/IEC 60947-5-1, DIN VDE 0660 part 200 | Instantaneous outputs | A | 4 gG or 6 fast acting |  | 6 gG |  |
|  |  | Time delay outputs | A | 4 gG or 6 fast acting |  | 4 gG |  |
|  | Minimum current |  | mA | 10 (1) |  | 10 (1) |  |
|  | Minimum voltage |  | V | 17 (1) |  | 17 (1) |  |
| Electrical durability |  |  |  | See page 2/172 |  |  |  |
| Response time on instantaneous opening inputs |  |  | ms | <30 |  | <20 |  |
| Rated insulation voltage (Ui) |  |  | v | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 and 2) |  |  |  |
| Rated impulse withstand voltage (Uimp) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 and 2) |  |  |  |
| LED display |  |  |  | 11 |  | 4 |  |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | $-10 \ldots+55$ |  |  |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | $-25 . . .+85$ |  |  |  |
| Degree of protection conforming to IEC/EN 60529 |  | Terminals |  | IP 20 |  |  |  |
|  |  | Enclosure |  | IP 40 |  |  |  |
| Connect |  | Type |  | Captive screw clamp terminals | Captive screw clamp terminals, removable terminal block | Captive screw clamp terminals | Captive screw clamp terminals, removable terminal block |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: <br> $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ | Solid or flexible cable: <br> $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ | Solid or flexible cable: <br> $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ | Solid or flexible cable: <br> $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |  |  |
|  |  |  |  | With bezel, flexible cable: <br> $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ | With bezel, flexible cable: <br> $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ | With bezel, flexible cable: <br> $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ | With bezel, flexible cable: <br> $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  | 2-wire connection | Without cable end |  | Solid or flexible cable: <br> $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$ Flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ | Solid or flexible cable: <br> $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$ Flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$ |  |  |  |
|  |  |  |  | Double, with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$ |  |  |  |

[^24]Safety automation system solutions
Preventa safety modules types XPS AV, XPS ATE
For Emergency stop and switch monitoring


XPS AV11113P


| References |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Number of safety circuits | Additional outputs | Supply | Type of terminal block connection | Reference | Weight |
| Safety modules for Emergency stop and switch monitoring | 6 N/O (3 N/O time delay) | 3 solid-state | --- 24 V | Integrated in module | XPS AV11113 | 0.320 |


| 6 N/O | 3 solid-state | $-=24 \mathrm{~V}$ | Removable <br> from module | XPS AV11113P | 0.320 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (3 N/O time <br> delay) |  |  |  |  |  |


| 5 N/O (3 N/O time delay) | 4 solid-state | $\sim /-24 \mathrm{~V}$ | Integrated in module | XPS ATE5110 | 0.280 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Removable from module | XPS ATE5110P | 0.280 |
|  |  | $\sim 115 \mathrm{~V}$ | Integrated in module | XPS ATE3410 | 0.380 |
|  |  |  | Removable from module | XPS ATE3410P | 0.380 |
|  |  | $\sim 230 \mathrm{~V}$ | Integrated in module | XPS ATE3710 | 0.380 |
|  |  |  | Removable from module | XPS ATE3710P | 0.380 |

XPS AV
Module XPS AV associated with an Emergency stop button with 1 N/C contact, automatic start or unmonitored start

(1) Link for automatic start.
(2) Instantaneous opening safety outputs (stop category 0 ).
(3) Time delay opening safety outputs (stop category 1).

ESC = External start conditions.

Functional diagrams
Automatic start


## Automatic start

There is no start contact or it is shunted.

## Unmonitored start

The output is activated on closing of the start contact.

## Monitored start

The start input is monitored so that there is no start-up in the event of the start contact being shunted or the start circuit being closed for more than 10 seconds. Start-up is triggered following activation of the start button (push-release function) on opening of the contact.

Safety automation system solutions
Preventa safety modules type XPS AV
For Emergency stop and switch monitoring

XPS AV
Module XPS AV associated with an Emergency stop button with 2 N/C contacts, monitored start

(1) Instantaneous opening safety outputs (stop category 0).
(2) Time delay opening safety outputs (stop category 1).

ESC = External start conditions.
Functional diagram
Monitored start


Emergency stop monitoring function configuration

1-channel wiring


2-channel wiring, with short-circuit detection


XPS AV
Monitoring of a movable guard associated with 2 switches
Automatic start (diagram shown for guard closed)

(1) Instantaneous opening safety outputs (stop category 0).
(2) Time delay opening safety outputs (stop category 1).

ESC = External start conditions.
Functional diagram


## LED details



[^25]

S1: Emergency stop button with 2 N/C contacts (recommended application).
S2: Start button.
ESC: External start conditions.
Y1 (S33) - Y2: Feedback loop.
F1:4Amax.
(1) With start button monitoring.
(2) Without start button monitoring.
(3) The outputs must be fuse protected. Technical characteristics for maximum rating of fuses, see page 2/178.
(4) ~ 115/230 V only.

Functional diagram of module XPS ATE with Emergency stop button monitoring

| With <br> Start button | Supp volta | Begin | Emergency stop not activated | Emergency stop activated |
| :---: | :---: | :---: | :---: | :---: |
|  | Emergency stop (01) |  |  |  |
|  | Solid-state output Y89 (S12)- |  |  |  |
|  | Emergency stop (O2) |  |  |  |
|  | Solid-state output Y90 (S22) <br> Start button <br> Start button |  | 1 |  |
|  |  |  | 2 |  |
|  |  | T | = 75 ms |  |
| Without Start button | Emergency stop ( O 2 or O 1 ) |  |  |  |
|  | Solid-state output Y89 (S12)- |  |  |  |
|  | Emergency stop ( O 2 or O1) |  |  |  |
|  | Solid-state output Y90 (S22) Start button |  | 3 |  |
|  |  |  |  |  |
| Outputs | External start conditions |  | L |  |
|  | Output 13-14 (N/O) |  |  |  |
|  | Output 23-24 (N/O) |  |  |  |
|  | Output 57-58(N/O) |  |  |  |
|  | Output 67-68(N/O) |  |  |  |
|  | Output 77-78 (N/O) |  |  |  |
|  | Solid-state output Y88 (A1/A2) Solid-state output Y91 (Stop1) Key $0-1$ |  |  |  |
|  |  |  |  | $=0 . .30 \mathrm{~s}$ |

1 With start button monitoring (Y3-Y5 connection).
2 Without start button monitoring (Y3-Y4 connection).
3 Without start button (connection Y3-Y4 and S33-Y1).
Tv: adjustable time.
Description des DEL


Safety automation system solutions
Preventa safety modules type XPS ATE
For Emergency stop and switch monitoring

XPS ATE
Example of a safety circuit combining an Emergency stop module with a variable speed drive


S1: Emergency stop button with 2 N/C contacts (recommended application).
S2: Start button
(1) With start button monitoring.
(2) Technical characteristics for maximum rating of fuses, see page 2/178.

## Connection with 1 Emergency stop button



XPS ATE
Both input channels are supplied at the same potential.
S1: Emergency stop button with 2 N/C contacts.
A short-circuit between the 2 inputs is not detected.

## Configuration with start button monitoring

(functional diagram for Start button 1, see page 2/181)

(1) Auxiliary terminal (to be used to separate the feedback loop from the wiring to the start button).

Configuration without start button monitoring
(functional diagram for Start button 2, see page 2/181)

(1) Auxiliary terminal (to be used to separate the feedback loop from the wiring to the start button).

Connection with multiple Emergency stop buttons


The 2 input channels are supplied at different potentials. A short-circuit between the 2 inputs is detected.

Monitoring an Emergency stop button with 1 N/C contact


S1: Emergency stop button with $1 \mathrm{~N} / \mathrm{C}$ contact.
Not all faults are detected: a short-circuit on the Emergency stop button is not detected.

Safety modules XPS AF are designed to conform with category 4 of the standard EN 954-1/ISO 13849-1.
They are used for:

- Monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and

EN/IEC 60204-1.

- Electrical monitoring of switches activated by protection devices conforming to standard EN 1088/ISO 14119.

Housed in a compact enclosure, the modules have 3 safety outputs.
Preventa safety modules XPS AF $\bullet \bullet \bullet \bullet$ P incorporate removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the modules have 3 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

| Characteristics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS AF5130 | XPS AF5130P |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  |  | Category 4 max. |  |
| Conformity to standards |  |  |  | EN/EC 60204-1, EN 1088/SO 14119, EN/EC 60947-5-1, EN/ISO 13850, EN 50082-2 |  |
| Product certifications |  |  |  | UL, CSA, BG |  |
| Supply | Voltage |  | v | $\sim$ and $-\ldots 24$ |  |
|  | Voltage limits |  |  | -15... $+10 \%$ |  |
|  | Frequency |  | Hz | 50/60 |  |
| Consumption |  |  | VA | $\leqslant 5$ |  |
| Module inputs fuse protection |  |  |  | Internal, electronic |  |
| Start button monitoring |  |  |  | Yes/No (configurable by terminal connections) |  |
| Control unit voltage and current |  |  |  | -. $24 \mathrm{~V} / 30 \mathrm{~mA}$ approx. (at nominal supply voltage) |  |
| Maximum wiring resistance RL |  |  | $\Omega$ | 90 |  |
| Synchronisation time between inputs A and B |  |  |  | Unlimited |  |
| Outputs | Voltage reference |  |  | Volt-free |  |
|  | Number and type of safety circuits |  |  | $3 \mathrm{~N} / \mathrm{O}$ (13-14, 23-24, 33-34) |  |
|  | Breaking capacity in $\mathrm{AC}-15$ |  | VA | C300: inrush 1800, maintained 180 |  |
|  | Breaking capacity in DC-13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Max. thermal current (Ithe) |  | A | 6 |  |
|  | Max. total thermal | rent | A | 18 |  |
|  | Output fuse protection |  | A | 4 gG or 6 fast acting, conforming to EN/IEC 60947-5-1, DIN VDE 0660 part 200 |  |
|  | Minimum current |  | mA | 10 |  |
|  | Minimum voltage |  | v | 17 |  |
| Electrical durability |  |  |  | See page 2/172 |  |
| Response time on input opening |  |  | ms | $\leqslant 40$ |  |
| Rated insulation voltage (Ui) |  |  | v | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to ENIEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| LED display |  |  |  | 3 |  |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -10...+55 |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -25... +85 |  |
| Degree of protection conforming to IEC/EN 60529 |  | Terminals |  | IP 20 |  |
|  |  | Enclosure |  | IP 40 |  |
| Connect |  | Type |  | Captive screw clamp terminals | Captive screw clamp terminals, removable terminal block |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: $0.14 . .2 .5 \mathrm{~mm}^{2}$ | Solid or flexible cable: $0.2 . . .2 .5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | With bezel, flexible cable: $0.25 . . .1 .5 \mathrm{~mm}^{2}$ | With bezel, flexible cable: $0.25 . .2 .5 \mathrm{~mm}^{2}$ |
|  | 2-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots . .0 .75 \mathrm{~mm}^{2}$ | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 . .1 .5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 1 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Double, with bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$ | Double, with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$ |

## Safety automation system solutions

 connections
## Preventa safety modules type XPS AF

 For Emergency stop and switch monitoring

## Connections

## XPS AF

Module XPS AF associated with an Emergency stop button with 2 N/C contacts


[^26]ESC = External start conditions.

| Principle, characteristics: | Dimensions: |
| :--- | :--- |
| page 2/186 | page 2/262 |

Safety automation system solutions
Preventa safety modules type XPS AF For Emergency stop and switch monitoring

(1) With start button monitoring.
(2) Without start button monitoring.

Module XPS AF with connection of multiple Emergency stop buttons, combined with a PLC

(1) Other circuits controlled by the XPS AF module. ESC = External start conditions.

| Principle, characteristics: <br> page $2 / 186$ | References: <br> page 2/187 | Dimensions: <br> page $2 / 262$ |
| :--- | :--- | :--- |
| $2 / 188$ |  | Schneider |

XPS AF
Emergency stop monitoring function configuration
1-channel wiring
2-channel wiring


Emergency stop button with a single N/C contact. Not all faults are detected: a short-circuit on the Emergency stop pushbutton is not detected.

| XPS AF |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | S11\| | S12 | S21 | S22 | 14 | 24 | 34 |
|  | $\Delta 4$ |  | 4 |  |  |  |  |

recommended application)
The 2 input channels are supplied at differen potentials. A short-circuit between the 2 inputs is detected.


Connection of multiple Emergency stop buttons with 2 N/C contacts (recommended application). The 2 input channels are supplied at different potentials. A short-circuit between the 2 inputs is detected.

Monitoring of a movable guard associated with 2 switches with 1 contact each in combined mode (switch 1 with N/O contact, switch 2 with N/C contact)


Configuration with automatic or manual start


Automatic start.


Without start button monitoring, manual reset.

LED details


Operating principle, characteristics

## Safety automation system solutions

## Preventa safety modules type XPS AFL <br> For Emergency stop, switch and safety light curtain monitoring

## Operating principle

Safety modules XPS AFL are designed to conform with category 3 of the standard EN 954-1.
They are used for:

- Monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and

EN/IEC 60204-1.

- Electrical monitoring of switches activated by protection devices conforming to standard EN 1088/ISO 14119.

They can also be used for monitoring type 4 light curtains conforming to EN/IEC 61496-1 which have solid-state safety outputs with test function (for example, light curtains type XUS L, see page $3 / 113$. This system would be conforming to category 4 of standard EN 954-1/EN/ISO 13849-1.

Housed in a compact enclosure, the modules have 3 safety outputs.
Preventa safety modules XPS AFL••७๑P incorporate removable terminal blocks,
thus optimising machine maintenance.
To aid diagnostics, the modules have 3 LEDs on the front face which provide information on the monitoring circuit status.
The Start button monitoring function is configurable depending on the wiring.

| Characteristics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS AFL5130 | XPS AFL5130P |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1) |  |  |  | Category 3 <br> Category 4 for the monitoring of light curtains type 4 with solid state outputs and test function |  |
| Conformity to standards |  |  |  | EN/IEC 60204-1, EN 1088/ISO 14119, EN/IEC 60947-5-1, EN/ISO 13850, EN 50082- <br> 2, EN/IEC 61496-1 (type 4) |  |
| Product certifications |  |  |  | UL, CSA, BG |  |
| Supply | Voltage |  | V | $\sim$ and $=-24$ |  |
|  | Voltage limits |  |  | -15...+10\% |  |
|  | Frequency |  | Hz | 50/60 |  |
| Consumption |  |  | VA | $\leqslant 5$ |  |
| Module inputs fuse protection |  |  |  | Internal, electronic |  |
| Start button monitoring |  |  |  | No (configurable by terminal connections) |  |
| Control unit voltage and current |  |  |  | --- $24 \mathrm{~V} / 30 \mathrm{~mA}$ approx. (at nominal supply voltage) |  |
| Maximum wiring resistance RL |  |  | $\Omega$ | 90 |  |
| Synchronisation time between inputs $A$ and $B$ |  |  |  | Unlimited |  |
| Outputs | Voltage reference |  |  | Volt-free |  |
|  | Number and type of safety circuits |  |  | 3 N/O (13-14, 23-24, 33-34) |  |
|  | Breaking capacity in AC-15 |  | VA | C300: inrush 1800, maintained 180 |  |
|  | Breaking capacity in DC-13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Max. thermal current (Ithe) |  | A | 6 |  |
|  | Max. total thermal current |  | A | 18 |  |
|  | Output fuse protection |  | A | 4 gG or 6 fast acting, conforming to EN/IEC 60947-5-1, DIN VDE 0660 part 200 |  |
|  | Minimum current |  | mA | 10 |  |
|  | Minimum voltage |  | V | 17 |  |
| Electrical durability |  |  |  | See page 2/172 |  |
| Response time on input opening |  |  | ms | $\leqslant 20$ |  |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| LED display |  |  |  | 3 |  |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | $-10 \ldots+55$ |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -25... 85 |  |
| Degree of protection conforming to IEC/EN 60529 |  | Terminals |  | IP 20 |  |
|  |  | Enclosure |  | IP 40 |  |
| Connect |  | Type |  | Captive screw clamp terminals | Captive screw clamp terminals, removable terminal block |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ | Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | With bezel, flex. cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ | With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  | 2-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 1 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Double, with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$ |  |


| References: | Connections: | page 2/192 | Dimensions: |
| :--- | :--- | :--- | :--- |
| page 2/191 |  | page 2/262 | Characteristics: |

Safety automation system solutions
Preventa safety modules type XPS AFL
For Emergency stop, switch and safety light curtain monitoring


XPS AFL
Module XPS AFL associated with an Emergency stop button with 2 N/C contacts

(1) With start button monitoring.
(2) Without start button monitoring.

ESC: External start conditions.
Functional diagrams
Emergency stop function

Input A (S11-S12)
Input B (S11-S22)
Start button
S33-S34 (N/O)
Start button
S33-S39 (N/O)
Output 13-14 (N/O)
Output 23-24 (N/O)
Output 33-34 (N/O)


Key 0 $\qquad$
(1) With start button monitoring.
(2) Without start button monitoring.

Guard function with automatic start

|  | Supply voltage | 1* switch | $2{ }^{\text {nd }}$ <br> switch | Guard opens |
| :---: | :---: | :---: | :---: | :---: |
|  | Guard |  | Guard closed |  |
| Input A (S11-S12) |  |  |  |  |
| Input B (S11-S22) |  |  |  |  |
| Link at S33-S39 | - |  |  |  |
| Output 13-14 (N/O) |  |  |  |  |
| Output 23-24 (N/O) |  |  |  |  |
| Output 33-34 (N/O) |  |  |  |  |
|  | 1 | $t=$ |  |  |


| References: | Connections: | Dimensions: |
| :--- | :--- | :--- |
| page $2 / 191$ | page $2 / 192$ | page $2 / 262$ |

Safety automation system solutions
Preventa safety modules type XPS AFL
For Emergency stop, switch and safety light curtain monitoring

## XPS AFL

Emergency stop monitoring function configuration
1-channel wiring
Emergency stop button with a single N/C contact


A short-circuit on the Emergency stop pushbutton is not detected.
2-channel wiring
Connection of multiple Emergency stop buttons


A short-circuit between the 2 inputs is not detected.

Monitoring of a movable guard associated with 2 switches with 1 contact each in combined mode (switch 1 with N/O contact, switch 2 with N/C contact)
Without short-circuit detection


2-channel wiring
Emergency stop button with 2 N/C contacts

| XPS AFL |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | S11 | S12\|S12 S11 | S22 | 14 | 24 | 34 |



A short-circuit between the 2 inputs is not detected.

Monitoring of electro-sensitive protection equipment (ESPE)


## LED details



1 Supply voltage A1-A2, fuse status.
2 Relay K1 energised.
3 Relay K2 energised.

Operating principle， characteristics

## Safety automation system solutions

## Preventa safety modules type XPS AR <br> For Emergency stop，switch or safety light curtain monitoring

Safety modules XPS AR meet the requirements of category 4 of the standard EN 954－1／EN／ISO 13849－1 and are designed for the following safety applications：
■ Monitoring Emergency stop circuits conforming to EN／ISO 13850 and
EN／IEC 60204－1．
－Electrical monitoring of switches activated by protection devices conforming to standard EN 1088／ISO 14119.
■ Monitoring type 4 safety light curtains conforming to EN／IEC 61496－1 which have solid－state safety outputs with test function（for example，light curtains type XUS L， conforming to category 4 of standard EN 954－1／ISO 13849－1．
In addition to 7 safety outputs，modules XPS AR incorporate 2 relay signalling outputs and 4 solid－state signalling outputs for signalling to the process PLC．
Safety modules XPS AR•・ゃゃゃ॰P incorporate removable terminal blocks，thus optimising machine maintenance．
To aid diagnostics，the modules have 4 LEDs on the front face which provide information on the monitoring circuit status．
The Start button monitoring function is configurable depending on the wiring．

Characteristics
Module type
Products designed for max．use in safety related parts of control systems（conforming to EN 954－1／EN／ISO 13849－1） Conformity to standards

## Product certifications

| Supply |
| :--- |
|  |
| Consumption |
| Module inputs fu |

Module inputs fuse protection
Start button monitoring
Control unit voltage and current（between terminals S11－S52 and S21－S22）． $24 \mathrm{~V}, 115 \mathrm{~V}$ and 230 V version
Maximum wiring resistance RL
（between terminals S11－S52 and S21－S22）
Synchronisation time between inputs A and B
Automatic start，terminals S33，S34 linked

| Safety outputs | Voltage reference |  |
| :---: | :---: | :---: |
|  | Number and type of safety circuits |  |
|  | Number and type of additional outputs |  |
|  | Number and type of auxiliary contacts |  |
|  | Breaking capacity in AC－15 |  |
|  | Breaking capacity in DC－13 |  |
|  | Breaking capacity of solid－state outputs |  |
|  | Max．thermal current（Ithe） |  |
|  | Max．total thermal current |  |
|  | Output fuse protection |  |
|  | Minimum current |  |
|  | Minimum voltage |  |
| Electrical durability |  |  |
| Response time on input opening |  |  |
| Rated insulation voltage（Ui） |  |  |
| Rated impulse withstand voltage（Uimp．） |  |  |
| LED display |  |  |
| Operating temperature |  |  |
| Storage temperature |  |  |
| Degree of protection conforming to IEC 529 |  |  |
| Connection | Type |  |
|  | 1－wire connection | Without cable end |
|  |  | With cable end |
|  |  | With cable end |
|  | 2－wire connection | Without cable end |
|  |  | With cable end |
|  |  | With cable end |


| XPS AR3•1144 | XPS AR3•1144P |
| :---: | :---: |
| Category 4 max． |  |
| EN／IEC 60204－1，EN 1088／ISO 14119，EN／ISO 13850，EN／IEC 60947－1， EN／IEC 60947－5－1 |  |
| UL，CSA，BG |  |
| $\sim$ and - －24，$\sim 115, \sim 230$ |  |
| －15．．．+10 |  |
| －15．．．+10 |  |
| －15．．．+15 |  |
| －15．．．+10 |  |
| 50／60 |  |
| －－． 24 V version：＜ 4 W ，～ 24 V version：＜ $7 \mathrm{VA}, 115 / 230 \mathrm{~V}$ version：＜ 9 VA |  |
| Internal，electronic |  |
| Yes／No（configurable by terminal connections） |  |
| －－2 24 （20 mA approx．）（at nominal supply voltage） |  |
| 50 |  |
| 100 |  |
| Volt－free |  |
| 7 N／O（13－14／23－24／33－34／43－44／53－54／63－64／73－74） |  |
| 4 solid－state（Y31－Y32，Y31－Y64，Y31－Y74，Y31－Y35） |  |
| 2 N／C（81－82／91－92） |  |
| B300（inrush：3600，maintained：360） |  |
| $24 \mathrm{~V} / 2 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
| $24 \mathrm{~V} / 20 \mathrm{~mA}$ |  |
| 10 |  |
| 40 |  |
| 6 gG or 10 fast acting，conforming to EN／IEC 947－5－1，DIN VDE0660 part 200 |  |
| 170 |  |
| 17 |  |
| See page 2／172 |  |
| ＜20 |  |
| 300 （degree of pollution 2 conforming to EN／IEC 60947－5－1，DIN VDE 0110 parts 1 \＆2） |  |
| 4 （overvoltage category III，conforming to EN／IEC 60947－5－1，DIN VDE 0110 parts 1 \＆2） |  |
| 4 |  |
| －10．．．+55 |  |
| －25．．．＋85 |  |
| Terminals：IP 20，enclosure：IP 40 |  |
| Captive screw clamp terminals | Captive screw clamp terminals，removable terminal block |
| Solid or flexible cable： $0.14 . . .2 .5 \mathrm{~mm}^{2}$ | Solid or flexible cable： $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ |
| Without bezel，flexible cable： $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
| With bezel，flexible cable： $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ | With bezel，flexible cable： $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |
| Solid or flexible cable： $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ | Solid cable： 0.2 ．． $1 \mathrm{~mm}^{2}$ ，flex．cable： $0.2 . .1 .5 \mathrm{~mm}^{2}$ |
| Without bezel，flexible cable： $0.25 \ldots 1 \mathrm{~mm}$ |  |
| Double，with bezel，flexible cable： $0.5 \ldots 1.5$ | mm ${ }^{2}$ |

References：Connections：

Safety automation system solutions
Preventa safety modules type XPS AR
For Emergency stop, switch or safety light curtain
monitoring

|  | References |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description | Type of terminal block connection | Number of safety circuits | Additional outputs solid-state outputs to PLC | Supply | Reference | Weight |
|  |  |  |  |  | v |  | kg |
|  | Safety modules for Emergency stop, switch or safety light curtain monitoring | Integrated in module | 7 | $2 / 4$ | $\begin{aligned} & \sim 24 \\ & \simeq 24 \end{aligned}$ | XPS AR311144 | 0.300 |
|  |  |  |  |  | $\begin{aligned} & \sim 115 \\ & =-24 \end{aligned}$ | XPS AR351144 | 0.400 |
|  |  |  |  |  | $\begin{aligned} & \sim 230 \\ & =-24 \end{aligned}$ | XPS AR371144 | 0.400 |
| XPS AR3.1144 |  |  |  |  |  |  |  |
|  |  | Removable from module | 7 | 2/4 | $\begin{aligned} & \simeq 24 \\ & \simeq 24 \end{aligned}$ | XPS AR311144P | 0.300 |
|  |  |  |  |  | $\begin{aligned} & \sim 115 \\ & \sim-24 \end{aligned}$ | XPS AR351144P | 0.400 |
|  |  |  |  |  | $\begin{aligned} & \sim 230 \\ & =-24 \end{aligned}$ | XPS AR371144P | 0.400 |

Preventa safety modules type XPS AR For Emergency stop, switch or safety light curtain monitoring

XPS AR
Emergency stop monitoring function configuration

1-channel wiring
Emergency stop button with a single N/C contact

2-channel wiring
Emergency stop button with 2 N/C contacts, without short-circuit detection

Emergency stop button with 2 N/C contacts, with short-circuit detection (recommended application)
onnection of multiple Emergency stop buttons with $2 \mathrm{~N} / \mathrm{C}$ contacts (recommended application)


Not all faults are detected:
a short-circuit on the Emergency stop pushbutton is not detected


| References: | Connections: | Characteristics: |
| :--- | :--- | :--- |
| page $2 / 195$ | page $2 / 196$ | page $2 / 194$ |

Safety automation system solutions
Preventa safety modules type XPS AR
For Emergency stop, switch or safety light curtain monitoring

XPS AR
Monitoring of a movable guard associated with 2 switches with 1 contact each in combined mode (switch 1 with N/O contact, switch 2 with N/C contact)

Automatic start, without synchronisation time monitoring


Manual start by start button


Monitoring of a movable guard associated with 2 switches in combined mode and automatic start (shown with guard open)


Module XPS AR associated with an Emergency stop button with 2 N/C contacts


ESC: External start conditions
(1) Operating status of internal electronic fuse

Safety automation system solutions
Preventa safety modules type XPS AR
For Emergency stop, switch or safety light curtain monitoring

XPS AR
Module XPS AR for monitoring electro-sensitive protection equipment (ESPE)


ESC: External start conditions
(1) Operating status of internal electronic fuse
(2) ESPE indicator light deactivated

Example of safety circuit combining module XPS AR for switch monitoring and a PLC


ESC: External start conditions
(1) Operating status of internal electronic fuse
References: Connections:

Safety automation system solutions
Preventa safety modules type XPS AR
For Emergency stop, switch or safety light curtain monitoring

Functional diagrams of module XPS AR
Limit switch monitoring function with automatic start


Emergency stop monitoring or limit switch monitoring function with
monitored start


Limit switch monitoring function with automatic start and synchronisation time monitoring


Light curtain monitoring (ESPE) function, curtains with solid-state outputs, and monitored start


## LED details



1 Supply voltage A1-A2, internal electronic fuse status
2 Input S22 (A)
3 Input S52 (B)
4 K1/K2 status (N/O safety outputs closed)

Operating principle， characteristics

## Safety automation system solutions

## Preventa safety modules type XPS AK <br> For Emergency stop，switch，sensing mat／edges or safety light curtain monitoring

Operating principle
Safety modules XPS AK are designed to conform with category 4 of the standard EN 954－1／ISO 13849－1
They are used for：
■ Monitoring Emergency stop circuits conforming to standards EN／ISO 13850 and
EN／IEC 60204－1．
－Electrical monitoring of switches activated by protection devices，with optional
selection of synchronisation time between signals．
■ Monitoring 4－wire sensing mats or edges．
－Monitoring type 4 light curtains conforming to EN／IEC 61496－1 which have solid－ state safety outputs with test function（for example，light curtains type XUS L， conforming to the category 4 of standard EN 954－1／ISO 13849－1． Housed in a compact enclosure，the modules have 3 safety outputs，a relay signalling output and 4 solid－state signalling outputs for signalling to the process PLC．
Preventa safety modules XPS AKゃゃゃ॰P incorporate removable terminal blocks， thus optimising machine maintenance．
To aid diagnostics，the modules have 4 LEDs on the front face which provide information on the monitoring circuit status．
The Start button monitoring function is configurable depending on the wiring．

## Characteristics

| Module type |  |  |  | XPS AK3•1144 | XPS AK3•1144P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Product designed for max．use in safety related parts of control systems（conforming to EN 954－1／ISO 13849－1） |  |  |  | Category 4 max． |  |
| Conformity to standards |  |  |  | EN／IEC 60204－1，EN 1088／ISO 14119 EN／IEC 60947－1＋A11 | ，EN／IEC 60947－5－1，EN／ISO 13850， |
| Product certifications |  |  |  | UL，CSA，BG |  |
| Supply | Voltage |  | V | $\sim$ and - － $24, \sim 48, \sim 110$ and --24 ， | $\sim 120$ and - －24，$\sim 230$ and - － 24 |
|  | Voltage limits |  |  | －15．．．$+10 \%$ |  |
|  | Frequency |  | Hz | 50／60 |  |
| Consumption | 24 V version |  | VA | $\leqslant 5$ |  |
|  | 110／120／230 V versions |  |  | $\leqslant 6$ |  |
| Module inputs fuse protection |  |  |  | Internal，electronic |  |
| Start button monitoring |  |  |  | Yes／No（configurable by terminal connections） |  |
| Control unit voltage and current between terminals S21－S22，S31－S32 |  |  |  | －－2 $24 \mathrm{~V} / 30 \mathrm{~mA}$ approx．（at nominal supply voltage） |  |
| Maximum wiring resistance RL between terminals S21－S22，S31－S32 |  |  | $\Omega$ | 28 |  |
| Synchronisation time between inputs $A$ and $B$ （terminals S21－S22，S31－S32） |  |  | s | Automatic start： 2 or 4 depending on wiring Manual start（start button between S33 and S34）：unlimited |  |
| Outputs | Voltage reference |  |  | Volt－free |  |
|  | Number and type of safety circuits |  |  | 3 N／O（13－14，23－24，33－34） |  |
|  | Number and type of additional circuits |  |  | 1 N／C（41－42）＋ 4 solid－state |  |
|  | Breaking capacity in AC－15 |  | VA | C300：inrush 1800，maintained 180 |  |
|  | Breaking capacity in DC－13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Breaking capacity of solid－state outputs |  |  | $24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$ |  |
|  | Max．thermal current（lthe） |  | A | 6 |  |
|  | Max．total thermal current |  | A | 18 |  |
|  | Output fuse protection |  | A | 4 gG or 6 fast acting，conforming to EN／IEC 60947－5－1，DIN VDE 0660 part 200 |  |
|  | Minimum current |  | mA | 10 |  |
|  | Minimum voltage |  | V | 17 |  |
| Electrical durability |  |  |  | See page 2／172 |  |
| Response time on input opening |  |  | ms | $\leq 40$ |  |
| Rated insulation voltage（Ui） |  |  | V | 300 （degree of pollution 2 conforming to EN／IEC 60947－5－1，DIN VDE 0110 parts 1 \＆2） |  |
| Rated impulse withstand voltage（Uimp） |  |  | kV | 4 （overvoltage category III，conforming to EN／IEC 60947－5－1，DIN VDE 0110 parts 1 \＆2） |  |
| LED display |  |  |  | 4 |  |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | －10．．．+55 |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | －25．．．+85 |  |
| Degree of protection | Conforming to IEC 60529 | Terminals |  | IP 20 |  |
|  |  | Enclosure |  | IP 40 |  |
| Connections |  | Type |  | Captive screw clamp terminals | Captive screw clamp terminals，removable terminal block |
|  | 1－wire connection | Without cable end |  | Solid or flexible cable： $0.14 . .2 .5 \mathrm{~mm}^{2}$ | Solid or flexible cable： $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel，flexible cable： $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | With bezel，flxbl．cable： $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ | With bezel，flexible cable： $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  | 2－wire connection | Without cable end |  | Solid or flexible cable：0．14．．．0．75 $\mathrm{mm}^{2}$ | Solid cable： $0.2 \ldots 1 \mathrm{~mm}^{2}$ ，flexible cable： $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel，flexible cable： $0.25 . .1 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Double，with bezel，flexible cable： $0.5 . .1 .5 \mathrm{~mm}^{2}$ |  |
| References： Connections： <br> page 2／201 page 2／202 |  |  | Dimensions： page $2 / 262$ |  |  |

Safety automation system solutions
Preventa safety modules type XPS AK
For Emergency stop, switch, sensing mat/edges or safety light curtain monitoring

## References



XPS AK3•1144


XPS AK3•1144P

| Description | Type of terminal block connection | Number of safety circuits | Outputs: Additional/ Solid-state for PLC | Supply | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Safety modules for Emergency stop, switch, sensing mat/edges or safety light curtain monitoring | Integrated in module | 3 | 1/4 | $\begin{aligned} & \sim 24 \mathrm{~V} \\ & =-24 \mathrm{~V} \end{aligned}$ | XPS AK311144 | 0.300 |
|  |  |  |  | $\begin{aligned} & \sim 110 \mathrm{~V} \\ & =-24 \mathrm{~V} \end{aligned}$ | XPS AK361144 | 0.400 |


| $\sim 120 \mathrm{~V}$ | XPS AK351144 | 0.400 |
| :--- | :--- | :--- |
| $=-24 \mathrm{~V}$ |  |  |


| $\sim 230 \mathrm{~V}$ | XPS AK371144 | 0.400 |
| :--- | :--- | :--- |

$$
=-24 \mathrm{~V}
$$

| Removable <br> from module | 3 | $1 / 4$ | $\sim 24 \mathrm{~V}$ | XPS AK311144P | 0.300 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $=-24 \mathrm{~V}$ |  |  |  |
|  |  | $\sim 48 \mathrm{~V}$ | XPS AK331144P | 0.300 |  |


| $\sim 110 \mathrm{~V}$ | XPS AK361144P | 0.400 |
| :--- | :--- | :--- |
| $=-24 \mathrm{~V}$ |  |  |

$\bar{\sim} 120 \mathrm{~V} \quad$ XPS AK351144P $\quad 0.400$
-- 24 V
~ $230 \mathrm{~V} \quad$ XPS AK371144P 0.400
$-24 \mathrm{~V}$

Dimensions:
page 2/262

XPS AK
Emergency stop monitoring function configuration 1-channel wiring
Emergency stop button with a single N/C contact


Not all faults are detected: a short-circuit on the Emergency stop pushbutton is not detected.

Connection of multiple Emergency stop buttons with 2 N/C contacts (recommended application).


The 2 input channels are supplied at different potentials. A short-circuit between the 2 inputs is detected.

## Proximity sensor monitoring

Proximity sensors with PNP outputs Without short-circuit detection


2-channel wiring
Emergency stop button with 2 N/C contacts, without short-circuit detection


Start configurations
Automatic start


Proximity sensors with NPN and PNP outputs With short-circuit detection


With start button monitoring
Emergency stop button with 2 N/C contacts, with short-circuit detection (recommended application)


## XPS AK



The 2 input channels are supplied at different potentials. A short-circuit between the 2 inputs is detected.


Sensing mat or edges monitoring


Safety automation system solutions
Preventa safety modules type XPS AK
For Emergency stop, switch, sensing mat/edges or safety light curtain monitoring

## XPS AK

Monitoring of a movable guard associated with 2 switches with 1 contact each in combined mode (switch 1 with N/O contact, switch 2 with N/C contact)
Automatic start, without synchronisation time monitoring
Manual start by Start button


Monitoring of a movable guard associated with 2 switches and automatic start
(shown with guard open)


Functional diagram of outputs


Module XPS AK associated with an Emergency stop button with 2 N/C contacts


Supply connection according to voltage: $\sim$ across terminals A1/A2, or --24 V across terminals B1/B2.
(1) Operating status of internal electronic fuse.

ESC: External start conditions.

Safety automation system solutions
Preventa safety modules type XPS AK
For Emergency stop, switch, sensing mat/edges or safety light curtain monitoring

## XPS AK

Module XPS AK for monitoring electro-sensitive protection equipment (ESPE)

(1) Operating status of internal electronic fuse.
(2) ESPE indicator light deactivated.

ESC: External start conditions.
Example of safety circuit combining module XPS AK for limit switch monitoring and a PLC

(1) Operating status of internal electronic fuse.

ESC: External start conditions.

| Principle, characteristics: <br> page $2 / 200$ | References: <br> page 2/201 | Dimensions: <br> page $2 / 262$ |
| :--- | :--- | :--- |
| $2 / 204$ |  | Schneider <br> Shectric |

Safety automation system solutions

## Preventa safety modules type XPS AK

For Emergency stop, switch, sensing mat/edges or safety light curtain monitoring

XPS AK
Functional diagrams


Emergency stop monitoring or switch monitoring function


Sensing mat or edge monitoring function, with monitored start


Switch monitoring function with automatic start and synchronisation time monitoring


Light curtain monitoring (ESPE) function, curtains with solid-state outputs


LED details


1 Supply voltage A1-A2, fuse status.
2 Input S22 (A).
3 Input S32 (B).
4 K1/K2 status (N/O safety outputs closed).

Operating principle, characteristics, references

Safety automation system solutions Preventa safety modules type XPS VC For enabling switch monitoring

The enabling grip switch system, comprising an enabling switch XY2 AU and a monitoring module XPS VC, enables authorised personnel to carry out adjustment, programming or maintenance operations within hazardous zones of machines providing certain conditions are met.

To be accessible, such operations are often carried out at reduced speed, and must be intentionally selected by authorised persons by means of a selector switch or key switch. Once the selection is made, the enabling switch system temporarily takes over from the hazardous zone's usual protection measures. Caution: The enabling switch system alone must not cause dangerous movements of the machine to be activated; a second intentional control action on the part of the operator is required. In addition, each person remaining in the hazardous zone must be provided with an individual enabling switch to ensure their own safety.



## Operating principle

Two-hand control stations are designed to provide protection against hand injury. They require machine operators to keep their hands clear of the dangerous movement zone.

The use of two-hand control is an individual protective measure, which can safely protect only one operator. Separate two-hand control stations must be provided for each operator in a multiple-worker environment.

Safety modules XPS BA, BC and BF for two-hand control stations comply with the requirements of European standard EN 574/ISO 13851 for two-hand control systems.

The control stations must be designed and installed such that they cannot be activated involuntarily or easily rendered inoperative. Depending on the application, the requirements of type $C$ standards specific to the machinery involved must be met (additional personal protection methods may have to be considered).

To initiate a dangerous movement, both operators (two-hand control pushbuttons) must be activated within an interval $\leqslant 0.5 \mathrm{~s}$ (synchronous activation). If one of the two pushbuttons is released during a dangerous operation, the control sequence is cancelled. Resumption of the dangerous operation is possible only if both pushbuttons are returned to their initial position and reactivated within the required time interval.

The safety distance between the control units and the hazardous zone must be sufficient to ensure that when only one operator is released, the hazardous zone cannot be reached before the dangerous movement has been completed or stopped.

| Characteristics: | Selection, references: | Connections: |
| :--- | :--- | :--- |
| page $2 / 209$ | page $2 / 211$ | page $2 / 212$ |

Safety automation system solutions
Preventa safety modules types XPS BA, XPS BC
For electrical monitoring of two-hand control stations

| Characteristics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS BA | XPS BC |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  |  | Category 1 max. | Category 4 max. |
| Conformity to standards |  |  |  | EN/IEC 60204-1, EN/IEC 60947-5-1, EN 574/ISO 13851 type III A, EN 50082-2 | EN/IEC 60204-1, EN/IEC 60947-5-1, EN 574 type III C/ISO 13851, EN 50082-2 |
| Product certifications |  |  |  | UL, CSA | UL, CSA, INRS |
| Supply | Voltage |  | V | 二 24, ~ 115, ~ 230 | --- 24, ~ 24, ~ 115, ~ 230 |
|  | Voltage limits |  |  | $\begin{aligned} & -20 \ldots+20 \%(-=24 \mathrm{~V}), \\ & -20 \ldots+10 \%(\sim 24 \mathrm{~V}), \\ & -15 \ldots+15 \%(\sim 115 \mathrm{~V}), \\ & -15 \ldots+10 \%(\sim 230 \mathrm{~V}) \end{aligned}$ | $\begin{aligned} & -20 \ldots+10 \%(=-24 \mathrm{~V}), \\ & -15 \ldots+10 \%(\sim 24 \mathrm{~V}), \\ & -15 \ldots+15 \%(\sim 115 \mathrm{~V}), \\ & -15 \ldots+10 \%(\sim 230 \mathrm{~V}) \end{aligned}$ |
|  | Frequency |  | Hz | 50/60 |  |
| Consumption |  |  | VA | <20 (apparent power) | <6 |
| Module inputs fuse protection |  |  |  | Internal, electronic |  |
| Inputs |  |  |  | S1: $1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}, \mathrm{S} 2: 1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ |  |
| Two-hand control type Conforming to EN 574/ISO 13851 |  |  |  | IIIA | III C |
| Synchronisation time |  |  | s | 0.5 maximum |  |
| Control unit voltage | $\cdots 24 \mathrm{~V}$ version |  | V | 24 | 24 |
|  | $\sim 24 \mathrm{~V}, 115 \mathrm{~V}, 230 \mathrm{~V}$ version |  | V | 24 | 48 |
| Minimum voltage and current |  |  |  | Between terminals T11-T12, T11-T13 $18 \mathrm{~V} / 30 \mathrm{~mA}$ | Between terminals T11-T13, T21-T23 $18 \mathrm{~V} / 140 \mathrm{~mA}$ |
|  | U min./I min. - -a 24 V version ( $20^{\circ} \mathrm{C}$ ) |  |  |  |  |
|  | U min./I min. - ~ $24 \mathrm{~V} / 115 \mathrm{~V} / 230 \mathrm{~V}$ version $\left(20^{\circ} \mathrm{C}\right)$ |  |  | $18 \mathrm{~V} / 30 \mathrm{~mA}$ | $30 \mathrm{~V} / 50 \mathrm{~mA}$ |
| Calculation of wiring resistance RL (for XPS BC only) between terminals T11-T13, T21-T23 as a function of the internal supply voltage $U$ int (terminals T13-T23) |  |  | $\Omega$ | - | $\text { RL max. }=\frac{U \text { int }-U \min .}{I \min .}$ <br> Ue $=$ true voltage applied to terminals A1-A2 <br> U int = supply voltage $\mathrm{Ue}-1 \mathrm{~V}(24 \mathrm{~V}$ version) <br> (115 V, 230 V version) RL max. must not exceed $50 \Omega$ <br> U int between 30.5 V and 35 V , with typical value $=35 \mathrm{~V}$ |
| Outputs | Voltage reference |  |  | Volt-free |  |
|  | Number and type of safety circuits |  |  | 1 N/O (11-14) | 2 N/O (13-14, 23-24) |
|  | Number and type of additional circuits |  |  | 1 N/C (11-12) | 1 N/C (31-32) |
|  | Breaking capacity in AC-15 |  | VA | C300: inrush 1800, maintained 180 |  |
|  | Breaking capacity in DC-13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Max. thermal current (Ithe) |  | A | 5 | 2.5 |
|  | Output fuse protection, using fuses conforming to EN/IEC 60947-5-1, VDE 0660 part 200 |  | A | 4 gG or 6 fast acting | 4 gG |
|  | Minimum current |  | mA | 10 |  |
|  | Minimum voltage |  | V | 17 |  |
| Electrical durability |  |  |  | See page 2/172 |  |
| Response time |  |  | ms | <25 | < 30 |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| LED display |  |  |  | 2 | 3 |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -10... +55 |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -25... +85 |  |
| Degree of protection conforming to IEC/EN 60529 |  | Terminals |  | IP 20 |  |
|  |  | Enclosure |  | IP 40 |  |
| Connections |  | Type |  | Captive screw clamp terminals |  |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: $0.14 . .2 .5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | With bezel, flexible cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ |  |
|  | 2-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Double, with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$ |  |

Safety automation system solutions
Preventa safety modules type XPS BF For electrical monitoring of two-hand control stations

| Characteristics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS BF1132 | XPS BF1132P |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  |  | Category 4 max. |  |
| Conformity to standards |  |  |  | EN/IEC 60204-1, EN 574 type III C/ISO 13851, EN/IEC 60947-1, EN/IEC 60947-5-1, DIN V VDE 0801 (1990), DIN V VDE 0801 A1 (1994) |  |
| Product certifications |  |  |  | UL, CSA, BIA |  |
| Supply |  | Voltage | V | - 24 |  |
|  |  | Voltage limits |  | -20... $+20 \%$ |  |
| Consumption |  |  | W | <2.5 |  |
| Module inputs fuse protection |  |  |  | Internal, electronic |  |
| Inputs |  |  |  | S1: 1 N/C + N/O, S2: $1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ |  |
| Two-hand control type |  |  |  | III C conforming to EN 574/ISO 13851 |  |
| Synchronisation time |  |  | s | 0.5 maximum |  |
| Control unit voltage |  |  | V | $24 \mathrm{~V} / 8 \mathrm{~mA}$ |  |
| Outputs | Voltage reference |  |  | Volt-free |  |
|  | Number and type of safety circuits |  |  |  |  |
|  | Number and type of additional circuits |  |  | $2 \text { solid-state (type } 24 \mathrm{~V} \text { - } 20 \mathrm{~mA} \text { ) }$ |  |
|  | Breaking capacity in AC-15 |  | VA | C300: inrush 1800, maintained 180 |  |
|  | Breaking capacity in DC-13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Max. thermal current (lthe) |  | A | 4.2 |  |
|  | Max. total thermal current |  | A | 8.4 |  |
|  | Output fuse protection, using fuses conforming to EN/IEC 60947-5-1, VDE 0660 part 200 |  | A | 4 gG or 6 fast acting |  |
|  | Minimum current |  | mA | 10 |  |
|  | Minimum voltage |  | V | 17 |  |
| Electrical durability |  |  |  | See page 2/172 |  |
| Response time |  |  | ms | <20 |  |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| LED display |  |  |  | 3 |  |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -10... +55 |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -25...+85 |  |
| Degree of protection conforming to IEC/EN 60529 |  | Terminals |  | IP 20 |  |
|  |  | Enclosure |  | IP 40 |  |
| Connect |  | Type |  | Captive screw clamp terminals | Captive screw clamp terminals, removable terminal block |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ | Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | With bezel, flexible cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ | With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  | 2-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Double, with bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$ |  |

# Safety automation system solutions <br> Preventa safety modules types XPS BA, <br> XPS BC, XPS BF <br> For electrical monitoring of two-hand control stations 



| References |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description | Type conforming to standard EN 574/ ISO 13851 | Type of terminal block connection | Number of safety circuits | Additional outputs | Supply | Reference | Weight kg |
|  | Safety modules for electrical monitoring of | IIIA | Integrated in module | $1 \mathrm{~N} / \mathrm{O}$ | 1 N/C | $\sim$ or -- 24 V | XPS BA5120 | 0.200 |
|  | two-hand control stations |  |  |  |  | $\sim 115 \mathrm{~V}$ | XPS BA3420 | 0.200 |
| XPS BAセ**• |  |  |  |  |  |  |  |  |
|  |  | III C | Integrated in module | $2 \mathrm{~N} / \mathrm{O}$ | 1 N/C | -- 24 V | XPS BC1110 | 0.400 |
|  |  |  |  |  |  | $\sim 24 \mathrm{~V}$ | XPS BC3110 | 0.400 |
|  |  |  |  |  |  | $\sim 115 \mathrm{~V}$ | XPS BC3410 | 0.400 |
| 边 |  |  |  |  |  |  |  |  |
|  |  |  |  | $2 \mathrm{~N} / \mathrm{O}$ | 2 solid-state | -- 24 V | XPS BF1132 | 0.150 |
|  |  |  | Removable from module | $2 \mathrm{~N} / \mathrm{O}$ | 2 solid-state | -- 24 V | XPS BF1132P | 0.150 |

XPS BF1132P
$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Principle: } \\ \text { page 2/208 }\end{array} & \begin{array}{l}\text { Characteristics: } \\ \text { page 2/209 }\end{array} & \begin{array}{l}\text { Connections: } \\ \text { page 2/212 }\end{array}\end{array} \begin{array}{l}\text { Dimensions: } \\ \text { page 2/262 }\end{array}\right]$

## XPS BA

Module XPS BA associated with a two-hand control station
Type III A conforming to EN 574/ISO 13851


S1 and S2: pushbuttons. Must not be used for applications (presses) which require a type III C module (XPS BC).
Functional diagram of module XPS BA


LED details (XPS BA)


1 Supply voltage A1-A2.
2 K1 status (N/O safety output 11-14 closed).

XPS BC
Module XPS BC associated with a two-hand control station
Type III C conforming to EN 574/ISO 13851


ESC: external start conditions.
Y1-Y2: feedback loop.
Output (31-32) must not be used as a safety circuit. It can be used for non-dangerous machine movements.
Functional diagram of module XPS BC


LED details (XPS BC)


1 Supply voltage A1-A2, S1-S2. LED 1 indicates that buttons S1 and S2 are correctly connected.
2 Feedback loop Y1-Y2.
3 K1-K2 status (N/O safety outputs closed).

| Principle: <br> page 2/208 | Characteristics: <br> page 2/209 | Selection, references: <br> page 2/211 | Dimensions: <br> page 2/262 |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| Schneider |  |  |  |
| SElectric |  |  |  |$\quad 2 / 213$

Safety automation system solutions
Preventa safety modules type XPS BC
For electrical monitoring of two-hand control stations

## XPS BC

Module XPS BC associated with a two-hand control station and a foot switch


Modules XPS BC associated with 2 two-hand control stations


XPS BF
Module XPS BF associated with a two-hand control station


ESC: External start conditions.
Y1-Y2: feedback loop

Key $\quad$ Activated Deactivated

LED details (XPS BF)


1 Supply voltage A1-A2 (fuse status).
2 Fault signalling.
3 K1-K2 status (N/O safety outputs closed).

Operating principle, characteristics

## Safety automation system solutions

Preventa safety module XPS LCD for monitoring 2 to 4 safety light curtains type 2 and type 4

The safety monitoring module XPS LCD1141 enables independent monitoring of 2 to 4 light curtains type 2 and type 4.
Each output of the light curtain is separately connected to the inputs of the safety monitoring module, which either authorises or prevents activation of its two safety outputs.
The module manages starting and EMD/MPCE functions and therefore, the light curtains connected to it must be configured for automatic start and the EDM/MPCE function deactivated. The safety monitoring module XPS LCD1141 provides the supply and also manages, in addition to its own auxiliary outputs (1 PNP and 1 NPN), the auxiliary outputs of the light curtains.
At the slightest intrusion through one or more light beams of any of the light curtains, the outputs of the safety monitoring module open. This also applies in the event of any internal fault or output relay(s) fault (subject to the EDM/MPCE configuration on the module).
The light curtain system conforms to the standard EN/IEC 61496-1 (type 4).
The Preventa safety monitoring module XPS LCD1141 incorporates removable terminal blocks, thus optimising machine maintenance.
To aid diagnostics, the safety monitoring module has 9 LEDs and a 2-digit display on the front face which provide information on the monitoring circuit status.

Environmental characteristics

| Safety monitoring module type |  |  | XPS LCD1141 |
| :---: | :---: | :---: | :---: |
| Certifications |  |  | C€, TÜV, CSA, UL |
| Ambient air temperature |  | ${ }^{\circ} \mathrm{C}$ | Operation: 0... +55 ; storage: - $25 \ldots+75$ |
| Relative humidity |  |  | 95\% maximum, without condensation |
| Degree of protection |  |  | IP 20 |
| Shock and vibration resistance | Conforming to EN/IEC 61496-1 |  | Shock resistance: 10 gn , impulse 16 ms . Vibration resistance: $5 \ldots .55 \mathrm{~Hz}$ max. on all 3 axes |
| Materials |  |  | ABS thermoplastic enclosure |
| Mounting |  |  | 35 mm rail |
| Electrical characteristics |  |  |  |
| Power supply |  | V | --24 $240 \%$ |
| Current |  | A | 10 max. |
| Response time |  | ms | < 1 |
| Safety outputs |  |  | 2 solid-state PNP outputs (N/O), 625 mA on $=-24 \mathrm{~V}$ |
| Alarm or auxiliary output |  |  | 1 solid-state PNP (N/O), 500 mA on $=-24 \mathrm{~V}$, and 1 solid-state NPN (N/O), 100 mA on -- 24 V , output |
| Monitoring activation of output switching devices (EDM/MPCE) |  | mA | $50 \pm 20 \%$ on --24 V |
| Signalling |  |  | 9 LEDs plus 2-digit display |
| Functions |  |  | -Auto/Manual, manual $1^{\text {st }}$ cycle, <br> -Monitoring of external switching devices (EDM: External Devices Monitoring), <br> -Restart request indicator light, <br> -Display of operating modes and alarm by 9 LEDs and 2-digit display. Selection of Auto/Manual, blanking relay monitoring, floating/blanking and blanking + floating/ blanking relay monitoring using configuration switches behind front face of module. -Independent monitoring of 2 to 4 safety light curtains. |
| Monitoring of external switching devices (EDM = External Devices Monitoring) |  |  | Monitoring of the function (open or closed) as well as the response time of the power components. Parameterable using configuration switches. |
| Start input |  | mA | 50 at 24 V |
| Connection | Type |  | Captive screw clamp terminals, removable terminal block |
| 1-wire connection | Without cable end |  | Solid cable: $4 \mathrm{~mm}^{2}$ |
|  | Without cable end |  | Flexible cable: $0.14 \ldots 1.5 \mathrm{~mm}^{2}$ |
|  | With cable end |  | Without bezel, flexible cable: $0.14 \ldots 1.5 \mathrm{~mm}^{2}$ |
| 2-wire connection | Without cable end |  | Solid cable: 0.14...1.5 mm ${ }^{2}$ |
|  | Without cable end |  | Flexible cable: $0.14 \ldots 7.5 \mathrm{~mm}^{2}$ |


| Reference: | Dimensions: | Connections: |
| :--- | :--- | :--- |
| page 2/217 | page 2/217 | page 2/218 |

Description, reference, dimensions

Safety automation system solutions
Preventa safety module XPS LCD
for monitoring 2 to 4 safety light curtains type 2 and type 4

## Description

The safety monitoring module XPS LCD has 9 LEDs and a 2-digit display on the front face.



XPS LCD1141

## Dimensions

Safety monitoring module
XPS LCD1141
Mounting on 35 mm rail


Rear view

(1) 2 elongated holes $\varnothing 4 \times 5.7$.

| Reference: | Dimensions: | Connections: |
| :--- | :--- | :--- |
| page 2/217 | page 2/217 | page 2/218 |

Connection via the safety monitoring module XPS LCD1141
Example: configuration with light curtains XUS LT, XUS LP and XUS LN

(1) Arc suppressor.
(2) Restart request indicator light.
(3) When module XPS LCD1141 is used with a type 2 light curtain (example: XUS LN), the entire protection system is downgraded to category 2.

| Reference: <br> page $2 / 217$ | Dimensions: <br> page $2 / 217$ | Characteritics: <br> page $2 / 216$ |
| :--- | :--- | :--- |
| $2 / 218$ |  | Schneider <br> Electric |

Safety automation system solutions Safety solutions on AS-Interface cabling system Preventa safety module XPS LCD
for monitoring 2 to 4 safety light curtains type 2 and type 4

Functional diagram of module XPS LCD1141
Automatic start and restart mode


| Reference: | Dimensions: | Characteritics: |
| :--- | :--- | :--- |
| page $2 / 217$ | page $2 / 217$ | page $2 / 216$ |

## Operating principle

Safety modules XPS LCM are used with type 4 light curtains conforming to EN/IEC 61496-1 to provide a system inhibiting the light curtain protection, i.e. "muting". This function enables the automatic passage of parts for machining or loaded pallets, without interrupting the transportation movement within the zone protected by the electro-sensitive protection equipment (ESPE) system. In addition to the electro-sensitive protection and safety modules XPS LCM, the system comprises 4 to 8 inhibition sensors, 2 indicator lights and a key switch to reset the system to the initial state in the event of a sequence error.

When the system is switched on by the start command and the light curtain protection not interrupted, the main circuit is closed by the safety outputs of the XPS LCM modules (solid-state safety outputs). In addition to safety outputs, the modules incorporate signalling outputs for sending system status information to the PLC. Either 5 or 14 LEDs and a 2-digit display, mounted on the front face of the module, provide information on the safety circuit status.

An interruption of the protection field monitored by the electro-sensitive protection equipment causes instantaneous opening of the safety outputs; the process PLC receives a stop command and the LED display mounted on the front face indicates the change of state of the safety circuits. The "open" state is maintained until the module is restarted using the Start button.

The "muting" function cannot be activated by supplying the inhibition sensors unless the safety outputs have been switched on beforehand. To trigger the "muting" function, the inhibition devices must be activated within the 3 second time interval. During the activated "muting" phase, materials can be transported through the protection field without deactivating the safety outputs. In the event of intrusion into the hazardous zone, a person cannot activate the inhibition sensors in the same way and the system stops.
Whilst the "muting" function is activated, a "muting" status indicator light is controlled by the XPS LCM module. A fault at indicator light level (short-circuit, open circuit) is immediately recognised and deactivates the "muting" function. The indicator light only illuminates when a "muting" signal is generated and indicates the inhibition of the protection function.


ESPE: electro-sensitive protection equipment (light curtain).
$A, B, D, C$ : "muting" sensors.
$m$ : trolley length and $d M=$ distance between $A, B$ and $D, C$.

## Conditions to be observed for the "muting" function

■ The "muting" sensors must either be thru-beam type XUB OBPSNL2 + XUB 0BKSNL2T, polarised reflex type XUB 0BPSNL2 + XUC Z50 or mechanical limit switches with contacts.
■ $\mathrm{dM} \leq \mathrm{m}$ to obtain continuous validation of the "muting" function.

- Avoid the intrusion of persons during the "muting" phase. This phase is indicated
by the indicator light connected to the "muting" indicator output of the XPS LCM module.
- A materials trolley must provide the "muting" signal before entering the protection field and cease it once it has cleared all the sensors of the protection field on exiting.

| Characteristics: | References: | Dimensions: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 221$ | page $2 / 222$ | page $2 / 223$ | page $2 / 224$ |

## Safety automation system solutions <br> Safety monitoring module <br> Preventa XPS LCM

for the "muting" function of type 2 and type 4 safety light curtains

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Module type |  |  | XPS LCM1150 |
| Certifications |  |  | C€, TÜV, CSA, UL |
| Products designed for max. use in safety related parts of control systems | $\begin{aligned} & \text { Conforming to EN 954-1/ } \\ & \text { ISO 13849-1 } \end{aligned}$ |  | Category 4 |
| Ambient air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | 0... +55 |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | -25... 75 |
| Degree of protection conforming to IEC 529 | Terminals |  | IP 20 |
|  | Enclosure |  | IP 20 |
| Power supply | Voltage | V | -- 24 |
|  | Voltage limits |  | -10...+10\% |
| Maximum consumption |  | W | < 150 |
| Rated insulation voltage (Ui) |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 and 2) |
| Rated impulse withstand voltage (Uimp) |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 and 2) |
| Number of light curtains monitored |  |  | 1 or 2 transmitter-receiver pairs |
| Inputs for "muting" sensors <br> - number of inputs to be monitored <br> - supply voltage of sensors <br> - output current of each sensor |  |  | 2 to 4 per "muting" function |
|  |  | V | 24 |
|  |  | mA | <20 |
| Type of "muting" sensors |  |  | Thru-beam, polarised reflex or sensors with volt-free contacts |
| Synchronisation time of "muting" sensors |  | s | 3 or unlimited |
| Maximum "muting" time |  | min | 2 or unlimited |
| Safety outputs <br> - number and type <br> - max. thermal current (Ithe) |  |  | 2 PNP (terminals 1 and 2), 0.625 A at 24 V |
|  | 1 output | A | - |
|  | 2 outputs | A | $2 \times 0.108$ |
|  | 3 outputs | A | - |
|  | 3 contacts | A | - |
| Auxiliary outputs <br> - breaking capacity of solid-state PNP outputs <br> - breaking capacity of solid-state NPN outputs |  |  | 1 PNP (terminal 5) + 1 NPN (terminal 6) |
|  |  | mA | $24 \mathrm{~V} / 500$ |
|  |  | mA | $24 \mathrm{~V} / 100$ |
| "Muting" indicator light power |  | W | 1 to 7 max. |
| Response time on input change of state |  | ms | 1 |
| Signalling |  |  | 14 LEDs plus 2-digit display |
| Connection | Type |  | Captive screw clamp terminals, removable terminal block |
| 1-wire connection | Without cable end |  | Solid cable: $4 \mathrm{~mm}^{2}$ |
|  | Without cable end |  | Flexible cable: 0.14...1.5 mm ${ }^{2}$ |
|  | With cable end |  | Without bezel, flexible cable: $0.14 \ldots 1.5 \mathrm{~mm}^{2}$ |
| 2-wire connection | Without cable end |  | Solid cable: 0.14...1.5 mm ${ }^{2}$ |
|  | Without cable end |  | Flexible cable: $0.14 \ldots 7.5 \mathrm{~mm}^{2}$ |


| Presentation: | References: | Dimensions: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 220$ | page $2 / 222$ | page $2 / 223$ | page $2 / 224$ |

Description, references

Safety automation system solutions
Safety monitoring module
Preventa XPS LCM
for the "muting" function of type 2 and type 4 safety light curtains


## Description <br> <br> XPS LCM1150

 <br> <br> XPS LCM1150}To aid diagnostics, the safety monitoring module has 14 LEDs and a 2-digit display on the front face which provide information on the monitoring circuit status.

| References |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Safety module |  |  |  |  |  |  |
| Description | Type of terminal block connection | Number of safety circuits | Auxiliary outputs | Supply | Reference | Weight <br> kg |
| Safety module for "muting" function | Removable from module | 2 PNP | $1 \mathrm{PNP}+1$ NPN | -- 24 V | XPS LCM1150 | 0.660 |


| Spare parts |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Description | Power | Reference | Weight |  |
| "Muting" indicator light kit | W | 5 |  | kg |
| Replacement bulbs for <br> "muting" indicator light kit <br> comprising one lot of 10 <br> replacement bulbs and <br> 1 removal/insertion tool | 1 to 7 | XSZ CM01 | 0.012 |  |
| XBF-X13 |  |  |  |  |


| Characteristics: | Presentation: | Dimensions: | Connections: |
| :--- | :--- | :--- | :--- |
| page $2 / 221$ | page $2 / 220$ | page $2 / 223$ | page $2 / 224$ |

for the "muting" function of type 2 and type 4 safety light curtains

## Dimensions

XPS LCM1150
Mounting on 35 mm rail


## "Muting" indicator light kit XSZ CM01


(1) Faston connector 4.7.

Safety monitoring module
Preventa XPS LCM
for the "muting" function of type 2 and type 4 safety light curtains

Connection via the safety monitoring module XPS LCM1150
Example: configuration with light curtains XUS LT

(1) Arc suppressor.
(2) Inhibition activation/deactivation key switch.

| Characteristics: | Presentation: | Dimensions: | References: |
| :--- | :--- | :--- | :--- |
| page $2 / 221$ | page $2 / 220$ | page $2 / 223$ | page $2 / 222$ |

# Safety automation system solutions <br> Safety monitoring module <br> Preventa XPS LCM 

for the "muting" function of type 2 and type 4 safety light curtains

## Connection via the safety monitoring module XPS LCM1150

Example: configuration with 2 light curtains XUS LP and XUS LN

(2) Inhibition activation/deactivation key switch.
(3) When module XPS LCM1150 is used with a type 2 light curtain (example: XUS LN), the entire protection system is downgraded to category 2.

Functional diagram of safety monitoring module XPS LCM1150
"Start/restart interlock" mode with 2 sensors


Key $0=1$
(1) Press Start button.

| Characteristics: | Presentation: | Dimensions: |
| :--- | :--- | :--- |
| page $2 / 221$ | page $2 / 220$ | page $2 / 223$ |

Functional diagrams (continued)

Safety automation system solutions
Safety monitoring module
Preventa XPS LCM
for the "muting" function of type 2 and type 4 safety light curtains

Functional diagram of safety monitoring module XPS LCM1150
"Start/restart interlock" mode with 4 sensors


| Characteristics: page 2/221 | Presentation: page 2/220 | Dimensions: page 2/223 | References: page 2/222 |  |
| :---: | :---: | :---: | :---: | :---: |
| Schneider |  |  |  | 2/227 |

Operating principle, characteristics

Safety automation system solutions
Preventa safety modules types XPS ECM, XPS ECP
For increasing the number of safety contacts

Safety modules XPS EC•, for increasing the number of safety contacts, are available as additions to Preventa XPS base modules (Emergency stop, limit switch, two-hand control, etc.).
They are used to increase the number of safety output contacts of the base modules.

| Characteristics |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Module type |  |  | XPS ECM | XPS ECP |
| Product designed for control systems (conf | max. use in safety related parts of orming to EN 954-1/ISO 13849-1) |  | Category 4 max. (when connected to the appropriate module) |  |
| Conformity to standards |  |  | EN 60204-1, EN/IEC 60947-5-1 |  |
| Product certifications |  |  | UL, CSA |  |
| Supply | Voltage | V | $\sim$ and $=-24, \sim 115, \sim 230$ |  |
|  | Voltage limits |  | $\begin{aligned} & -20 \ldots+10 \%(\sim 24 \mathrm{~V}), \\ & -20 \ldots+20 \%(\ldots 24 \mathrm{~V}), \\ & -15 \ldots+15 \%(\sim 115 \mathrm{~V}), \\ & -15 \ldots+10 \%(\sim 230 \mathrm{~V}) \end{aligned}$ |  |
|  | Frequency | Hz | 50/60 |  |
| Consumption | 24 V | VA | < 5 |  |
|  | $115 \mathrm{~V} / 230 \mathrm{~V}$ | VA | < 6 |  |
| Module inputs fuse protection |  |  | Internal, electronic |  |
| Outputs | Voltage reference |  | Volt-free |  |
|  | Number and type of safety circuits |  | 4 N/O (13-14, 23-24, 33-34, 43-44) | $\begin{aligned} & 8 \mathrm{~N} / \mathrm{O}(13-14,23-24,33-34,43-44,53-54, \\ & 63-64,73-74,83-84) \\ & \hline \end{aligned}$ |
|  | Number and type of additional circuits |  | $1 \mathrm{~N} / \mathrm{C}(41-42)+1$ solid-state | 1 N/C (91-92) + 1 solid-state |
|  | Breaking capacity in AC-15 | VA | B300: inrush 3600, maintained 360 |  |
|  | Breaking capacity in DC-13 |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Breaking capacity of solid-state outputs |  | $24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$ |  |
|  | Max. thermal current (Ithe) | A | 6 |  |
|  | Max. total thermal current | A | 24 | 30 |
|  | Output fuse protection | A | 6 gG |  |
|  | Minimum current (volt-free contact) | mA | 10 (conforming to EN/IEC 60947-5-1, VDE 0660 part 200) |  |
|  | Minimum voltage (volt-free contact) | V | 17 |  |
| Electrical durability |  |  | See page 2/172 |  |
| Response time on input opening |  | ms | <20 |  |
| Rated insulation voltage (Ui) |  | V | 300 (degree of pollution 2 conforming to EN//IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| Rated impulse withstand voltage (Uimp.) |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-1, DIN VDE 0110 parts 1 \& 2) |  |
| LED display |  |  | 3 |  |
| Operating temperature |  | ${ }^{\circ} \mathrm{C}$ | $-10 \ldots+55$ |  |
| Storage temperature |  | ${ }^{\circ} \mathrm{C}$ | $-25 \ldots+85$ |  |
| Degree of protection conforming to IEC 60529 | Terminals |  | IP 20 |  |
|  | Enclosure |  | IP 40 |  |
| Connection | Type |  | Captive screw clamp terminals: without cable end $1 \times 4 \mathrm{~mm}^{2}$, with cable end $2 \times 2.5 \mathrm{~mm}^{2}$ |  |

# Safety automation system solutions <br> Preventa safety modules types XPS ECM, XPS ECP <br> For increasing the number of safety contacts 



(1) When installing base modules and modules for increasing the number of safety contacts into different electrical enclosures, run separate cables for terminals U1-13 and U1-23.
(2) Operating status of internal electronic fuse.

Functional diagram


Key $0=1$

## XPS ECP

Wiring diagram

(1) When installing base modules and modules for increasing the number of safety contacts into different electrical enclosures, run separate cables for terminals U1-13 and U1-23.
(2) Operating status of internal electronic fuse.

## Functional diagram



# Safety automation system solutions 

 characteristics Preventa safety modules types XPS TSA, XPS TSWFor safety time delays

## Operating principle

Safety modules XPS TSA and XPS TSW are used in applications requiring safety time delays:
■ modules XPS TSA in applications with interlocking on high inertia machines with
long rundown time (guards unlocked after safety time delay has elapsed),

- modules XPS TSW in applications with a safety switchover contact (shunting contact in association with XPS VN modules for zero speed detection, solenoid valve monitoring, etc.).
The time delay of safety circuits can be set to 16 preset values, using 2 selectors located on the front face of the modules.

To aid diagnostics, the modules have LEDs which provide information on the monitoring circuit status and 2 solid-state outputs for signalling to the process PLC.

In addition, their removable terminal blocks optimise machine maintenance.

| Characteristics |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS TSA | XPS TSW |
| Product designed for max. use in safety related parts of control systems (conforming to EN 60954-1/ISO 13849-1) |  |  |  | Category 3 max. |  |
| Conformity to standards |  |  |  | EN/IEC 60204-1, EN/ |  |
| Product certifications |  |  |  | UL, CSA, BG |  |
| Supply | Voltage |  | V | $\sim$ and - - 24, ~ 115, ~ 230 |  |
|  | Voltage limits |  |  | $\begin{aligned} & -15 \ldots+15 \%(--24 \mathrm{~V}) \\ & -20 \ldots+10 \%(\sim 24 \mathrm{~V}) \\ & -15 \ldots+15 \%(115 \mathrm{~V}) \\ & -15 \ldots+10 \%(230 \mathrm{~V}) \end{aligned}$ |  |
|  | Frequency |  | Hz | 50/60 |  |
| Consumption | - -24 |  | VA | $<2.3$ |  |
|  | $\sim 24 \mathrm{~V}$ |  |  | <4.3 |  |
|  | $\sim 115$ |  |  | <6.5 |  |
|  | $\sim 230 \mathrm{~V}$ |  |  | < 5.5 |  |
| Module inputs fuse protection |  |  |  | Internal, electronic |  |
| Time delay |  |  | s | 1... 31 (16 positions) | - |
| Pulse time |  |  | s | - | 0.1...3.1 (1 |
| Outputs | Voltage reference |  |  | Volt-free |  |
|  | Number and type of safety circuits |  |  | $1 \mathrm{~N} / \mathrm{O}(17-18)+2 \mathrm{~N} / \mathrm{C}(25-26,35-36)$ |  |
|  | Number and type of additional circuits |  |  | 2 solid-state (Y53-Y54, Y63-Y64) |  |
|  | Breaking capacity in AC-15 |  | VA | C300: inrush 1800, maintained 180 |  |
|  | Breaking capacity in DC-13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  | Breaking capacity of solid-state outputs |  |  | $24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$ |  |
|  | Max. thermal current (Ithe) |  | A | 6 |  |
|  | Output fuse protection |  | A | 4 gG (gl) or 6 fast acting, conforming to EN/IEC 60947-5-1, DIN VDE 0660 part 200 |  |
|  | Minimum current |  | mA | 10 |  |
|  | Minimum voltage |  | V | 17 |  |
| Electrical durability |  |  |  | See page 2/172 |  |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |
| LED display |  |  |  | 4 |  |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -10... +55 |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -25... +85 |  |
| Degree of protection conforming to IEC 60529 |  | Terminals |  | IP 20 |  |
|  |  | Enclosure |  | IP 40 |  |
| Connection |  | Type |  | Captive screw clamp terminals, removable terminal block |  |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  | 2-wire connection | Without cable end |  | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Double, with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$ |  |


| References: | Connections: | Dimensions: |
| :--- | :--- | :--- |
| page $2 / 233$ | page $2 / 233$ | page $2 / 262$ |

References， connections

Safety automation system solutions
Preventa safety modules types XPS TSA， XPS TSW
For safety time delays

| References | Description | Number of <br> safety circuits | Number of <br> additional outputs | Supply | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| Safety modules for <br> applications with safety | 1 pulse type | 2 N／C＋ 2 solid－state <br> to PLC | $\sim$ and $=-24 \mathrm{~V}$ | XPS TSW5142P | 0.250 |
| :--- | :--- | :--- | :--- | :--- | :--- |

XPS TSWセゃゃ・P


Safety automation system solutions
Preventa safety modules type XPS TSA For safety time delays

(1) Signal to be delayed.
(2) Volt-free relay outputs with on-delay.

ESC: External start conditions.
Functional diagram of module XPS TSA

Input A1-A2
Input Y1-Y2

Output 17-18 (N/O)
Output 25-26 (N/C)

Output 35-36 (N/C)

Signalling output
Y53-Y54
Signalling output Y53-Y64


Key $0=1$
te: power-up time
tv: delay time
LED details (XPS TSA, XPA TSW)


1 Supply voltage A1-A2 (fuse status).
2 Safety output closed.
3 Feedback loop Y1-Y2 status.
4 Time function active.

Safety automation system solutions
Preventa safety modules type XPS TSW
For safety time delays

XPS TSW
Guard unlocking application using zero speed detection


## Wiring diagram


(1) Control signal.
(2) Volt-free relay outputs with pulse time delay ESC: External start conditions.
LED details: see page 2/234.

$$
\begin{aligned}
& \text { te: power-up time } \\
& \text { tw: pulse time }
\end{aligned}
$$

Operating principle, characteristics

Safety automation system solutions
Preventa safety modules types XPS DMB, XPS DME
For coded magnetic switch monitoring

## Operating principle

Safety modules XPS DMB and XPS DME are specifically designed for monitoring coded magnetic safety switches. They incorporate two safety outputs and two solid-state outputs for signalling to the process PLC.
Conforming to category 4 of EN 954-1/ISO 13849-1, modules XPS DMB can monitor two independent sensors and modules XPS DME can monitor up to six independent sensors.
To monitor a higher number of magnetic switches using these safety modules, the magnetic switches can be connected in series, while meeting the requirements of category 3 of EN 954-1/ISO 13849-1.

Safety modules XPS DM・ゃゃ๑॰P incorporate removable terminal blocks, thus optimising machine maintenance.

To aid diagnostics, the modules have LEDs on the front face which provide information on the monitoring circuit status.

| Characteristics |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS DMB1132 | XPS DME1132 | XPS DMB1132P | XPS DME1132P |
| Products designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  |  | Category 4 max. |  |  |  |
| Conformity to standards |  |  |  | EN/IEC 60204-1, EN 1088/ISO 14119, EN/IEC 60947-5-1, EN/IEC 60947-5-3, DIN V VDE 0801 (1990), DIN V VDE 0801 A1 (1994) |  |  |  |
| Product certifications |  |  |  | UL, CSA, BIA |  |  |  |
| Supply (Ue) conforming to IEC 38 | Voltage |  | V |  |  |  |  |
|  | Voltage limits | -- 24 V |  | -20... $+20 \%$ |  |  |  |
| Consumption |  |  | W | <2.5 | < 3.5 | <2.5 | < 3.5 |
| Module inputs fuse protection |  |  |  | Internal, electronic |  |  |  |
| Maximum wiring resistance RL between the module and the coded magnetic switches |  |  | $\Omega$ | 100 |  |  |  |
| Control unit voltage and current |  |  |  | $28 \mathrm{~V} / 8 \mathrm{~mA}$ |  |  |  |
| Synchronisation time between magnetic switch inputs |  |  | s | < 0.5 |  |  |  |
| Safety outputs | Voltage reference |  |  | Volt-free |  |  |  |
|  | Number and type of safety circuits |  |  | 2 N/O |  |  |  |
|  | Number and type of solid-state outputs |  |  | 2 |  |  |  |
|  | Breaking capacity in AC-15 |  | VA | C300: inrush 1800, sealed: 180 |  |  |  |
|  | Breaking capacity in DC-13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=50 \mathrm{~ms}$ |  |  |  |
|  | Max. thermal current (lthe) |  | A | 6 |  |  |  |
|  | Max. total thermal current |  | A | 12 |  |  |  |
|  | Output fuse protection |  | A | 4 gG or 6 fast acting |  |  |  |
|  | Minimum current |  | mA | 10 |  |  |  |
|  | Minimum voltage |  | V | 17 |  |  |  |
| Electrical durability |  |  |  | See page 2/172 |  |  |  |
| Response time on input opening |  |  | ms | < 20 |  |  |  |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts $1 \& 2$ ) |  |  |  |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |  |  |
| LED display |  |  |  | 3 | 15 | 3 | 15 |
| Ambient air temperature |  |  | ${ }^{\circ} \mathrm{C}$ | For operation: - 10... +55 , for storage: $-25 \ldots+85$ |  |  |  |
| Degree of protection conforming to IEC 60529 |  |  |  | Terminals: IP 20, enclosure: IP 40 |  |  |  |
| Connection | Type |  |  | Captive screw clamp terminals |  | Captive screw clamp terminals, removable terminal block |  |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ |  | Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |  |  |
|  |  | With cable end |  | With bezel, flexible cable: $0.25 . .1 .5 \mathrm{~mm}^{2}$ |  | With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |  |
|  | 2-wire connection | Without cable end |  | Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ |  | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |  |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 \ldots 1 \mathrm{~mm}^{2}$ |  |  |  |
|  |  | With cable end |  | With bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$ |  |  |  |

# Safety automation system solutions Preventa safety modules types XPS DMB, XPS DME 

For coded magnetic switch monitoring


| Safety module for monitoring Integrated in | 2 N/O | 2 | $=-24$ | XPS DME1132 | 0.300 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6 coded magnetic switches module

| Safety module for monitoring | Removable | 2 N/O | 2 | -- 24 | XPS DMB1132P | 0.250 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 coded magnetic switches | from module |  |  |  |  |  |


| Safety module for monitoring | Removable | $2 N / O$ | 2 | $=-24$ | XPS DME1132P | 0.300 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6 coded magnetic switches from module

Safety automation system solutions
Preventa safety modules types XPS DMB, XPS DME
For coded magnetic switch monitoring

## XPS DMB

Wiring to category 4 conforming to EN 954-1/ISO 13849-1. Example with 2-pole N/C + N/O (N/C staggered) contact.
For example with 3-pole N/C + N/C + N/O contact see page 3/58


ESC: External start conditions.
Wiring to category 3 conforming to EN 954-1/ISO 13849-1. Example with 3 switches with 2-pole N/C + N/O (N/C staggered) contacts.


Input: S11, S12, S13 or S21, S22, S23.
Input not used: terminals S21-S23 linked.

## Safety automation system solutions Preventa safety modules types XPS DMB, XPS DME

For coded magnetic switch monitoring

XPS DME
Wiring to category 4 conforming to EN 954-1/ISO 13849-1. Example with 2-pole N/C + N/O (N/C staggered) contact


ESC: External start conditions.
Wiring to category 3 conforming to EN 954-1/ISO 13849-1. Example with 3 switches with 2-pole N/C + N/O (N/C staggered) contacts.


Input: S11, S12, S13 or S21, S22, S23 or S31, S32, S33 or S41, S42, S43 or S51, S52, S53 or S61, S62, S63. Input not used: terminals S•1-S•3 (S21-S23, S31-S33, S41-S43, S51-S53, S61-S63) linked

| Principle: | Characteristics: | References: | Dimensions: |
| :--- | :--- | :--- | :--- |
| page 2/236 | page $2 / 236$ | page 2/237 | page 2/262 |

Safety automation system solutions
Preventa safety modules types XPS DMB, XPS DME
For coded magnetic switch monitoring

## XPS DMB <br> Functional diagram

|  | Supply voltage | Magnetic switch 1 activated | Magnetic switch 2 activated | Start | Magnetic switch 2 opens | Magnetic switch 2 activated | Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Magnetic switch 1 (S11-S12) |  |  |  |  |  |  |  |
| Magnetic switch 1 (S11-S13) |  |  |  |  |  |  |  |
| Magnetic switch 2 (S21-S22) |  |  |  |  |  |  |  |
| Magnetic switch 2 |  |  |  |  |  |  |  |
| Feedback loop/start |  |  |  |  |  |  |  |
| Solid-state output Y34 |  |  |  |  |  |  |  |
| Solid-state output Y44 |  |  |  |  |  |  |  |
| Output 13-14/23-24 (N/O) |  |  |  |  |  |  |  |
|  |  | - < 0,5 s | + |  |  |  |  |

Key $0=1$

LED details


Supply voltage A1-A2, internal electronic fuse status.
Fault signalling.
3 Safety outputs closed.

Functional diagrams (continued)

## Safety automation system solutions <br> Preventa safety modules types XPS DMB, XPS DME

## For coded magnetic switch monitoring

XPS DME
Functional diagram

LED details


1 Supply voltage A1-A2, internal electronic fuse status.
2 Fault signalling.
3 Safety outputs closed.
4 Magnetic switch 1 activated.
5 Magnetic switch 1 deactivated.
6 Magnetic switch 2 activated.
7 Magnetic switch 2 deactivated.
8 Magnetic switch 3 activated.
9 Magnetic switch 3 deactivated.
10 Magnetic switch 4 activated.
11 Magnetic switch 4 deactivated.
12 Magnetic switch 5 activated.
13 Magnetic switch 5 deactivated.
14 Magnetic switch 6 activated.
15 Magnetic switch 6 deactivated.

## Operating principle

Preventa safety modules XPS VNE for zero speed detection are used to detect the stop condition of electric motors. Their most common applications include: providing the unlock signal for electrically interlocked sliding or removable machine guards, controlling rotation direction signals for reversing motors and engaging locking brakes after a motor has come to a standstill.

As electric motors run down, a remanent voltage is produced in the windings of the motor due to residual magnetism. This voltage is proportional to the speed of the motor and, therefore, decreases as the motor comes to a standstill.
This remanent voltage is measured in a redundant manner so as to detect the stop condition of the motor. The cabling between the motor windings and the inputs of the XPS VNE module is also monitored to prevent a cabling breakage or fault being seen as a stopped motor.
A transformer should not be used to connect the motor to terminals $Z 1, Z 2$ and $Z 3$ since there is no monitoring of the connection with the motor winding via the resistance monitoring.

Modules XPS VNE are suitable for detecting the stop condition of all types of a.c. or d.c. motor driven machines which, when the motor runs down, produce a remanent voltage in the windings due to residual magnetism. These machines can be controlled by electronic devices, such as variable speed drives or d.c. injection brakes.
The input filters for standard XPS VNE modules are designed for a frequency of up to 60 Hz .
For motors operating at a frequency higher than 60 Hz , which therefore produce a high frequency remanent voltage, special modules XPS VNE $\bullet \bullet \bullet$ HS should be used.

Modules XPS VNE have 2 potentiometers mounted on the front face of the module which allow independent adjustment of the switching threshold for each input circuit. This allows adjustment for different types of motors and application requirements.

To aid diagnostics, modules XPS VNE have 4 LEDs and 2 solid-state outputs to provide information on the status of the zero speed detection circuit.
Safety automation system solutions
Preventa safety modules type XPS VNE
For zero speed detection

| Characteristics |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Module type |  |  |  | XPS VNE |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  |  | Category 3 max. |
| Conformity to standards |  |  |  | EN 60204-1, EN/IEC 60947-5-1, EN 50082-2 |
| Product certifications |  |  |  | UL, CSA, BG |
| Supply | Voltage |  | V | $\begin{aligned} & \sim-24 \\ & \sim 115 \\ & \sim 230 \end{aligned}$ |
|  | Voltage limits |  |  | $\begin{aligned} & -15 \ldots+10 \%(-=24 \mathrm{~V}) \\ & -15 \ldots+15 \%(\sim 115 \mathrm{~V}) \\ & -15 \ldots+10 \%(\sim 230 \mathrm{~V}) \end{aligned}$ |
|  | Frequency |  | Hz | $50 / 60$ (115 V, 230 V ) |
| Consumption |  |  | W | $\leqslant 3.5$ (-- 24 V ) |
|  |  |  | VA | $\leqslant 7.5$ ( $\sim 115 \mathrm{~V}$ ), $\leqslant 7$ ( $\sim 230 \mathrm{~V}$ ) |
| Frequency of motor power supply |  |  | Hz | $\leqslant 60 \mathrm{~Hz}$ (XPS VN・ャ42), > 60 Hz (XPS VN•॰42HS) |
| Inputs | Maximum voltage between terminals Z1-Z2-Z3 |  | V | 500 rms |
|  | Detection threshold |  | V | 0.01-0.1 (adjustable) |
| Outputs | Voltage reference |  |  | Volt-free |
|  | Number and type of safety circuits |  |  | 1 N/O (13-14), 1 N/C (21-22) |
|  | Number and type of additional circuits |  |  | 2 solid-state |
|  | Breaking capacity in AC-15 |  |  | C300 (inrush: 1800 VA/maintained: 180 VA ) |
|  | Breaking capacity in DC-13 |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ (contact 13-14) <br> $24 \mathrm{~V} / 1.2 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ (contact 21-22) |
|  | Breaking capacity of solid-state outputs |  |  | $24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$ |
|  | Max. thermal current (Ithe) |  | A | 2.5 |
|  | Output fuse protection |  | A | 4 gG , conforming to EN/IEC 60947-5-1, DIN VDE 0660 part 200 |
|  | Minimum current (volt-free contact) |  | mA | 10 (1) |
|  | Minimum voltage (volt-free contact) |  | V | 17 (1) |
| Electrical durability |  |  |  | See page $2 / 172$ |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |
| Rated impulse withstand voltage (Uimp) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |
| LED display |  |  |  | 4 |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -10... +55 |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | -25...+85 |
| Degree of protection Conforming to IEC 60529 |  | Terminals |  | IP 20 |
|  |  | Enclosure |  | IP 40 |
| Connect |  | Type |  | Captive screw clamp terminals, removable terminal block |
|  | 1-wire connection | Without cable end |  | Solid or flexible cable: $0.2 \ldots . .2 .5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, solid or flexible cable: $0.25 . .2 .5 \mathrm{~mm}^{2}$ |
|  |  |  |  | With bezel, solid or flexible cable: $0.25 . .2 .5 \mathrm{~mm}^{2}$ |
|  | 2-wire connection | Without cable end |  | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |
|  |  | With cable end |  | Without bezel, flexible cable: $0.25 . .1 \mathrm{~mm}^{2}$ |
|  |  |  |  | With bezel, flexible cable: $0.5 \ldots 1.5 \mathrm{~mm}^{2}$ |

(1) The module is also capable of switching low power loads (17 V/10 mA) provided that the contact has not been used for switching high power loads (possible contamination or wear of the gold layer on the contact tips).

| References | Description | Number <br> of safety <br> circuits | Solid-state <br> outputs for <br> PLC | Supply | Frequency of <br> motor power <br> supply | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Connections: | Dimensions: |
| :--- | :--- |
| page $2 / 244$ | page 2/262 |


(1) Technical characteristics for establishing maximum rating of fuses, see page 2/243.
(2) Disengagement in event of stop.
(3) Motor running.
$\mathrm{F} 1=2 \mathrm{~A}$

Functional diagram of module XPS VNE


#### Abstract



Key 0 $\qquad$ The voltages at terminals $\mathrm{Z} 1, \mathrm{Z} 2$ and Z 3 are indicated solely for the purposes of schematic diagram representation.


LED details


1 Supply voltage A1-A2.
2 Stop detected by channel 1.
3 Stop detected by channel 2.
4 Motor stop condition detected by both channels within time window.

## Module XPS VNE associated with a d.c. motor


$F 1=2 A$

Module XPS VNE associated with a 3-phase motor

$\mathrm{F} 1=2 \mathrm{~A}$

Module XPS VNE associated with a 3-phase motor + variable speed drive

$\mathrm{F} 1=2 \mathrm{~A}$
Module XPS VNE associated with a 3-phase motor with start-delta starting


| Principle: <br> page 2/242 | Characteristics: <br> page 2/243 | References: <br> page 2/243 | Dimensions: <br> page 2/262 |
| :--- | :--- | :--- | :--- |
|  |  | Schneider <br> SVectric | $2 / 245$ |

Safety automation system solutions
Preventa safety modules type XPS VNE For zero speed detection

Module XPS VNE associated with a 3-phase motor with variable number of poles and star-delta starting

$F 1=2 A$
KM1: Fast rotation speed
KM2: Slow rotation speed
KM3: Star
KM4: Delta
Module XPS VNE associated with a star-delta motor starter and guard switch type XCS E


Safety automation system solutions
Preventa safety modules type XPS VNE
For zero speed detection

## Association of safety modules XPS VNE and XPS AK



Operating principle, characteristics

Safety automation system solutions
Preventa safety modules type XPS DA
For lift control

Operating principle


When the cabin is parked at a landing, with the doors open, some lifts automatically correct their level (isolevelling) in relation to the landing in order to compensate for any differences generated by modification of the load in the cabin
During this operation, European standard EN-81 recommends that the presence of the cabin be checked within a zone of $+/-0.2 \mathrm{~m}$ around the landing (door unlocking zone), by means of a safety circuit which will cause the cabin to stop if it moves out of the specified zone.

The use of a safety module XPS DA, which checks the presence of the cabin in the specified zone at two points, meets this requirement.
The module incorporates two safety outputs and two solid-state outputs for signalling functions. Four LEDs on the front face of the module provide visual indication of the status of the safety circuit.
The position of the cabin in relation to the landing is detected by two limit switches in the lift shaft. It is also possible to use non-contact sensors (magnetic sensors with reed contact).
When the cabin reaches the preset position and when it is within the permissible tolerances in relation to the landing, the two safety circuits in safety module XPS DA close and allow isolevelling of the cabin with the doors open. Any change in one of the input signals (cabin outside the specified zone) or detection of a fault (break in the wiring, short-circuit, etc.) causes immediate opening of the safety outputs in the XPS DA module and subsequent stopping of the cabin.

## Characteristics

| Module type |  |  | XPS DA |
| :---: | :---: | :---: | :---: |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  | Category 4 max. |
| Conformity to standards |  |  | EN 81-1, EN 81-2, EN/IEC 60947-5-1, EN 50082-2, EN 12015, EN 12016 |
| Product certifications |  |  | UL, CSA, TÜV |
| Supply | Voltage | V | $\sim$ and - - 24, ~ 115, ~ 230 |
|  | Voltage limits |  | $\begin{aligned} & -20 \ldots+10 \%(\sim 24 \mathrm{~V}),-20 \ldots+20 \%(--24 \mathrm{~V}),-15 \ldots+15 \%(\sim 115 \mathrm{~V}), \\ & -15 \ldots+10 \%(\sim 230 \mathrm{~V}) \end{aligned}$ |
|  | Frequency | Hz | 50/60 |
| Maximum consumption | 24 V | VA | <9 |
|  | $115 \mathrm{~V} / 230 \mathrm{~V}$ | VA | < 10 |
| Module inputs fuse protection |  |  | Internal, electronic |
| Control unit voltage between S11-S12, S21-S22 |  | V | 24 (24 V version), 48 (115 V, 230 V versions) |
| Protection of the control unit contacts |  |  | By limitation of the maximum current in the event of short-circuit (<185 mA) |
| Minimum voltage and current between terminals S11-S12, S21-S22 (inputs A and B) | U min./I min. - 24 V version ( $20^{\circ} \mathrm{C}$ ) |  | $16 \mathrm{~V} / 70 \mathrm{~mA}$ |
|  | $\begin{aligned} & \text { U min./I min. }-115 \mathrm{~V} / 230 \mathrm{~V} \text { version } \\ & \left(20^{\circ} \mathrm{C}\right) \end{aligned}$ |  | $41 \mathrm{~V} / 25 \mathrm{~mA}$ |
| Calculation of wiring resistance RL between terminals S11-S12, S21-S22 as a function of the internal supply voltage $U$ int (terminals S11-S21) |  | $\Omega$ | $R L \text { max. }=\frac{U \text { int }-U \text { min. }}{I \min .} \begin{array}{ll}  & \begin{array}{l} \text { Ue }=\text { true voltage applied to terminals A1-A2 } \\ \end{array} \\ & \begin{array}{l} \text { int }=\text { supply voltage } \mathrm{Ue}-3 \mathrm{~V}(24 \mathrm{~V} \text { version }) \end{array} \\ & \text { with typical value } 42 \mathrm{~V} \text { and } 45 \mathrm{~V} \mathrm{~V}, \\ & R L \text { max. must not exceed } 50 \mathrm{~V}, 230 \mathrm{~V} \text { version }) \end{array}$ |
| Synchronisation time between inputs $A$ and $B$, automatic start, linked terminals S33-S34 and Y3-Y4 |  | ms | Approx. 300 |
| Outputs | Voltage reference |  | Volt-free |
|  | Number and type of safety circuits |  | 2 N/O (13-14, 23-24) |
|  | No. and type of additional circuits |  | 2 solid-state |
|  | Breaking capacity in AC-15 | VA | C300: inrush 1800, maintained 180 |
|  | Breaking capacity in DC-13 |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |
|  | Breaking capacity of solid-state outputs |  | $24 \mathrm{~V} / 20 \mathrm{~mA}$ |
|  | Max. thermal current (lthe) | A | 2.5 |
|  | Output fuse protection |  | 6 A fast acting, 4 gG, conforming to EN/IEC 60947-5-1, DIN VDE 0660 part 200 |
|  | Minimum current (volt-free contact) | mA | 10 |
|  | Minimum voltage (volt-free contact) | V | 17 |
|  | Max. total thermal current |  | 5 |
| Electrical durability |  |  | See page 2/172 |
| Response time on input opening |  | ms | < 40 |
| Rated insulation voltage (Ui) |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |
| Rated impulse withstand voltage (Uimp.) |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-1, DIN VDE 0110 parts 1 \& 2) |
| LED display |  |  | 4 |
| Operating temperature |  | ${ }^{\circ} \mathrm{C}$ | -10... +65 |
| Storage temperature |  | ${ }^{\circ} \mathrm{C}$ | -25... +85 |
| Degree of protection conforming to IEC 60529 |  |  | Terminals: IP 20. Enclosure: IP 50 |
| Connection | Type |  | Captive screw clamp terminals: without cable end $1 \times 4 \mathrm{~mm}^{2}$, with cable end $2 \times 2.5 \mathrm{~mm}^{2}$ |

## Safety automation system solutions <br> Preventa safety modules type XPS DA <br> For lift control

| References |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description | Number of safety circuits | Solid-state outputs for PLC | Supply | Reference | Weight kg |
|  | Safety modules for lift control | 2 | 2 | $\sim$ and $=-24 \mathrm{~V}$ | XPS DA5142 | 0.350 |
|  |  |  |  | $\sim 115 \mathrm{~V}$ | XPS DA3442 | 0.450 |
|  |  |  |  | $\sim 230 \mathrm{~V}$ | XPS DA3742 | 0.450 |

## Connections

XPS DA
Module XPS DA associated with a lift control system

(2) Without start signalling monitoring, Y3-Y4 linked.

## Operating principle

Safety module XPS PVT is specifically designed for monitoring hydraulic safety system valves which control the movements of potentially dangerous machines. The operating principle of this module is explained in the circuit diagram of a hydraulic safety system for linear presses (see below).

This hydraulic safety system features a 3 position piston which controls the up and down stroke of the operating cylinder. The circuit is equipped with a safety valve, to complete the redundant system. This circuit must be activated to enable the up and down stroke of the cylinder.
If either of the 2 pistons becomes defective (for example, due to a broken spring or to oil contamination), and the valve piston shifts from its normal position towards the open position, the XPS PVT module will detect it and prevent resumption of the piston stroke.
Proximity sensors integrated in the valve to detect the piston positions and connected to the XPS PVT module must be damped when the valve coils are in the de-energised state (zero position).
The sensor circuits of the XPS PVT module are designed to allow connection of NPN and PNP proximity sensors or sensing components. Either 2-wire or 3-wire types can be used.
The wiring diagram on page $2 / 252$ shows how to connect proximity sensors.
Hydraulic safety system circuit operating on a linear press.
Monitoring of valves in position 0 .

(1) 3 position hydraulic valve
(2) 2 position hydraulic valve.

Characteristics, reference

Safety automation system solutions
Preventa safety module type XPS PVT
For dynamic monitoring of hydraulic valves on linear presses

## Characteristics

| Module type |  |  |  | XPS PVT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Products designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  |  | Category 4 max. |  |  |  |
| Conformity to standards |  |  |  | EN 60204-1, EN/IEC 60947-5-1, EN 693, EN 50082-2 |  |  |  |
| Product certifications |  |  |  | UL, CSA |  |  |  |
| Supply | Voltage |  | V | =-24 |  |  |  |
|  | Voltage limits |  |  | -10...+ 10\% |  |  |  |
| Consumption |  |  | W | < 6 |  |  |  |
| Outputs | Voltage reference |  |  | Volt-free |  |  |  |
|  | Number and type of safety circuits |  |  | $2 \mathrm{~N} / \mathrm{O}(13-14,33-34)+1$ N/C (21-22) |  |  |  |
|  | Number and type of additional circuits |  |  | - |  |  |  |
|  | Wiping time |  | ms | 100 (minimum value) |  |  |  |
|  | Breaking capacity | AC-15 | VA | C300: inrush 1800, maintained 180 |  |  |  |
|  |  | DC-13 | VA | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |  |  |  |
|  | Max. thermal current (Ithe) |  | A | 2.5 |  |  |  |
|  | Output fuse protection, using fuses conforming to EN/IEC 60947-5-1, VDE 0660 part 200 |  | A | 4 gG |  |  |  |
|  | Minimum current |  | mA | 10 |  |  |  |
|  | Minimum voltage |  | V | 17 |  |  |  |
| Electrical durability |  |  |  | See page 2/172 |  |  |  |
| Response time |  |  | ms | < 15 |  |  |  |
| Rated insulation voltage (Ui) |  |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |  |  |  |
| Rated impulse withstand voltage (Uimp.) |  |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-1, DIN VDE 0110 parts 1 \& 2) |  |  |  |
| LED display |  |  |  | 8 |  |  |  |
| Operating temperature |  |  | ${ }^{\circ} \mathrm{C}$ | $-10 . . .+55$ |  |  |  |
| Storage temperature |  |  | ${ }^{\circ} \mathrm{C}$ | $-25 . . .+85$ |  |  |  |
| Degree of protection conforming to IEC 60529 |  | Terminals |  | IP 20 |  |  |  |
|  |  | Enclosure |  | IP 40 |  |  |  |
| Polycarbonate enclosure |  | Type |  | Removable |  |  |  |
|  |  | Number of terminals |  | 20 |  |  |  |
| Connection Type |  |  |  | Captive screw clamp terminals: without cable end $2 \times 2.5 \mathrm{~mm}^{2}$, with cable end $2 \times 1.5 \mathrm{~mm}^{2}$, $\mathrm{min} . \varnothing 0.5 \mathrm{~mm}$ |  |  |  |
| Reference |  |  |  |  |  |  |  |
|  |  |  | Description |  | Supply | Reference | Weight kg |
|  | abemat |  | Safety module for dynamic monitoring of hydraulic valves on linear presses |  | $=24 \mathrm{~V}$ | XPS PVT1180 | 0.540 |

## XPS PVT <br> Wiring diagram for module XPS PVT


(1) Two-hand control or presence sensor outputs.

## Safety automation system solutions

Preventa safety module type XPS PVT
For dynamic monitoring of hydraulic valves on linear presses

XPS PVT
Functional diagram of module XPS PVT


LED details


[^27]Operating principle, characteristics

## Safety automation system solutions

## Preventa safety modules type XPS PVK <br> For dynamic monitoring of double-bodied solenoid valves

## Operating principle

Safety module XPS PVK is specially designed for dynamic monitoring of the safety valves in eccentric presses, conforming to European standard EN 692.
This standard establishes the specifications related to safety control systems for presses equipped with friction clutches.
To meet the requirements of this standard, the clutch/brake control must be monitored dynamically.

This function is provided by a double-bodied solenoid valve (safety valve for presses) which performs the functions of two valves mounted in one body.
The position of the two valve pistons can be monitored by proximity sensors, mechanical limit switches or pressure switches.
Module XPS PVK checks for the correct operation of the double-bodied safety valves at 3 points in the cycle.

- Start at top dead centre: checks the rest position of the two valves.
- Take-on point (transfer function): checks that the two valves are in the "activated"
(energised) position.
- Press stop trigger point: checks that the two valves return to the rest position.

Return must be simultaneous for both valves within a defined time period.
To set up an automatic disconnect of the XPS PVK module at the first machine stroke, a $\mathrm{N} / \mathrm{C}$ auxiliary contact mounted on the main control contactor or on another contactor/relay, activated at the same time, can be wired to terminals 7 and 8 in parallel with the RESET button.
If a fault is detected during the cycle, the XPS PVK module will stop the slide stroke and will also inhibit the start of another cycle.

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Module type |  |  | XPS PVK |
| Product designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  | Category 4 max. |
| Conformity to standards |  |  | EN 60204-1, EN/IEC 60947-5-1, EN 692, EN 50082-2 |
| Product certifications |  |  | UL, CSA |
| Supply | Voltage | V | -- 24, ~115, ~ 230 |
|  | Voltage limits |  | $\begin{aligned} & -10 \ldots+10 \%(-=24 \mathrm{~V}) \\ & -15 \ldots+15 \%(\sim 115 \mathrm{~V}) \\ & -15 \ldots+10 \%(\sim 230 \mathrm{~V}) \end{aligned}$ |
|  | Frequency | Hz | 50/60 |
| Consumption | --24V | W | $<9$ |
|  | $\sim 115 \mathrm{~V} / 230 \mathrm{~V}$ | VA | < 16 |
| Outputs | Voltage reference |  | Volt-free |
|  | Number and type of safety circuits |  | 1 N/O (13-14) transfer function + 1 N/C (21-22) feedback loop |
|  | Number and type of additional circuits |  | 4 solid-state outputs |
|  | Breaking capacity in AC-15 | VA | C300: inrush 1800, maintained 180 |
|  | Breaking capacity in DC-13 |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}-\mathrm{L} / \mathrm{R}=50 \mathrm{~ms}$ |
|  | Max. thermal current (lthe) | A | 2.5 |
|  | Breaking capacity of solid-state outputs |  | $24 \mathrm{~V} / 20 \mathrm{~mA}, 48 \mathrm{~V} / 10 \mathrm{~mA}$ |
|  | Output fuse protection | A | 4 gG , conforming to EN/IEC 60947-5-1, VDE 0660 part 200 |
|  | Minimum current (volt-free contacts) | mA | 10 |
|  | Minimum voltage (volt-free contacts) | V | 17 |
| Response time |  | ms | < 40 |
| Electrical durability |  |  | See page 2/172 |
| Rated insulation voltage (Ui) |  | V | 300 (degree of pollution 2 conforming to EN/IEC 60947-5-1, DIN VDE 0110 parts 1 \& 2) |
| Rated impulse withstand voltage (Uimp.) |  | kV | 4 (overvoltage category III, conforming to EN/IEC 60947-1, DIN VDE 0110 parts 1 \& 2) |
| LED display |  |  | 8 |
| Operating temperature |  | ${ }^{\circ} \mathrm{C}$ | -10... +55 |
| Storage temperature |  | ${ }^{\circ} \mathrm{C}$ | -25... 85 |
| Degree of protection Conforming to IEC 60529 | Terminals |  | IP 20 |
|  | Enclosure |  | IP 40 |
| Polycarbonate enclosure | Type |  | Removable |
|  | Number of terminals |  | 32 |
| Connection | Type |  | Captive screw clamp terminals: without cable end $2 \times 2.5 \mathrm{~mm}^{2}$, with cable end $2 \times 1.5 \mathrm{~mm}^{2}, \mathrm{~min} . \varnothing 0.5 \mathrm{~mm}$ |


| References: | Connections: | Dimensions: |
| :--- | :--- | :--- |
| page 2/255 | page 2/255 | page 2/262 |

## Safety automation system solutions

 connections
## Preventa safety modules type XPS PVK

For dynamic monitoring of double-bodied solenoid valves

| References | Description | Display | Supply |
| :--- | :--- | :--- | :--- |
|  | Safety modules for <br> dynamic monitoring of <br> double-bodied solenoid <br> valves | 8 LEDs | Weight |
| kg |  |  |  |

## Connections

## XPS PVK

Monitoring of a press safety valve by an XPS PVK module



#### Abstract

LED details 

1 -- internal supply $\mathrm{n}^{\circ} 1$. 2 -- internal supply $\mathrm{n}^{\circ} 2$. 3 Valve $\mathrm{n}^{\circ} 1$ blocked. 4 Valve $n^{\circ} 2$ blocked. 5 Ready for monitoring 6 Disconnect synchronised. 7 Reset. 8 Valves 1 and 2 energised.


Safety automation system solutions
Preventa safety modules type XPS PVK
For dynamic monitoring of double-bodied solenoid valves


Connection of module XPS PVK with 3-wire (or 2-wire) proximity sensors
3-wire sensors

> 2-wire sensors



For dynamic monitoring of double-bodied solenoid valves

XPS PVK
Connection of module XPS PVK with an eccentric press safety valve

(2) Internal supply $n^{\circ} 2$.
(3) For a -- 24 V version: integrated $-\ldots /=$ adaptor.

## Safety automation system solutions

Preventa safety modules type XPS OT
For safety stop with automatic overtravel monitoring and control


#### Abstract

Operating principle Safety module XPS OT is used on eccentric presses to monitor overtravel and ensure that the press slide stops in a non-dangerous position, that is, top dead centre (TDC) during normal (non-emergency) operation. Use of this module, designed in accordance with standard EN 692 relating to mechanical press safety, makes it possible to create a redundant, self-monitoring control system.

The two essential functions of this safety module are to: ■ Trigger the end of cycle stop sequences slightly before top dead centre (at point A) so as to come to complete stop at TDC. After TDC, the permissible overtravel is approximately $10^{\circ}$. The safety module immediately detects any overtravel. Overtravel is indicative of braking device deterioration and, in this case, jog mode must be used to move the slide back to TDC. The next cycle will be inhibited to allow maintenance to be performed on the braking device (cam 1). - Take over control monitoring during the dangerous part of the cycle (slide downstroke). Any stop instruction issued between TDC ( $0^{\circ}$ ) and point C (approximately $150^{\circ}$ after TDC) causes an immediate stop of the press. This approximate value of $150^{\circ}$ corresponds to the $\mathbf{8 ~ m m}$ tool closure dimension (safety point). When a stop instruction is issued after this safety point, the press completes the cycle and comes to a complete stop at TDC (cam 2).

Control of the dangerous part of the cycle (generally the slide downstroke) is usually activated from a two-hand control station associated with a safety module (type XPS BC) monitoring this station to qualify as a category 4 control system according to standard EN 954-1/ISO 13849-1.

Overtravel monitoring is performed on each cycle by safety module XPS OT.


Characteristics: $\quad$ References: Connections: Dimensions:

## Safety automation system solutions

## Preventa safety modules type XPS OT

For safety stop with automatic overtravel monitoring and control
Operating principle (continued)

1 Permissible overtravel zone.
2 Dangerous zone (usually slide downstroke).

S Permissible overtravel.
A Stop instruction trip point.
B Point at which permissible overtravel is exceeded (a stop instruction issued after point $\mathbf{B}$ will lock up the press)
C Takeover point, beyond which the press will complete its cycle up to TDC.
TDC Top dead centre, actual stopping zone of the press.
Bottom dead centre.

Cam 1 is associated with the OTS limit switch (LS), cam 2 with the UN limit switch俍
The OTS limit switch is deactivated at TDC, at which point the UN limit switch is Point A1 of cam 1 is located approximately $300^{\circ}$ after TDC and, when reached, the press stops and comes to a standstill: $\mathbf{A 1}$ is the press stop trigger point.
Point B1, located approximately $10^{\circ}$ after TDC, constitutes the end of cam 1: If B1 up and the next cycle is inhibited.
Point A2 of cam 2 functions like point A1 on cam 1 (contact state of the UN limit switch reversed in relation to the state of the OTS limit switch) closing dimension. Stop instructions issued after C 2 is reached are not executed until point A2 is reached

Characteristics, references

## Safety automation system solutions

Preventa safety modules type XPS OT
For safety stop with automatic overtravel monitoring and control


XPS OT

Connections

## Safety automation system solutions

Preventa safety modules type XPS OT
For safety stop with automatic overtravel monitoring and control

XPS OT
Wiring diagram

(1) The 2 coils of the safety valve must be wired separately.


Dimensions
XPS BA



XPS BC，XPS DA


XPS ECM，XPS ECP


XPS ACゃゃゃゃ，XPS AFゃゃゃ๑，XPS AFLゃゃゃゃ，XPS DMBゃゃゃゃ， XPS VCゃゃゃ๑，XPS BFゃゃゃ॰


XPS AKゃゃゃ๑，XPS AVゃゃゃゃ，XPS CM॰ゃゃゃ，XPS DMEゃゃゃゃ XPS ATEゃゃゃ・



XPS ACゃゃゃ॰P，XPS AFゃゃゃP॰，XPS AFLゃゃゃ॰P，XPS DMBゃゃゃ॰P， XPS VCゃゃゃゃP，XPS BFゃゃゃゃP

 XPS TSWゃゃゃ॰P，XPS DMEゃゃゃ॰P，XPS ATEゃゃゃ॰P，XPS VNEゃゃゃゃP


Dimensions, mounting

Safety automation system solutions
Preventa safety modules
AM1 DP200 rail mounting


XPS OT


## Mounting

All safety modules: 35 mm ப rail fixing.

Safety automation system solutions
Safety solutions on AS-Interface cabling system Safety monitors and interfaces



Safety is incorporated into the AS-Interface cabling system by adding a monitor and a safety interface connected together with other standard AS-Interface components on the AS-Interface line


Safety applications integrated on the AS-Interface line. Emergency stop, safety switches and light curtain monitoring

## 7.F

Using configuration software ASISWIN2

## IEC 61508 (2000),

EN 954-1 (1997) - category 4/ISO 13849-1,
EN/IEC 60204-1 (1998),
EN 50295 (1999),
EN 61000-6-2 (2000),
EN 50081-2 (1993),
EN/IEC 61496-1 (1997),
EN/IEC 60947-5-1 (1997),
EN 574 (1996)/ISO 13851
UL, CSA, TÜV

| 2 N/O | $2 \times 2$ N/O |
| :--- | :--- |
| 1 solid-state output for <br> signalling to PLC | 2 solid-state outputs |
| 5 LEDs | 8 LEDs |
| $=-24 \mathrm{~V}$ |  |


| ASI SAFEMON1• ASI SAFEMON2• |
| :--- | :--- |



Emergency stop interfaces

| Metal | Plastic |
| :--- | :--- |
| O.B.F.F | O.B.F.F |

Using adjustment terminal ASI TERV2 and adaptor ASI SAD1

EN 954-1 - category 4/ISO 13849-1,
EN/IEC 60947-5-1,
EN/IEC 60204-1,
EN/ISO 13850 (pending),
EN/IEC 60947-5-5 (pending)

UL, CSA, TÜV

| - |
| :--- |
| - |
| 2 LEDs |
| By AS-Interface line |

ASI SSLB•
$2 / 272$



Using adjustment terminal ASI TERV2 and adaptor ASI SAD1

EN 954-1 - category 4/ISO 13849-1,
EN/IEC 60947-5-1,
EN/IEC 60204-1

## UL, CSA, TÜV

| - |
| :--- |
| - |
| 2 LEDs |
| By AS-Interface line |


| ASI SSLC $\quad$ ASI SSLLS |
| :--- | :--- |

2/272


Interfaces premounted in Emergency stop mushroom head pushbutton stations
XALK
$1 \times$ M12 entry
0.B.F.F

Using adjustment terminal ASI TERV2

EN 1088/ISO 14119, EN/IEC 61496-1, EN/IEC 60947-5-3, EN 574/ISO 13851 IEC/EN 60204-1, EN/ISO 12100, EN/ISO 13850

UL, CSA, TÜV

| - |
| :--- |
| - |
| By AS-Interface line |


| ASI SE01C | ASI SSLE. |
| :--- | :--- |

2/272

Operating principle


AS-Interface, the recognised cabling system for sensors and actuators, has evolved. Standard process information and information relating to safety can now be transmitted over the same cable. Capable of managing safety functions up to level 4 of standard EN-954-1/ISO 13849-1 and conforming to standard IEC 61508 (2000), the AS-Interface "Safety at work" system meets the needs of the most common safety applications, such as:
■ monitoring of Emergency stops with instantaneous break contacts (stop category 0),

- monitoring of Emergency stops with delayed break contacts (stop category 1),
- monitoring of switches with and without interlocking,
- monitoring of light curtains, etc.

Parameters for options relative to the selected safety function (for example, start button monitoring) may be set for all pre-defined, certified functions.
Safety is incorporated into the AS-Interface cabling system by adding a safety monitor and safety interfaces connected together with other standard AS-Interface components on the yellow cable.
Safety information is exchanged only between the safety monitor, the AS-Interface line master and the safety interfaces. This is transparent for the other standard AS-Interface components.
Based on this principle, AS-Interface cabling systems that are already installed can be updated with safety functions without having to replace the existing components (masters, I/O interfaces, power supplies, etc.). Safety circuits are diagnosed readily, and with no additional wiring, by the standard AS-Interface cabling system master communicating with the safety monitor(s) via the yellow cable.

The ASI SWIN2 configuration software is included on the "Safety Suite V2" CD-ROM.
The AS-Interface "Safety at work" system is configured using software ASI SWIN2 running on Windows. A library of pre-defined and certified safety functions is made available by the software and the user can graphically select the desired safety functions, even at the last minute, by using the "Drag and drop" method in the configuration software. Knowledge of a programming language or specific tools is not necessary to parameter the system. The configuration is loaded into the safety monitor(s) by means of a PC by carrying out a secure serial transmission and using the parameter setting connector on the front face of the monitor.

To meet various safety requirements, the AS-Interface "Safety and work" monitor is available in two versions:

- monitors for basic monitoring of safety devices,
- monitors for enhanced monitoring of safety devices.

AS-Interface "Safety at work" monitors for basic and enhanced monitoring are available with:

- 1 safety output with 2 contacts, or
- 2 independent safety outputs with $2 \times 2$ contacts.

In addition to safety outputs with volt-free contacts, AS-Interface "Safety at work" safety monitors are equipped, depending on the model, with one or two solid-state signalling outputs and LEDs on the front face to indicate the status of the system and of the monitoring circuits. To monitor more safety functions simultaneously or to stop several safety circuits at different locations, an increased number of safety monitors can be used in an AS-Interface cabling system.
The safety interfaces are connected directly on the yellow cable via an insulation displacement connector (IDC). Their addressing is carried out using self-addressing via the AS-Interface cabling system master or manually, using addressing terminal ASISTERV2.
The compactness of the safety interfaces enables their direct attachment to control devices such as Emergency stop buttons or switches. In addition to interfaces that can be attached to products, versions with 1 or 2 M 12 connectors are also available.

| Operating principle: | Characteristics: | References: |
| :--- | :--- | :--- |
| page $2 / 266$ | page $2 / 267$ | page $2 / 268$ |

## Safety automation system solutions Safety solutions on AS-Interface cabling system AS-Interface "Safety at work" monitors

| Monitoring functions |  |  |
| :---: | :---: | :---: |
|  | AS-Interface "Safety at work" monitors |  |
|  | For basic monitoring of safety devices ASI SAFEMON1, ASI SAFEMON2 | For enhanced monitoring of safety devices ASI SAFEMON1B, ASI SAFEMON2B |
| Monitoring of safety devices | - Emergency stops <br> - Safety switches <br> - Safety light curtains | - Emergency stops - Safety switches - Safety light curtains - Button for validation of linked devices - Conditionally dependent devices - Devices with bouncing contacts |
| Logic functions | - "OR" (up to 2 devices) | - "OR" (up to 6 devices) <br> - "AND" <br> - "FLIP FLOP" <br> - On-delay <br> - Off-delay <br> - "PULSE" on positive edge |
| External devices monitoring (EDM) | - Feedback loop | - Feedback loop <br> - Feedback loop monitoring over the ASInterface cabling system |
| Start devices | - Automatic start <br> Start monitored by the AS-Interface cabling system slave <br> - Start monitored by connection to monitor <br> - Start monitored by the safety interface | - Automatic start <br> - Start monitored by the AS-Interface cabling system slave <br> - Start monitored by connection to monitor <br> - Start monitored by the safety interface |
| Output devices | - Stop category 1 <br> Stop category 0 | - Stop category 1 <br> - Stop category 0 |

## Characteristics

| AS-Interface "Safety at work" monitor type |  | ASI SAFEMON1, ASI SAFEMON1B ASI SAFEMON2, ASI SAFEMON2B |
| :---: | :---: | :---: |
| Products designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  | Category 4 conforming to EN 954-1/ISO 13849-1 |
| Conformity to standards |  | IEC 61508 (2000), EN/IEC 60204-1 (1998), EN 50295 (1999), EN 61000-6-2 (2000), EN 50081-2 (1993), EN/IEC 61496-1 (1997), EN/IEC 60947-5-1 (1997), EN 574 (1996)/ISO 13851 |
| Product certifications |  | UL, CSA, TÜV |
| AS-Interface profile |  | 7.F |
| Consumption on AS-Interface line | mA | 44 |
| Type of protection (suitable only for use in electronic rooms/ electrical enclosures with a minimum IP 54 degree of protection) |  | IP 20 |
| Operating voltage Ub | V | -- $24 \pm 15 \%$ |
| Rated operating current | mA | 150: ASI SAFEMON1, ASI SAFEMON1B 200: ASI SAFEMON2, ASI SAFEMON2B |
| Response duration | ms | < 40 |
| Pick-up delay | s | < 10 |
| Inputs |  | Opto-electronic coupler input (active when High), input current approximately 10 mA à --- 24 V |
|  |  | Opto-electronic coupler input (active when High), input current approximately 10 mA at - - 24 V |
| Outputs |  | PNP transistor output, 200 mA |
|  |  | Volt-free N/O contacts, max. contact load |
| Fuse protection |  | External, with max. of 4 AMT |
| Operating temperature | ${ }^{\circ} \mathrm{C}$ | $-20 \ldots+60$ |
| Storage temperature | ${ }^{\circ} \mathrm{C}$ | $-30 \ldots+70$ |
| Enclosure Material |  | Polyamide PA66 |
| Mounting |  | Clip-on fixing on Чr rail conforming to EN 50022 |

Note: The impedance of a safety monitor must be taken into account when selecting the number of interfaces on the AS-Interface cabling system, even if it is used in "watchdog" mode.
The technical details of the system are described in the Schneider Electric AS-Interface guide, in the safety monitor hardware and software manuals and in the configuration software on "www.schneider-electric.com".


ASI SAFEMON•


ASITERV2


ASI SA01

| References |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AS-Interface "Safety at work" monitors |  |  |  |  |  |
| Type | Number of safety circuits | Solid-state outputs for PLC | Supply | Reference | Weight kg |
| For basic monitoring of safety devices | $2 \mathrm{~N} / \mathrm{O}$ | 1 | -- 24 V | ASI SAFEMON1 | 0.350 |
|  | $2 \times 2$ N/O | 2 | -- 24 V | ASI SAFEMON2 | 0.450 |
| For enhanced monitoring of safety devices | $2 \mathrm{~N} / \mathrm{O}$ | 1 | -- 24 V | ASI SAFEMON1B | 0.350 |
|  | $2 \times 2$ N/O | 2 | -- 24 V | ASI SAFEMON2B | 0.450 |

## Configuration software

- Reference ASI SWIN2 is the full version of configuration software AS-Interface "Safety at work" version 2+ and must be installed if no previous version of this software has been installed.
■ Reference SSVASISWINUP is an update for software AS-Interface "Safety at work" and can be used if
ASI SWIN2 has been installed using Safety Suite V1. An update from version 2.03 to version $2 .+$ for the configuration software AS-Interface "Safety at work" will then be performed.

| Description | For use with | Operating system | Languages | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AS-Interface "Safety at work" configuration software <br> CD-ROM + user manual | - Safety monitors ASI SAFEMON1/2 for basic monitoring of safety devices Safety monitors ASI SAFEMON•B for enhanced monitoring of safety devices | Windows 95, Windows 98, Windows ME, Windows NT®, Windows 2000, Windows XP | EN, <br> FR, <br> DE, <br> IT, <br> ES, <br> PT | ASI SWIN2 <br> Software available on Safety Suite V2 software pack | 0.520 |
| ASI SWIN2 software update CD-ROM + user manual | - Safety monitors <br> ASI SAFEMON1/2 for basic monitoring of safety devices - Safety monitors ASI SAFEMON•B for enhanced monitoring of safety devices | Windows 95, <br> Windows 98, <br> Windows ME <br> Windows NT®, <br> Windows 2000, <br> Windows XP | EN, FR, DE, IT, ES, PT | SSVASISWINUP <br> Software update available on Safety Suite V2 software pack | 0.520 |

Setting-up and diagnostic tools

|  | Application | Reference | 0,500 |
| :--- | :--- | :--- | :--- |
| Adjustment terminal | Addressing and diagnostics of AS-Interface V2.1 interfaces | ASI TERV2 |  |
|  | AS-interface I/O test whilst powered-up <br> AS-Interface interface diagnostics |  |  |


| AS-Interface line analyser $\quad$ Identification of transmission errors on the AS-Interface line | ASI SA01 | 0,160 |
| :--- | :--- | :--- | :--- |

AS-Iterace line analyser
cation of transmission errors on the AS-Interface line
ASI SA01
0,160

| Accessories | Function | Reference |
| :--- | :--- | ---: | | Weight |
| ---: |
| Description |


| Operating principle: | Characteristics: | References: |
| :--- | :--- | :--- |
| page $2 / 266$ | page $2 / 267$ | page $2 / 268$ |

## Dimensions

ASI SAFEMON•, ASI SAFEMON•B


## LED details



## ASI SAFEMON1, ASI SAFEMON1B

1 AS-Interface line supply (green)
2 AS-Interface line fault (red)
3 Restart signal (yellow)
4 Safety outputs closed (green)
5 Safety outputs open (red) or output error (flashing red)

## ASI SAFEMON2, ASI SAFEMON2B

## Output 1

1 AS-Interface line supply (green)
2 AS-Interface line fault (red)
3 Restart signal (yellow)
4 Safety outputs closed (green)
5 Safety outputs open (red) or output error (flashing red)

## Output 2

6 AS-Interface line supply (green)
7 AS-Interface line fault (red)
8 Restart signal (yellow)
9 Safety outputs closed (green)
10 Safety outputs open (red) or output error (flashing red)

Operating principle, presentation

Safety automation system solutions
Safety solutions on AS-Interface cabling system Safety interfaces

Operating principle

## Presentation

Interfaces for Harmony ${ }^{\circledR}$ Ø 22 mm Emergency stop

Interfaces for products with M12 connector

Interfaces for products with ISO entry

Interfaces premounted in Emergency stop mushroom head pushbutton stations XAL K, with M12 entry

Interfaces for mounting in enclosure for Harmony ${ }^{\circledR}$ Ø 22 mm Emergency stop mushroom head pushbuttons

Safety is incorporated into the AS-Interface cabling system by adding a safety monitor and safety interfaces connected together with other standard AS-Interface components on the yellow cable.

Safety information is exchanged only between the safety monitor, the AS-Interface line master and the safety interfaces. This is transparent for the other standard AS-Interface components. Based on this principle, AS-Interface cabling systems that are already installed can be updated with safety functions without having to replace the existing components (master, I/O interfaces, power supplies, etc.).

Safety circuits are diagnosed readily, and with no additional wiring, by the standard AS-Interface cabling system master communicating with the safety monitor via the yellow cable.


Metal

$1 \times$ M12 entry


Plastic

$2 \times$ M12 entries


ISO M16 or M20 entry

"Turn to release"


Environment, characteristics

## Safety automation system solutions Safety solutions on AS-Interface cabling system Safety interfaces

| Safety interface type |  |  | $\begin{aligned} & \text { ASI } \\ & \text { SSLB4 } \end{aligned}$ | $\begin{aligned} & \text { ASI } \\ & \text { SSLB5 } \end{aligned}$ | $\begin{aligned} & \text { ASI } \\ & \text { SSLC1 } \end{aligned}$ | $\begin{aligned} & \text { ASI } \\ & \text { SSLC2 } \end{aligned}$ | ASI SSLLS | ASI SEA1C | ASI SEK1C | $\begin{array}{\|l} \text { ASI } \\ \text { SSLE4 } \end{array}$ | $\begin{array}{\|l} \text { ASI } \\ \text { SSLE5 } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Environment |  |  |  |  |  |  |  |  |  |  |  |
| Products designed for max. use in safety related parts of control systems (conforming to EN 954-1/ISO 13849-1) |  |  | Category 4 max. |  |  |  |  |  |  |  |  |
| Conformity to standards |  |  | $\begin{array}{\|l\|} \hline \text { EN/IEC 60947-5-1, } \\ \text { EN/IEC 60204-1, } \\ \text { EN/ISO 13850 } \\ \text { (pending), } \\ \text { EN/IEC 60947-5-5 } \\ \text { (pending) } \end{array}$ |  | EN/IEC 60947-5-1, EN/IEC 60204-1 |  |  | EN 1088/ISO 14119, EN/IEC 61496-1, <br> EN/IEC 60947-5-3, <br> EN 574/ISO 13851 <br> EN/IEC 60204-1, <br> EN/ISO 12100, <br> EN/ISO 13850 |  |  |  |
| Product certifications |  |  | UL, CSA, TÜV |  |  |  |  | UL, CSA |  |  |  |
| Degree of protection | Conforming to IEC 529 |  | IP 20 |  | IP 67 |  |  | IP 65 |  | IP 00 |  |
| AS-Interface profile |  |  | 0.B.F.F |  |  |  |  |  |  |  |  |
| Addressing |  |  | Using adjustment terminal ASI TERV2 |  |  |  |  |  |  |  |  |
| Ambient air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | $-10 \ldots+55$ |  |  |  |  |  |  |  |  |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-25 \ldots+85$ |  |  |  |  |  |  |  |  |
| Mechanical characteristics |  |  |  |  |  |  |  |  |  |  |  |
| Mechanical durability | In thousands of operating cycles |  | 0.3 |  | - |  | - | 0.3 |  | - |  |
| Shock resistance |  |  | 10 gn |  |  |  |  |  |  |  |  |
| Vibration resistance |  |  | 5 gn |  |  |  |  |  |  |  |  |
| Electrical characteristics |  |  |  |  |  |  |  |  |  |  |  |
| Supply by AS-Interface line | Voltage | V | Via AS-Interface, --- 24 |  |  |  |  |  |  |  |  |
|  | Voltage limits |  | -15... $+15 \%$ |  |  |  |  |  |  |  |  |
| Consumption |  | W | 1.2 |  |  |  |  |  |  |  |  |
| Consumption on AS-Interface line |  | mA | 45 |  |  |  |  |  |  |  |  |
| Connection on AS-Interface line | IDC (Insulation Displacement Connector) |  | $\square$ |  | - |  | - | - |  | - |  |
|  | Connector (type) |  | - |  | - (M12) |  | - | - (M12) |  | - |  |
| Note: The technical details of the system are described in the Schneider Electric AS-Interface guide, in the safety monitor hardware and software manuals and in the configuration software on "www.schneider-electric.com". |  |  |  |  |  |  |  |  |  |  |  |



| References |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Interfaces for $\varnothing 22$ Emergency stop |  |  |  |  |
| Type | Type of contact | Connection on AS－Interface line | Reference | Weight kg |
| Metal | N／C＋N／C | IDC | ASI SSLB4 | 0.080 |
| Plastic | N／C＋N／C | IDC | ASI SSLB5 | 0.040 |
| Interfaces for products with connector |  |  |  |  |
| Type | Number of contacts | Connection on AS－Interface line | Reference | Weight kg |
| $1 \times \mathrm{M12}$ entry（1） | 2 | Connector | ASI SSLC1 | 0.040 |
| $2 \times \mathrm{M} 12$ entries（1）（2） | 2 | Connector | ASI SSLC2 | 0.050 |
| Interfaces for products with ISO entry |  |  |  |  |
| Type | Number of contacts | Connection on AS－Interface line | Reference | Weight kg |
| 1 x ISO M16 entry（1）（3） | 2 | IDC | ASI SSLLS | 0.040 |
| Interfaces premounted in Emergency stop mushroom head pushbutton stations XAL K |  |  |  |  |
| Type | Number of contacts | Connection on AS－Interface line | Reference | Weight kg |
| ＂Turn to release＂ | 2 | Connector | ASI SEA1C | 0.170 |
| Key release（ ${ }^{\circ}$ 455）（4） | 2 | Connector | ASI SEK1C | 0.190 |

Interfaces for mounting in enclosure for Harmony ${ }^{\circledR} \varnothing 22 \mathrm{~mm}$ Emergency stop mushroom head pushbuttons

| Type | Number of <br> contacts | Connection on <br> AS－Interface line | Reference | Weight <br> $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- | ---: |
| Metal | 2 | Connector | ASI SSLE4 | 0.060 |
| Plastic | 2 | Connector | ASI SSLE5 | 0.025 |


| Addressing accessories |  |  |  |
| :--- | :--- | :--- | :--- |
| Description | Application | Reference |  |$\quad 0.060$


| Accessories |  |  |  |
| :---: | :---: | :---: | :---: |
| Type | Material | Unit reference | Weight kg |
| Adaptor for ISO M2O （sold in lots of 5） | Metal | DE9 R12016 | 0.040 |
| Ø 40 red mushroom head Emergency stop buttons，turn to release（4） | Metal | ZB4 BS844 | 0.060 |
|  | Plastic | ZB5 AS844 | 0.050 |
| $\varnothing 40$ red mushroom head Emergency stop buttons，key release（ $\mathrm{n}^{\circ}$ 455）（4） | Metal | ZB4 BS944 | 0.098 |
|  | Plastic | ZB5 AS944 | 0.071 |

（1）To be used with yellow AS－interface＂standard＂version cable XZC B•••••๐．
The yellow AS－interface＂TPE＂version cable XZC Bゃゃゃ७๑H cannot be used with the safety interfaces ASI SSLC• and ASI SSLLS．
（2）Only use pre－wired connectors XZ CP1541L•
（3）For ISO M20 product，see adaptor．
（4）For other＂mushroom head＂buttons，please refer to our＂Control and signalling components＂ catalogue．

| Operating principle： | Characteristics： |
| :--- | :--- |
| page $2 / 270$ | page $2 / 271$ |

Dimensions, connections

Safety automation system solutions
Safety solutions on AS-Interface cabling system
Safety interfaces


## ASI SSLE4



ASI SSLE5


## Connections

ASI SSLC1

Safety automation system solutions
Preventa safety modules


For Emergency stop and limit switch monitoring (modules integrated in TSX Micro PLCs)



## Module type

Pages

EN 954-1 - category 3/ISO 13849-1, pr EN 954-2,
EN 1088/ISO 14119,
IEC 61508-SIL 2,
EN/IEC 60204-1,
EN/ISO 12100,
EN/ISO 13850
2 N/O
4N/C

10 bit

1 bit

1 bit

1 bit

10 LED
$=-24 \mathrm{~V}$

TSX Micro

## TSX DPZ 10D2A

$2 / 278$


For Emergency stop and limit switch monitoring (modules integrated in TSX Premium PLCs)


EN 954-1 - category 4/ISO 13849-1, EN 1088/ISO 14119,
pr IEC 61508-SIL 3 ,
EN/IEC 60204-1
EN/ISO 12100,
EN/ISO 13850

| $2 \mathrm{~N} / \mathrm{O}$ |
| :--- |
| $12 \mathrm{~N} / \mathrm{C}$ |
| 24 bit |
| 2 bit |
| 1 bit |
| 1 bit |
| 28 LED |
| $=24 \mathrm{~V}$ |
| TSX Premium |

TSX Premium

## TSX PAY 262

Presentation, description

## Safety automation system solutions <br> Modicon TSX Micro automation platform <br> Preventa safety module type TSX DPZ

## Presentation



Solution with safety relay and separate PLC


Simplification using the safety module integrated in the PLC

The TSX DPZ 10D2A Emergency stop monitoring module integrated into the TSX Micro PLC combines:

- The ease of use of Preventa safety modules.
- PLC diagnostics performance.

It also maintains all the advantages of a standard PLC (extended choice of I/O, ease of installation, flexibility of hardware and software developments, etc).

The TSX DPZ 10D2A Emergency stop monitoring module combines a Preventa (XPS) hard-wired safety relay and a discrete acquisition function in a half-slot, for full diagnostics of input contacts and the state of safety circuit outputs.

The TSX DPZ 10D2A safety module is used to interrupt one or more Emergency or safety stop control circuits in complete safety, in accordance with EN/IEC 60204-1.

The proven safety of hard-wired technology and the capacity of the TSX Micro PLC make module TSX DPZ 10D2A the optimum solution for making machines more reliable, safer, more compact and more cost-effective.

## Application developments requiring safety systems and PLC diagnostics

LModule TSX DPZ 10D2A is suitable for Emergency stop and limit switch monitoring applications, requiring a level of safety up to category 3 (1) according to EN 954-1/ ISO 13849-1 (safety related parts of control systems).
(1) For more information on control system safety categories, please consult the chapter 6 of this catalogue.

## Description

Emergency stop monitoring module TSX DPZ 10D2A comprises:
1 A metal casing with a locking system for fixing the module in its slot. This system is only accessible when the screw terminal block is removed.

2 A removable screw terminal block for connecting sensors and preactuators.
3 A cover giving access to the screw terminal block, which also holds the marker legend.

# Safety automation system solutions Modicon TSX Micro automation platform Preventa safety module type TSX DPZ 

Safety module TSX DPZ 10D2A provides the following functions:
■ Monitoring of 1 to 4 dual (or single), N/C (normally closed) contacts in pushbuttons, Emergency stops or limit switches on safety guards for an Emergency stop or immediate safety stop system (category 0 Emergency stop conforming to EN/ISO 13850).
■ Hard-wired safety module identical to Preventa safety module XPS:
$\square 2$ N/O safety output circuits,
$\square$ category 3 .

- Safety module independent of the TSX Micro PLC processor: the PLC does not affect the safety module.

■ 10 LEDs on the TSX Micro PLC display panel: power supply failure and full diagnostics of the safety system.

- Electronic data acquisition units for full diagnostics of the safety system:
$\square$ reading the state of the 8 pushbutton or limit switch inputs,
$\square$ reading the enable input and the feedback loop,
$\square$ reading the control signal of the 2 safety outputs,
$\square$ monitoring the external power supply for the module.
This electronic data acquisition is designed so that the first failure will not adversely affect the safety function. If the safety system uses more sensors, it is possible to daisy-chain several TSX DPZ 10D2A modules.


## Schematic diagram

To ensure correct operation of the safety function whatever the first failure, the following must be used :
■ At the inputs: Emergency stop pushbuttons or safety limit switches with dual contacts.

- At the outputs: if relaying is required, use relays with guided contacts.

■ Module power supply: use an F1 protection fuse (see characteristics on page 2/278).


| Characteristics: | References: | Connections: |
| :--- | :--- | :--- |
| page $2 / 278$ | page $2 / 278$ | page $2 / 279$ |

Characteristics, references

Safety automation system solutions
Modicon TSX Micro automation platform
Preventa safety module type TSX DPZ

Standards and certifications

| Standards | Whole machine | Electrical equipment of industrial machines |
| :--- | :--- | :--- | :--- |
|  |  | Emergency stop device |
|  | Product | Safety of machinery: safety related parts of control <br> systems |
| Certifications |  | Specific requirements |

## EN/IEC 60204-1, EN 12100

 EN/ISO 13850EN 954-1 category 3/ISO 13849-1, pr EN 954-2,
EN 1088/ISO 14119 IEC 61508 (SIL 2)
IEC 1131-2 or EN 61131-2, CSA 22-2, UL 508
BG, INERIS, INRS, UL, CSA

## General characteristics

| Power supply | Nominal voltage | V | $-=24$ |
| :--- | :--- | :--- | :--- |
|  | Limit operating voltage | V | $-\ldots 21.6 \ldots 30$ |
|  | Error signalling | V | $-\ldots<16$ |
|  | Maximum consumption | mA | $<200$ |
| Protection via external F1 fuse | Conforming IEC 947-5-1 | A | 1 (gl) |
| Consumption on internal 5 V |  | mA | $<20$ |
| Isolation |  | kV | 4 (overvoltage category III, degree of pollution 2) |

Characteristics of discrete inputs

| Nominal voltage |  | V | -24 |
| :--- | :--- | :--- | :--- |
| Modularity | Emergency stop or limit switch discrete inputs |  | 8 |
|  | Feedback loop discrete input |  | 1 |
| Logic |  |  | Positive |
| Inrush current |  | A | $10 / 100 \mu \mathrm{~s}$ |
| Isolation between input and earth |  | V rms | $1500-50 / 60 \mathrm{~Hz}$ for 1 minute |
| Power | Dissipated in the module | W | $<4.5$ |

Characteristics of safety relay outputs


TSX DPZ 10D2A

## Connections:

page 2/279

Category 3 wiring diagrams (redundant inputs and outputs): recommended applications


The states of all the contacts in the input circuit are read by the PLC. The consistency test carried out by the PLC program on the input contacts enables it to signal and locate precisely the faulty contact(s).
When using less than 4 dual contacts, the input terminals not in use must be linked. For example, if contacts S0 and S4 are not in use, a bridge is required between terminals 14 and 12 and terminals 13 and 15 .

Wiring diagram with single contacts
Connection of 4 sensors with dual contacts


[^28]Suitable for use with existing wiring; with one contact on the safety module and one contact for diagnostics, this wiring enables global reading of the state of contacts S4 to S7 and individual reading of contacts S0 to S3.
The consistency test carried out by the PLC program on the inputs enables it to signal any inconsistency with partial location of the fault.

Connecting TSX DPZ 10D2A modules in series
Connection of 4 sensors with dual contacts for existing installations


The connection of safety relay outputs in series enables diagnostics for up to 32 single or dual contact pushbuttons or limit switches. The number of modules connected in series is limited by the number of slots available on the TSX Micro PLC.

# Safety automation system solutions <br> Modicon Premium automation platform Preventa safety modules type TSX PAY 



## Presentation

TSX PAY safety modules integrated in the Premium PLC combine :
$\square$ the simplicity of use of Preventa safety modules
$\square$ the high performance of PLC diagnostics
in addition to the advantages of a standard PLC (extended choice of I/O, simplicity of setup, flexibility for hardware and software developments, etc).

TSX PAY safety modules incorporate in a single module, a Preventa (XPS) hard-wired safety block and an electronic data acquisition unit for complete diagnostics of input contacts and the state of outputs in the safety system.

TSX PAY safety modules are used to safely interrupt one or more Emergency stop or safety stop control circuits according to the standards EN/IEC 60204-1 and EN/ ISO 13850.

The proven safety of hard-wired technology and the performance of Premium PLCs make the TSX PAY modules the optimum solution for creating machines which are more available, safer, more compact and lower in cost.

Solution for applications requiring safety systems and high-performance diagnostics

The solution, integrated safety modules, enables complete diagnostics on the entire safety system. This diagnostics quickly locates the faulty contact, pushbutton cables, or limit switch, without additional contacts on the inputs and without any additional wiring.

TSX PAY safety modules have their own power supplies and operate independently of the PLC processor.

TSX PAY modules are suitable for Emergency stop and limit switch monitoring applications, demanding a level of safety up to category 4 according to standard EN 954-1/ISO 13849-1 (parts of control systems relating to safety).

## Functions

## TSX PAY modules offer the following functions:

■ Monitoring of 1 to 12 double or single pushbutton contacts, Emergency stop and limit switches for safety guards for an Emergency stop or immediate stop safety system (Emergency stop category 0 according to standard EN/ISO 13850).

- Hard-wired safety block identical to Preventa XPS safety modules:
- 2 or 4 N/O (normally open) safety outputs,
- 12 double contact inputs.

■ Safety block independent of the Premium PLC processor: the PLC does not operate on the safety module.

- 28 LEDs on the module display block: for complete diagnostics of the safety
system.
■ Electronic data acquisition units for complete diagnostics of the safety system: $\square$ read the status of the 24 inputs (image of the status of the 12 pushbuttons or limit switches)
- read the enable input,
$\square$ read the feedback loop,
$\square$ read the safety outputs control,
$\square$ monitor the external power supply of the module.
This electronic data acquisition is designed so that the safety function is not compromised by any failure. If the safety system uses more sensors, it is possible to connect several TSX PAY modules.


## TSX PAY 262 module schematic

To ensure the safety function irrespective of the first failure, it is compulsory to use:
■ For the inputs: Emergency stop pushbuttons or safety limit switches with double contacts
■ For the outputs: if relaying is necessary, use a guided contact relay

- On the module power supply : an F1 protection fuse (see page 2/283 characteristics).


Description, connection principle

Safety automation system solutions
Modicon Premium automation platform
Preventa safety modules type TSX PAY


Description<br>TSX PAY safety modules comprise on the front panel :<br>1 A rigid IP 20 casing to hold and protect the electronic card.<br>2 A display block ( 32 LEDs) showing operating modes, faults and the status of the safety system.<br>3 A high density 44-way SUB-D connector for connecting the safety system.<br>4 A 6-way removable screw terminal block for connecting the safety outputs.<br>5 Marking for labelling the safety outputs.<br>6 Marking for the external power supply of the module.

## Connection principle

Two types of connection for TSX PAY safety modules are available:


## Standard wiring

A TSX CPP 301 three metre cable is fitted with a 44-way SUB-D moulded, elbow connector at one end, and flying leads differentiated by a colour code at the other end.

This wiring system conforms to the standard EN 954-1/ISO 13849-1.

## Fast wiring

Using the Telefast 2 pre-wired system facilitates the installation of TSX PAY safety modules by giving access to inputs on the safety system via screw terminals.

Connection is carried out using TSX CPP •02 cables fitted with 44-way SUB-D moulded, elbow connectors at both ends.

The Telefast ABE 7CPA13 sub-base enables the connection of 12 double or single contact inputs, the power supply, reset inputs and the feedback loop.

This wiring system conforms to the standard EN 954-1/ISO 13849-1.

| Standards and certifications |  |  |
| :---: | :---: | :---: |
| Type of modules |  | $\left.\right\|^{\text {TSXPAY } 262}$ TSXPAY 282 |
| Standards Mactine | Machine electrical equipment | ENIICC 60204,1, ENISO 12100 |
|  |  | ENISO 13850 |
| Product | Machine safety-parts ofcontro <br> safety | EN 954-/ISO 13849-11 categor/ 4, EN 1088/ISO 14119 pr IEC 61508 (SIL 3) |
| PLC | Specificrequirements | IEC 61131-2 (EN6113-2), CSA22-2, UL: 508 |
| Product certifications |  | BG, UL, CSA |

## General characteristics

|  | Nominal voltage | V | $-=24$ |
| :--- | :--- | :--- | :--- |
| Power supply | Operating voltage limit | V | $-=19,2 \ldots .30$ |
|  | Fault indication | V | $-=<20$ |
|  | Maximum consumption | mA | 200 |
| Protection by external <br> F1 fuse | Conforming to IEC 947-5-1 | A | 1 gG |
| Consumption on internal 5 V | mA | $<150$ |  |
| Isolation | kV | 4 (overvoltage category III, degree of pollution 2) |  |

## Characteristics of discrete inputs

| Modularity | Emergency stop or limit switch discrete inputs |  |
| :---: | :---: | :---: |
|  | Reset PB input |  |
|  | Feedback loop input |  |
|  | Reset PB monitoring input |  |
|  | Double or single contact selection input |  |
| Logic |  |  |
| IEC 1131 conformity |  |  |
| Courant d'appel | Maximum | A |
| Isolation between input and earth |  | V eff |
| Power | Dissipated in the module | W |


| 12 double or single contacts |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 |  |  |  |
| 1 |  |  |  |
| 1 |  |  |  |
| 1 |  |  |  |
| Positive |  |  |  |
| Type 1 |  |  |  |
| 0,5 |  |  |  |
| $500-50 / 60 \mathrm{~Hz}$ for 1 min |  |  |  |
| < 5 |  |  |  |
| 2 volt-free outputs |  | 4 volt-free outputs |  |
| ~ 19... 250 |  |  |  |
| -- 17... 127 |  |  |  |
| 2,5 |  |  |  |
| 30 |  |  |  |
| $\sim 24$ | $\sim 48$ | $\sim 110$ | $\sim 220$ |
| 60 | 120 | 280 | 550 |


| Modularity |  |  | 2 volt-free outputs |  | 4 volt-free outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating voltage limit | a.c | V | ~ 19... 250 |  |  |  |
|  | d.c | V | -- 17... 127 |  |  |  |
| Maximum thermal current (Ithe) |  | A | 2,5 |  |  |  |
| Minimum current |  | mA | 30 |  |  |  |
| a.c. load | Inductive  <br> AC-15 duty Voltage <br>  Power | V | $\sim 24$ | $\sim 48$ | $\sim 110$ | ~ 220 |
|  |  | VA | 60 | 120 | 280 | 550 |
| d.c. load | Inductive Voltage <br> $D C-13$ duty <br> $(L / R=100 \mathrm{~ms})$  | V | --2 24 |  |  |  |
|  |  | VA | 60 |  |  |  |
| Response timee |  | ms | <10 |  |  |  |
| Type of contact |  |  | AgCdO gold plated |  |  |  |
| External protection of Conforming to IEC 947-5-1 <br> outputs by F2 fuse <br> cress-sction |  | A | 4 gG |  |  |  |
| Cross-section of connecting cables | Without cable end | mm ${ }^{\text {2 }}$ | 0.2...2.5 |  |  |  |
|  | With cable end | $\mathrm{mm}^{2}$ | 1,5 |  |  |  |
| Isolation between input and earth | Insulation voltage conforming to DIN VDE 0110 part 2 | V | 300 |  |  |  |
|  | Test voltage | V eff | $1500-50 / 60 \mathrm{~Hz}$ for 1 min |  |  |  |
| Environment |  |  |  |  |  |  |
| Temperature | Operation | ${ }^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ |  |  |  |
|  | Storage | ${ }^{\circ} \mathrm{C}$ | $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ |  |  |  |
| Degree of protection | Conforming to IEC 529 |  | IP 20 |  |  |  |

## Characteristics of safety relay outputs



TSXPAY 262


| Connection accessory <br> Description <br> For <br> connection on TSX PAY 2•2 <br> screw terminal | Type of connector on | Reference | Weight |
| :--- | :--- | :--- | :--- |
| kg |  |  |  |

$\begin{array}{lllll}$\cline { 3 - 4 } \& \& 2 m \& TSX CPP 202 \& 0.260 <br> \cline { 3 - 5 } \& \& 3 m \& TSX CPP 302 \& 0.360 <br> \hline $\left.\begin{array}{l}\text { For standard } \\ \text { wiring }\end{array} & \begin{array}{l}\text { 44-way SUB-D } \\ \text { connector }\end{array} & \begin{array}{l}\text { Flying leads } \\ \text { with colour- } \\ \text { coded wires }\end{array} & 3 \mathrm{~m} & \text { TSX CPP 301 }\end{array}\right] 0.330$


ABE-7CPA13

| Safety modules |  |  |  |
| :---: | :---: | :---: | :---: |
| Type of input -. 24 V | Safety outputs | Connections Reference (1) | Weight kg |
| 12 Emergency stops or limit switches (double or single contacts), | 2 N/O <br> (volt-free) <br> 2.5 A (Ithe) | Inputs: 44-way SUB-D connector TSX PAY 262 Outputs: screw terminal (supplied) | 0.430 |
| 1 reset button, <br> 1 feedback <br> loop, <br> 1 reset monito | $4 \mathrm{~N} / \mathrm{O}$ (volt-free) 2.5 A (Ithe) | Inputs: 44-way SUB-D connector TSX PAY 282 Outputs: screw terminal (supplied) | 0.490 |

## Connection accessory

(1) Product supplied with a multilingual quick reference guide.

Input channel connection schemes
Wiring 1 input channel: single contact

## Wiring 2 input channels: double contacts



Single contact wiring is not suitable for applications which require a category 3 or 4 safety level.
Not all faults are detected, a short-circuit on a contact is not detected.
When using less than 12 single contacts, connect the input terminals which are not being used.
For applications with more than 12 single contacts, it is possible to use several TSX PAY modules by wiring the outputs in series.

Double contact wiring of the inputs is necessary for creating applications which require a category 3 or 4 safety level.
When prompted, all the first faults are detected and located. A
short-circuit between the 2 inputs is detected.
When using less than 12 double contacts, connect the input terminals which are not being used.


For applications with more than 12 double contacts, it is possible to use several TSX PAY modules by wiring the outputs in series
Safety output connection schemes


The design of a category 3 or 4 immediate stop system requires redundancy and checking, on request, of the power supply breaker devices.

[^29]Manual reset without start button monitoring


Manual reset with start button monitoring

## Reset function configurations



The wiring of $\mathrm{N} / \mathrm{C}$ contacts ( K 3 and K 4 ) enables this check on each request. Relays K3 and K4 must be mechanically linked contact relays.

When TSX PAY modules cut the power directly, it is necessary to connect the terminals Y1 and Y2/S33.

| Characteristics: | References: |
| :--- | :--- |
| page $2 / 283$ | page $2 / 284$ |

## Safety switches

$\qquad$General3/6 to 3/17

## Guard switches, safety switches

■ Presentation, General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3/18

- Metal, types XCS A, XCS B, XCS C, XCS E
- Turret head, 1 or cable entries M20 x 1.53/20
- Cable entries tapped for $n^{\circ} 13(\operatorname{Pg} 13.5)$ cable gland ..... 3/22
- Cable entries tapped 1/2" NPT ..... 3/24
- Plastic, double insulated, fixed head, type XCS MP, Pre-cabled, length m, 5 m or 10 m ..... 3/32
- Plastic, turret head, types XCS PA, XCS TA and XCS TE,
$\square 1$ or cable entries M16 x 1.5 . ..... 3/36
$\square$ Cable entries tapped for $n^{\circ} 11$ (Pg 11) cable gland ..... 3/38
$\square$ Cable entries tapped 1/2" NPT ..... 3/40
Guard switches with rotary lever or spindle operator
- Presentation, General characteristics ..... 3/46
- Plastic, double insulated, turret head,types XCS PL, XCS TL, XCS PR and XCS TR$\square 1$ or cable entries M16 $\times 1.5$3/48
$\square$ Cable entries tapped for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland ..... 3/50
- Cable entries tapped 1/2" NPT ..... 3/52
Coded magnetic switches
- Presentation, General characteristics ..... $3 / 54$
- Plastic,$\square$ pre-cabled3/56
- connector on flying lead. ..... 3/57
- Accessories. ..... 3/58
Coded magnetic systems
- Presentation, General characteristics ..... 3/66
- Plastic, solid-state PNP type output,
$\square$ Pre-cabled connection ..... 3/68
- M12 connector connection ..... 3/69
- Accessories. ..... 3/70
Safety limit switches
Miniature design, metal
- Presentation, General characteristics ..... 3/74
- Pre-cabled, type XCS M ..... 3/76
Compact design, Complete switches
- Presentation, General characteristics ..... 3/78
- Metal, type XCS D, with 1 cable entry ..... 3/80
■ Plastic, type XCS P, with 1 cable entry ..... 3/82


## Safety mats

Selection guide: Safety mats ..... 3/84
Preventa safety mats, type XY2 TP ..... 3/86
Protect Area Design: Software configurator for safety installations incorporating light curtains or safety mats. ..... $3 / 88$
Safety light curtains
Selection guide: Safety light curtains ..... 3/96
General ..... 3/98
Safety light curtains, type 4
For finger or hand protection
■ Compact light curtains with solid-state output, type XUS LT ..... 3/104
For body protection

- Compact light curtains with solid-state output,type XUS LP3/112
- with connector. ..... 3/113
■ with terminal block. ..... 3/114
Safety light curtains, type 2
For hand protection
■ Slim, compact light curtains with solid-state output, type XUS LN ..... 3/120
For body protection
- Preventa safety modules and single-beam photo-electric sensors, type XPS CM ..... $3 / 134$
Accessories for safety light curtains types 2 and 4 ..... $3 / 124$

Selection guide
Safety detection solutions
Safety switches

Protection of operators by stopping the machine when the actuator (attached to
machine guard) is withdrawn from the head of the switch
All heavy industrial machines, with quick rundown time (1) All heavy and light industrial machines, with slow rundown time (2)

## Guard switches



IEC/EN 60947-5-1, UL 508, CSA C22-2 n 14 , JIS C4520 IEC/EN 60204-1, EN 1088/ISO 14119, EN/ISO 12100

## UL, CSA

Metal
IP 67

| $40 \times 113.5 \times 44$ | $52 \times 113.5 \times 44$ | $98 \times 146 \times 44$ |
| :--- | :--- | :--- |
| $30 \times 60$ | $88 \times 95$ |  |


| Without locking of actuator. | Manual locking and unlocking | Locking and unlocking of |
| :--- | :--- | :--- |
| Turret head: 8 positions for | of actuator by pushbutton or | actuator by solenoid (either |
| insertion of actuator. | key operated lock (can be | on energisation or on |
|  | mounted on left or right-hand | de-energisation). Manual |
|  | side of switch head). | unlocking (using key lock) of |
|  | Turret head: 8 positions for <br> insertion of actuator. | actuator in abnormal <br> conditions. |
|  |  | Turet head: 8 positions for <br> insertion of actuator. |
|  |  |  |


| Safety contacts actuated by the actuator. Slow break with positive opening operation |  |
| :---: | :---: |
| $\begin{aligned} & \text { N/C + N/O + N/O (2 N/O staggered) } \\ & N / C+N / C+N / O \text { (N/O staggered }) \\ & N / C+N / C+N / C \end{aligned}$ | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}(2 \mathrm{~N} / \mathrm{O}$ <br> staggered) <br> $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}(\mathrm{N} / \mathrm{O}$ <br> staggered) <br> $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$ <br> $+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ auxiliary contact <br> with positive opening operation, controlled by solenoid |


| Screw clamp terminals. Tapped entry for $n^{\circ} 13$ cable gland, tapped ISO M20 $\times 1.5$ or tapped <br> $1 / 2^{\prime \prime}$ NPT |
| :--- |
| 1 cable entry |


| XCS A | XCS B, XCS C | XCS E |
| :--- | :--- | :--- |
| 3/18 |  |  |
| (1) Stopping time of machine less than time taken for operator to access hazardous zone. |  |  |
| (2) Stopping time of machine greater than time taken for operator to access hazardous zone. |  |  |



IEC/EN 60947-5-1, IEC 68-2-30, UL 508, CSA C22-2 n ${ }^{\circ}$ 14, JIS C4520
IEC/EN 60204-1, EN 1088/ISO 14119, EN/ISO 12100

| cULus, BG | UL, CSA |  |  |
| :--- | :--- | :--- | :--- |
| Plastic |  |  |  |
| IP 67 | $50 \times 93.5 \times 30$ | Centres: $20 / 22$ or 40.3 | Centres: $20 / 22$ |
| $30 \times 87 \times 15$ |  |  |  |
| Centres: $20 / 22$ |  | Without locking of actuator. <br> Optional accessory: guard retaining device. <br> Turret head: 8 positions for insertion of actuator. | Le-energisation). <br> Turret head: 8 positions for insertion of actuator. |
| Without locking of <br> actuator. <br> Fixed head. <br> 2 positions for insertion of <br> actuator. |  |  |  |

Safety contacts actuated by the actuator. Slow break with positive opening operation

| ```N/C + N/O (N/O staggered) N/C + N/C N/C + N/C + N/O (N/O staggered) N/C +N/C + N/C``` | $\begin{aligned} & \text { N/C + N/O } \\ & \text { N/C+N/O (N/O staggered) } \\ & \text { N/O + N/C make before } \\ & \text { break } \\ & \text { N/C + N/C } \\ & \text { N/C + N/O + N/O (2 N/O } \\ & \text { staggered) } \\ & \text { N/C + N/C +N/O } \\ & N / C+N / C+N / O(N / O \\ & \text { staggered }) \end{aligned}$ | $\begin{aligned} & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}(2 \mathrm{~N} / \mathrm{O} \\ & \text { staggered }) \\ & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}(\mathrm{~N} / \mathrm{O} \\ & \text { staggered }) \\ & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C} \end{aligned}$ | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ (N/O staggered) <br> N/O + N/C make before break <br> N/C + N/C <br> + N/C auxiliary contact with positive opening operation, controlled by solenoid |
| :---: | :---: | :---: | :---: |
| Pre-cabled, 4 or $6 \times 0.5 \mathrm{~mm}^{2}$, $\mathrm{L}=2$ or 5 or 10 m | Screw clamp terminals. Tapped entry for $\mathrm{n}^{\circ} 11$ cable gland, tapped ISO M16 $\times 1.5$ or tapped $1 / 2^{\prime \prime}$ NPT. |  |  |
| - | 1 cable entry | 2 cable entries | 1 cable entry |


| $X C S$ MP | XCS PA | XCS TE |
| :--- | :--- | :--- | :--- |
| $3 / 18$ |  |  |

# Safety detection solutions <br> Safety switches 


$\square$

Product certifications
Enclosure
Degree of protection

| Dimensions Switch |
| :--- |
| $\left(w \times h \times d\right.$ or $\begin{array}{l}\text { Fixings } \\ \varnothing) \text { in } \mathrm{mm}\end{array}$ |



Contact blocks or outputs


## Type references

Protection of operators by stopping the machine when the operating lever (attached to hinged machine guard) is displaced by $5^{\circ}$
All light industrial machines fitted with hinged or rotary protective covers with small opening radius
 IEC/EN 60947-5-1, UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$, JIS C4520

IEC/EN 60204-1, EN 1088/ISO 14119, EN/ISO 12100

UL, CSA

Plastic

IP 67

| $30 \times 87.5 \times 30$ | $52 \times 108.4 \times 30$ | $30 \times 96 \times 30$ | $52 \times 117 \times 30$ |
| :---: | :---: | :---: | :---: |
| Centres: 20/22 | Centres: 20/22 or 40.3 | Centres: 20/22 | Centres: 20/22 or 40.3 |
| 2 types of lever: straight or elbowed (flush with rear of switch) 3 lever positions: to left, centred or to right Turret head: 4 positions. |  | 2 types of spindle: length 30 mm or 80 mm Turret head: 4 positions. |  |
| Slow break safety contacts with positive opening operation $\mathrm{N} / \mathrm{C}$ contacts open when lever displaced by more then $5^{\circ}$ |  |  |  |
| ```N/C + N/O (N/O staggered) N/C + N/C N/C + N/O + N/O (2 N/O staggered) N/C + N/C + N/O (N/O staggered)``` | ```N/C + N/O + N/O (2 N/O staggered) N/C + N/C + N/O (N/O staggered) N/C + N/C + N/C``` | $\begin{aligned} & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}(\mathrm{~N} / \mathrm{O} \text { staggered }) \\ & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C} \\ & \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}(2 \mathrm{~N} / \mathrm{O} \\ & \text { staggered } \\ & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}(\mathrm{~N} / \mathrm{O} \\ & \text { staggered }) \end{aligned}$ | $\begin{aligned} & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}(2 \mathrm{~N} / \mathrm{O} \\ & \text { staggered }) \\ & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}(\mathrm{~N} / \mathrm{O} \\ & \text { staggered }) \\ & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C} \end{aligned}$ |

Tapped entry for $n^{\circ} 11$ cable gland, tapped ISO M16 x 1.5 or tapped $1 / 2^{\prime \prime}$ NPT

| 1 cable entry | 2 cable entries | 1 cable entry | 2 cable entries |
| :--- | :--- | :--- | :--- |
| - | - | - | - |
| - | - | - | - |
| XCS PL | XCS TL | XCS PR | XCS TR |

Protection of operators by stopping the machine when the gate is opened

All light industrial machines fitted with access gates with imprecise guidance and/or subjected to frequent washing

Protection of operators by stopping the machine when the gate is opened

All machines with quick rundown time

## Coded magnetic switches, <br> pre-cabled or with connector on flying lead

Coded magnetic system

## Codedmagnetic system



| - |  |  | - | XCS D and XCS P: <br> tapped entry for Pg 13.5 cable gland, tapped ISO M20 x 1.5 or tapped $1 / 2^{\prime \prime}$ NPT |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | 1 cable entry |
| $\begin{aligned} & 2 \text { contacts: } 4 \times 0.25 \mathrm{~mm}^{2}, \\ & \mathrm{~L}=2 \text { or } 5 \text { or } 10 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 2 \text { contacts: } 4 \times 0.25 \mathrm{~mm}^{2}, \\ & 3 \text { contacts: } 6 \times 0.25 \mathrm{~mm}^{2} \\ & \mathrm{~L}=2 \text { or } 5 \text { or } 10 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 2 \text { contacts: } 4 \times 0.25 \mathrm{~mm}^{2} \\ & \mathrm{~L}=2 \text { or } 5 \text { or } 10 \mathrm{~m} \end{aligned}$ | XCS DM3 : $6 \times 0,25 \mathrm{~mm}^{2}$ <br> XCS DM4 : $8 \times 0,25 \mathrm{~mm}^{2}$ <br> $\mathrm{L}=2$ or 5 or 10 m | $\begin{aligned} & \text { XSC M: } 7 \times 0.5 \mathrm{~mm}^{2} \text {, or } 9 \times 0.34 \mathrm{~mm}^{2} \text {, } \\ & \mathrm{L}=1 \text { or } 2 \text { or } 5 \mathrm{~m} \end{aligned}$ |  |
| M8 on 0.15 m flying lead | M 12 on 0.15 m flying lead | M 12 on 0.15 m flying lead | M12 connector (A coding) | - |  |
| XCS DMC | XCS DMP | XCS DMR | XCS DM3/XCS DM4 | XCS M | XCS D/XCS P |
| $3 / 56$ and 3/57 |  |  | 3/66 | 3/74 | 3/82 |

# Safety detection solutions 

Guard switches

## Refer to standards

EN/ISO 12100-2 and EN 1088/ISO 14119

Removable or moveable protective guards for potentially dangerous machine functions must be used in conjunction with locking or interlocking devices.
Application requiring an interlocking device: high inertia (long rundown time) machines.
An interlocking device must be used when the rundown time is greater than the time it takes for a person to reach the danger zone.
This device ensures that the guard remains locked until the potentially dangerous movement has stopped.

The mechanical actuator guard switches, specifically designed for machine guarding applications, provide an ideal solution for the locking or interlocking of movable guards associated with industrial machinery. They meet the requirements of standards EN/ISO 12100, EN 294/ISO 13852, EN 1088/ISO 14119 and IEC/EN 60204-1. They contribute to the protection of operators working on potentially dangerous machines by breaking the start control circuit of the machine when a protective guard is opened or removed, using positive opening operation contacts, thus stopping the dangerous movement of the machine.
The removal/opening of the guard (after the dangerous movement has stopped) can either be:

- at the time the machine is switched-off for low inertia machines (machines where the rundown time is less than the time it takes for the operator to access the hazardous zone), or
- delayed for high inertia machines (machines where the rundown time is greater than the time it takes for the operator to access the hazardous zone).

Guard switches used in conjunction with a PREVENTA safety module enable designers, with reference to EN 954-1/ISO 13849-1, to establish category 4 control systems.
Safety related parts of control systems should be developed taking into account the results of an appropriate Risk Assessment (EN 1050/ISO 14121 - EN/ISO 12100-1 and 2).

The start command for the machine can only be initiated following correct operation of the guard switch.
On its release, the N/C safety contacts are opened by positive action or, for coded magnetic switches, change state (must be monitored using a PREVENTA safety module).

Guard switches incorporate slow break or snap action contacts with positive opening operation (except for coded magnetic switches where this is not possible). For mechanical actuator guard switches, on closing of the guard the actuator fitted to it enters the head of the switch, operates the multiple interlock device and closes the $\mathrm{N} / \mathrm{C}$ contacts. For coded magnetic switches, the presence of the magnet causes the contacts to change state.

All guard switches are designed to accept a few millimetres of misalignment between the actuator and the switch in order to compensate for mechanical play, vibration, etc.

Both mechanically and magnetically actuated guard switches are designed to be operated by specific actuators so that they cannot be defeated in a simple manner using common tools, rods, metal plates, simple magnets, etc. When loosening the fixing screws for re-orientation of the turret head on mechanical actuator guard switches, the head itself remains attached to the switch body and the contact states remain unchanged.
All guard switches and safety limit switches are designed in such a manner that it is virtually impossible to adjust the head setting, remove the switch or gain access to the contacts without using the appropriate tool.
There are various methods for obtaining a higher level of tamper proofing, for example:

- using a cage device to prevent the insertion of a spare actuator or magnet, or any other foreign body,
- fixing the actuator or coded magnet to the guard by means that make it very difficult to remove (riveting or welding).

Metal case guard switches
with mechanical actuator

Plastic case guard switches
with mechanical actuator

## Without locking of actuator



Metal case guard switches for use on machines with low inertia and operating in normal conditions (no vibration or shock and guard mounted vertically, without risk of rebound on closing), thus eliminating unintentional opening of the guard.

## With locking of actuator and manual unlocking



Metal case guard switches for use on heavy machines with low inertia and operating in arduous conditions (shock or vibration exist), whereby the guard could open unintentionally.
A key operated lock or a pushbutton enables the positive locking of the guard and its subsequent unlocking.

## With interlocking and locking of actuator by solenoid



Metal case guard switches for use on machines with high inertia or necessitating a controlled opening of the protective guard.
The locking of the moving guard can either be on de-energisation or energisation of the solenoid. A key operated lock enables manual unlocking of the guard in the event of an interlocking circuit malfunction, and also provides extra safety for maintenance personnel likely to be working on the machine.
The switches incorporate 2 LEDs: one indicating guard "open/closed" and the other, guard "locked/ unlocked".

Without locking of actuator


Plastic case guard switches for use on light machines with low inertia.
For use in arduous conditions (shock or vibration exist, guard not vertical or risk of rebound on closing) where the guard could open unintentionally, a guard retaining device (XCS PA or XCS TA) is available as an accessory.

With interlocking and locking of actuator by solenoid


Plastic case guard switches for use on machines with high inertia or necessitating a controlled opening of the protective guard.
The locking of the moving guard can either be on de-energisation or energisation of the solenoid. A special tool enables manual unlocking of the guard in the event of an interlocking circuit malfunction, and also provides extra safety for maintenance personnel likely to be working on the machine.

Safety detection solutions
Guard switches, safety limit switches and coded magnetic systems

Rotary lever and spindle operated guard switches for hinged guards

## Safety limit switches

## With head for rotary movement (lever or spindle)

Plastic case guard switches with straight or elbowed operating lever or spindle operator. Specifically designed for small industrial machines fitted with small sized hinged doors, covers or protective guards.
They protect the operator by immediately stopping the dangerous movement of the machine as soon as the rotary lever or spindle displacement reaches an angle of $5^{\circ}$.

## With head for linear movement (plunger) or rotary movement (lever)



Metal or plastic case limit switches.
For use on machines with low inertia and also on machines with high inertia, when used in conjunction with actuator operated guard switches, for monitoring access doors and/or guards. When used on their own, they are always installed in "positive mode" or combined in pairs, with one switch being in "positive mode" and the other in "negative mode".

## With an associated coded magnet



Plastic case guard switches for use on machines with low inertia.
Specifically designed for industrial machines fitted with doors, covers or guards with imprecise guiding.
They are ideally suited for machines subjected to frequent washing or liquid spray.
They protect the operator by immediately stopping any dangerous movement, as soon as the distance

between the switch and its magnet is greater than 8 or 5 mm , depending on the switch model.


With dedicated transmitter


Plastic case system for use on machines with low inertia.
Specifically designed for industrial machines fitted with one or more doors, covers or guards with imprecise guiding
They are ideally suited for machines subjected to frequent washing or liquid spray and that are not necessarily equipped with an enclosure or control cabinet.
These self-contained category 3 (SIL 2) or 4 (SIL 3) systems protect the operator by immediately stopping any dangerous movement, as soon as the distance between the transmitter and receiver is greater than 10 mm .

## Safety detection solutions <br> Metal case guard switches

## Actuators

## Turret head

## Safety contacts

## All metal case guard switches are fitted with a square turret head which can be rotated through $360^{\circ}$ in $90^{\circ}$ steps



8 directions of actuation are possible for the actuator:

- 4 in the horizontal plane,
- 4 from above the switch (4 alternative positions of the actuator slot, depending on the orientation of the head).
When loosening the fixing screw for re-orientation of the operating head, the head itself remains attached to the body and the contact states remain unchanged.

Metal case guard switches incorporate a 3-pole contact block with positive opening operation, which is actuated by insertion or withdrawal of the actuator attached to the guard.

The withdrawal of the actuator opens the N/C safety contact(s), even in the event of the contact sticking or welding.
The 3-pole contact block enables redundant safety circuits to be established (for example: N/C + N/C or N/C + N/O) and also, to provide signalling (for example: PLC, illuminated beacon, etc.).


Their oblong fixing holes enable simple adjustment when mounting on moving guards.
A pivoting actuator (both horizontally and vertically) is available when using guard switches in conjunction with hinged guards or guards with imprecise guiding.
Straight actuators are supplied with an adaptor shank for simple replacement of an XCK J guard switch by an XCS switch, without the need to drill additional fixing holes for the switch or actuator.

## LED indicators

An orange LED (optional for guard switches type XCS A, XCS B and XCS C, standard for guard switches type XCS E) indicates the position of the machine guard:
LED illuminated: actuator not inserted in head of switch, N/C
contact(s) open, guard open.
LED not illuminated: actuator inserted in head of switch, N/C
contact(s) closed, guard closed. contact(s) closed, guard closed.

A green LED (incorporated on guard switches type XCS E) indicates the locking of the machine guard:
LED not illuminated: actuator not inserted in head of switch: the
machine cannot be operated,
LED illuminated: actuator inserted in head of switch and actuator
locked. The machine is either ready for starting, running or
decelerating to a standstill.

LED not illuminated: actuator not inserted in head of switch: the perated,
locked. The machine is either ready for starting, running or decelerating to a standstill.

## Safety detection solutions <br> Metal case guard switches

Manual locking/unlocking by
pushbutton or key operated lock on
XCS B and XCS C

Locking/unlocking by solenoid on XCS E

## Key operated lock on XCS E

The pushbutton or key operated lock fitted to guard switches type XCS B and XCS C allows manual locking/unlocking of the machine guard


Their use is not necessary for the normal operation of the guard switch.
For ease of access, the pushbutton or lock may be mounted on the right or the left of the guard switch head.
For guard switches type XCS C, when the machine guard is locked (key in position "LOCK"), the resistance to forcible withdrawal of the actuator fitted to the guard is $\mathbf{1 5 0}$ daN. The key is removable from the locking device in the "LOCK" position.

Guard switches type XCS E incorporate a solenoid for locking/unlocking of the machine guard

With the machine guard closed and locked, the resistance to forcible withdrawal of the actuator fitted to the guard is 200 daN.

In addition to the 3-pole contact block, positively operated by the actuator fitted to the guard, XCS E guard switches incorporate a $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ or N/C + N/C contact block mechanically linked to the solenoid.
The N/C contact(s) are for use in the safety circuit of the machine and the N/O contact for signalling the status of the solenoid.

Guard switches type XCS E are fitted with a key operated lock allowing the unlocking of the machine guard whilst being held in the lock position by the solenoid (for use by authorised personnel only)

The manual unlocking of the guard using the key operated lock is useful in the following cases:


- whilst the machine is undergoing maintenance (with the key turned to the "UNLOCK" position and then removed, the level of protection is higher in preventing an accidental machine start. The safety for maintenance personnel is thus improved),
- in the event of a power failure,
- in the event of an interlocking circuit malfunction (interlocked condition maintained: positive safety). The electrical supply providing the unlocking via the solenoid always takes priority over manual unlocking using the key operated lock.
The lock fitted to standard guard switches has key withdrawal from the "LOCK" and "UNLOCK" positions.


## Safety detection solutions

Metal case guard switches

Example of operation for an XCS E guard switch with locking on de-energisation of solenoid

| Machine status | Stopped, de-energised | Stopped, energised | Stopped, ready to start | Running | Stopping sequence | Stopped, energised |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Guard position | Open | Open | Closed | Closed | Closed | Closed |
| Guard status | Free | Free | Free | Locked | Locked | Free |
| Solenoid status | $\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$ | $\begin{aligned} & \text { "1" } \\ & \text { (energised) } \end{aligned}$ | $\begin{aligned} & " 1 " \\ & \text { (energised) } \end{aligned}$ | $\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$ | $\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$ | $\begin{aligned} & " 1 " \\ & \text { (energised) } \end{aligned}$ |
| 3-pole contact state for XCS E5••• |  |  |  |  |  |  |
| 3-pole contact state for XCS E7••• |  |  |  | $\begin{array}{c\|c\|c\|} \bar{N} \mid & \bar{m} \mid & \stackrel{m}{\mid} \\ \hline & \\ N & ल & \ddagger \end{array}$ |  |  |
| Functions | Machine at rest. | Machine cannot be operated. | Guard closed, actuator can be locked. It will be locked as soon as the start instruction is given. | Start instruction given, the machine is running. | Stop instruction given, the machine stops gradually (deceleration then complete stop of motor). | Machine has stopped. <br> The guard can be opened. |
| Contact states (N/C + N/O) of solenoid |  |  |  |  | $\begin{array}{c\|c\|} \mathfrak{g} & \text { in } \\ \text { g } & \text { in } \end{array}$ | $\begin{array}{l\|l} \text { o } & \text { in } \\ \hline \text { g } & \text { in } \end{array}$ |
| Contact states (N/C + N/C) of solenoid |  |  |  |  |  | $\begin{array}{c\|c\|} \substack{2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline} \end{array}$ |


| Orange LED |  |  |
| :--- | :--- | :--- |
| Green LED |  |  |
| Safety circuit of <br> the machine | Open | Open |

## Actuators

## Turret head

## The actuators are common to all plastic case guard switches



Their oblong fixing holes enable simple adjustment when mounting on moving guards.

A pivoting actuator (both horizontally and vertically) is available when using guard switches in conjunction with hinged guards or guards with imprecise guiding.

Straight actuators are supplied with an adaptor shank for simple replacement of an XCK P guard switch by an XCS PA switch, or an XCK T guard switch by an XCS TA switch, without the need to drill additional fixing holes for the switch or the actuator.

Guard switches XCS PA, XCS TA and XCS TE are fitted with a square turret head which can be rotated through $360^{\circ}$ in $90^{\circ}$ steps. Guard switches XCS MP have a fixed head


8 directions of actuation are possible for the actuator:

- 4 in the horizontal plane ( 1 for XCS MP),
- 4 from above the switch ( 1 for XCS MP)
(4 alternative positions of the actuator slot, depending on the orientation of the head).

When loosening the 2 fixing screws for re-orientation of the operating head, the head itself remains attached to the body and the contact states remain unchanged (XCS PA, XCS TA, XCS TE).

The guard switches incorporate either a 2-pole contact block (XCS MP, XCS PA and XCS TE) or a 3-pole contact block (XCS MP, XCS PA and XCS TA), with positive opening operation, which is actuated by insertion or withdrawal of the actuator attached to the guard

## XCS PA, XCS TE


or XCS PA, XCS TA

or XCS MP


In addition, guard switches type XCS TE incorporate a $\mathrm{N} / \mathrm{C}$ contact block (with positive opening operation) actuated by the solenoid. The N/C contact is for use in the safety circuit of the machine. The withdrawal of the actuator opens the N/C safety contact(s), even in the event of the contact sticking or welding.
The 2-pole N/C + N/C or 3-pole N/C + N/C + N/O or N/C + N/C + N/C (XCS TA/MP only) contact block enables category 3 control circuits to be established conforming to
EN 954-1/ISO 13849-1 by using both N/C safety contacts in redundancy, or a category 1 control circuit by using one N/C contact in the safety circuit and the other N/C contact for signalling (for example: PLC, illuminated beacon, etc.). Alternatively, these guard switches used in conjunction with a PREVENTA XPS safety module establish a category 4 control circuit. Designers should follow the relevant recommendations for validation of control systems.

Guard retaining device

The guard retaining device XCS Z21 can be used with all plastic case guard switches type XCS PA and XCS TA that are used in conjunction with either the wide (XCS Z12) or pivoting (XCS Z13) actuator

It assists in holding the guard closed by providing an extra retaining force of 5 daN.

It is specially suited for use with light machines operating in arduous conditions (vibration, mechanical shock, guard not vertical, risk of guard rebound on closing, etc.).

It can be used for horizontal actuator actuation directions as well as those from above.

Locking/unlocking
by solenoid on
XCS TE

Unlocking by
special tool for
XCS TE

Guard switches type XCS TE incorporate a solenoid for locking/unlocking of the machine guard


With the machine guard closed and locked, the resistance to forcible withdrawal of the actuator fitted to the guard is 50 daN.
In addition to the 2-pole contact block, positively operated by the actuator fitted to the guard, XCS TE guard switches incorporate a N/C contact block mechanically linked to the solenoid.
The N/C contact is for use in the safety circuit of the machine.

Guard switches type XCS TE are supplied with a special tool 1 that enables unlocking of the machine guard whilst being held in the locked position by the solenoid (for use by authorised personnel only)


The manual unlocking of the guard using the tool 1 is useful in the following cases: - whilst the machine is undergoing maintenance (with the tool turned to the "UNLOCK" position and then removed, the level of protection is higher in preventing an accidental machine start. The safety for maintenance personnel is thus improved),

- in the event of a power failure,
- in the event of an interlocking circuit malfunction (interlocked condition maintained: positive safety). The electrical supply providing the unlocking via the solenoid always takes priority over manual unlocking using the special tool.

| Machine status | Stopped, de-energised | Stopped, energised | Stopped, ready to start | Running | Stopping sequence | Stopped, energised |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Guard position | Open | Open | Closed | Closed | Closed | Closed |
| Guard status | Free | Free | Free | Locked | Locked | Free |
| Solenoid status | $\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$ | $\begin{aligned} & \text { "1" } \\ & \text { (energised) } \end{aligned}$ | $\begin{aligned} & \text { "1" } \\ & \text { (energised) } \end{aligned}$ | $\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$ | $\begin{aligned} & \text { "O" } \\ & \text { (de-energised) } \end{aligned}$ | $\begin{aligned} & \text { "1" } \\ & \text { (energised) } \end{aligned}$ |
| 2-pole contact state for XCS TE5••• |  |  |  | $$ |  |  |
| 2-pole contact state for XCS TE7••• |  | $\begin{aligned} & \bar{N} L \bar{\Gamma} \\ & \sim \sim \\ & \sim \end{aligned}$ | $\begin{array}{l\|l\|l} \bar{\sim} & \bar{F} \\ & \sim & \sim \end{array}$ |  |  | $\begin{array}{l\|l\|l} \bar{\sim} & \bar{F} \\ & \sim & \sim \\ & \sim \end{array}$ |
| Functions | Machine at rest. | Machine cannot be operated. | Guard closed, actuator can be locked. It will be locked as soon as the start instruction is given. | Start instruction given, the machine is running. | Stop instruction given, the machine stops gradually (deceleration then complete stop of motor). | Machine has stopped. The guard can be opened. |
| Contact state of solenoid | $\begin{aligned} & \text { ल } \\ & \text { ल } \end{aligned}$ | $\begin{aligned} & \bar{m} L \\ & \sim \end{aligned}$ | $\begin{aligned} & \bar{m} L \\ & \infty \end{aligned}$ | $\begin{aligned} & \text { ल } \\ & \text { ल} \end{aligned}$ | $\begin{aligned} & \text { ल } \\ & \text { ल} \end{aligned}$ | $\begin{aligned} & \bar{m} L \\ & ल \end{aligned}$ |
| Safety circuit of the machine | Open | Open | Open | Closed | Closed | Open |

# Safety detection solutions <br> Rotary lever and spindle operated guard switches 



2 types of operating lever, 2 spindle lengths


These guard switches provide a solution for monitoring hinged protective guards with small opening radius on machines with low inertia (no rundown time).
They are specially suitable for existing machines which need to be brought in-line with the latest standards and directives since they can be used in conjunction with existing covers, including those whose mounting is somewhat imprecise.
Mounting of the guard switch improves the machine operator's level of safety by limiting the opening of the protective guard and reducing the risk of touching any moving parts before they have come to a stop.



## Contacts

Coded magnetic switches are fitted with 2-pole (XCS DMC/XCS DMR/XCS DMP) or 3-pole
(XCS DMP) Reed type contacts and are available with or without a "guard closed" LED indicator.
The N/C and N/O contacts change state as soon as the magnet is at a distance from the sensor of approximately 8 mm for types XCS DMP and XCS DMR and approximately 5 mm for type XCS DMC.

## Connection

When used in safety circuits, the Reed technology contacts must always be used in conjunction with a Preventa safety module.

## 1 type of case

- PBT plastic body
- Self-contained range: category 3 (SIL 2) XCS DM3
and category 4 (SIL 3) XCS DM4.
- Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m
- Flying lead with M12 connector


## Technology

Coded "Hall effect" detection

## PNP safety outputs

Integrated self-monitoring using micro-processors. Detection distance from 0 to 10 mm obtained on approach of dedicated transmitter XCS DMT.

## Functions

- Dynamic EDM (External Device Monitoring) only for XCS DM4,
- Fault and short-circuit detection,
- Output diagnostics (non safety related) only for XCS DM4
- LED indicator
- Possible chaining of up to a maximum of 32 systems for XCS DM3 only.


## Applications

## With head for linear movement (plunger) or rotary movement (lever)

Narrow metal case.

- Withpact XCS $\mathbf{M}$
fixing screws or or adjuste, preventing both access to the of the head by non
authorised personnel.
- Torx fixing screws.
A removable cable entry to facilitate wiring.


## Contacts

XCS M3 limit switches are fitted with 3-pole contacts and XCS M4 switches are fitted with 4-pole contacts. 4 versions of complete switches are available incorporating these contacts:

- metal end plunger,
- roller plunger,
- thermoplastic roller lever,
- diameter 19 mm steel roller lever.


## Connection

Pre-cabled switches, either $7 \times 0.5 \mathrm{~mm}^{2}$ or $9 \times 0.34 \mathrm{~mm}^{2}$.

Applications
These switches provide a solution for monitoring covers, guards or grilles on machines with low inertia (quick rundown time), either in conjunction with actuator operated guard switches or not.
When used on their own, they are always installed in "positive mode" or combined in pairs, with one switch being in "positive mode" and the other in "negative mode", and can, when connected to Preventa safety modules, establish a category 4 safety control system.


## With head for linear movement（plunger）or rotary movement（lever）

XCS P．
■ With protective plate，preventing both access to the
fixing screws or adjustment of the head by non
authorised personnel．
■ Torx fixing screws．
A removable cable entry to facilitate wiring．

## Contacts

XCS P3ゃゃゃゃ and XCS D3ゃゃゃゃ limit switches are fitted with 3－pole contacts．
4 versions of complete switches are available incorporating these contacts：
－metal end plunger，
－roller plunger，
－thermoplastic roller lever，
－diameter 19 mm steel roller lever．

These switches provide a solution for monitoring covers，guards or grilles on machines with low inertia（quick rundown time），either in conjunction with actuator operated guard switches or not．
When used on their own，they are always installed in＂positive mode＂or combined in pairs，with one switch being in＂positive mode＂and the other in＂negative mode＂，and can，when connected to Preventa safety modules，establish a category 4 safety control system．


## Safety detection solutions

## Guard switches, actuator operated

Metal, types XCS A, XCS B, XCS C and XCS E Plastic, double insulated, turret head, types XCS MP or XCS PA or XCS TA and XCS TE

Metal, types XCS A, XCS B, XCS C, XCS E

Guard switches with or without locking of the actuator


Pages $3 / 20$ to $3 / 25$
Plastic, types XCS MP, XCS PA XCS TA, XCS TE

## Guard switches with or without locking of the actuator



Pages $3 / 32$ and $3 / 36$ to $3 / 41$

| Environment characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Guard switch type |  | $\begin{aligned} & \text { XCS A, XCS B, XCS C, XCS E } \\ & \text { (metal) } \end{aligned}$ | XCS MP, XCS PA, XCS TA, XCS TE (plastic) |
| Conformity to standards | Products | IEC/EN 60947-5-1, UL 508, CSA C22-2 n 14 |  |
|  | Machine assemblies | IEC/EN 60204-1, EN 1088/ISO 14119, EN/ISO 12100 |  |
| Product certifications |  | UL, CSA | UL, CSA (c UL for XCS MP) |
| Protective treatment |  | Standard version: "TC" |  |
| Ambient air temperature | For operation | $-25 \ldots+70^{\circ} \mathrm{C}\left(-25 \ldots+40^{\circ} \mathrm{C}\right.$ for XCS E and $-25 \ldots+60^{\circ} \mathrm{C}$ for XCS TE) |  |
|  | For storage | $-40 \ldots+70^{\circ} \mathrm{C}\left(-25 \ldots+80^{\circ} \mathrm{C}\right.$ for XCS MP) |  |
| Vibration resistance |  | $5 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to IEC/EN 60068-2-6 ( $6 \mathrm{gn} \mathrm{(10...55} \mathrm{Hz)} \mathrm{for} \mathrm{XCS} \mathrm{MP)}$ |  |
| Shock resistance |  | 10 gn (duration 11 ms ) conforming to IEC/EN 60068-2-27 ( 50 gn (duration 11 ms ) for XCS MP) |  |
| Electric shock protection |  | Class I conforming to IEC/EN 60536 Class 2 conforming to IEC/EN 60536 |  |
| Degree of protection |  | IP 67 conforming to IEC/EN 60529 and IEC/EN 60947-5-1 (1) |  |
| Cable entry |  | 1 entry (XCS A, XCS B, XCS C) or 2 entries (XCS E) tapped for $\mathrm{n}^{\circ} 13$ (Pg 13.5) cable gland, tapped M20 or tapped 1/2" NPT | 1 entry (XCS PA and XCS TE) or 2 entries (XCS TA) tapped for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland, tapped M16 or tapped $1 / 2^{\prime \prime}$ NPT (with adaptor) for XCS TA and XCS TE |
| Connecting cable |  | - | Pre-cabled, either $4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ (XCS MP) |
| Materials |  | XCSA/B/C/E <br> Zamak case | XCS MP/PA/TA/TE/PL/TL/PR/TR <br> Polyamide PA66 fibreglass impregnated enclosure |
|  |  | Actuators (all types): steel XC60, surface treated |  |

[^30] However, when installing take all necessary precautions to prevent the penetration of solid bodies, or liquids with a high dust content, into the actuator aperture. Not recommended for use in saline atmospheres.

## Safety detection solutions <br> Guard switches, actuator operated <br> Metal, types XCS A, XCS B, XCS C and XCS E <br> Plastic, double insulated, turret head, types XCS MP or XCS PA or XCS TA and XCS TE



References， characteristics

## Safety detection solutions

Guard switches
Metal，turret head（1），types XCS A，XCS B，
XCS C and XCS E
1 or 2 cable entries M20 x 1.5 （2）
Type of switch

| LED indication on opening <br> of $N / C$ contacts | Without | 1 orange LED <br> $\sim 24 / 48 \mathrm{~V}$ | Without | Without |
| :--- | :--- | :--- | :--- | :--- |
| References of switches without actuator $\Theta N / C$ contact with positive opening operation $)$ |  |  |  |  |

References of switches without actuator $\Theta$ N／C contact with positive opening operation）

| 3－pole N／C＋N／O＋N／O （2 N／O staggered） slow break（4） | xCS A502 | XCS A512 | XCS B502 | XCS C502 |
| :---: | :---: | :---: | :---: | :---: |
| 3－pole N／C＋N／C＋N／O （N／O staggered） slow break（4） | XCS A702 | XCS A712 | XCS B702 | XCS C702 |
|  | XCS A802 | － | － | － |
| Weight（kg） | 0.440 | 0.440 | 0.475 | 0.480 |
| Complementary characteristics not shown under General characteristics（3／19） |  |  |  |  |
| Actuation speed | Maximum： $0.5 \mathrm{~m} / \mathrm{s}$ ，minimum： $0.01 \mathrm{~m} / \mathrm{s}$ |  |  |  |
| Resistance to forcible withdrawal of actuator | XCS B and XCS C： 1500 N ；XCS E： 2000 N |  |  |  |
| Mechanical durability | XCS A and XCS E：＞ 1 million operating cycles XCS B and XCS C： $\mathbf{0 . 6}$ million operating cycles |  |  |  |
| Maximum operating rate | For maximum durability： 600 operating cycles per hour |  |  |  |
| Minimum force for extraction of actuator | $\geq 20 \mathrm{~N}$ |  |  |  |
| Cable entry | XCS A，XCS B，XCS C： 1 cable entry． <br> XCS E： 2 cable entries <br> Entries tapped M20 1.5 for ISO cable gland．Clamping capacity 7 to 13 mm |  |  |  |
| Materials | Body：zamak．Head：zamak．Safety screws：5－lobe torque．Protective plate：steel． |  |  |  |

References of actuators

|  |  | oper |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Straight actuator | Actuator with wide fixing | Pivoting actuator | Latch for sliding doors （Padlockable in open position） |
| For guard switches XCS A，B，C，E | XCS Z01 | XCS Z02 | XCS Z03 | XCS Z05 |
| Weight（kg） | 0.020 | 0.020 | 0.095 | 0.600 |

（1）Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$ ．Blanking plug for operating head slot included with switch．
（2）For cable entries tapped for $n^{\circ} 13$（Pg 13．5）cable gland，replace the last number in the reference（2）by 1 （see page 3／22）． Example：XCS A502 becomes XCS A501．
（3）Unlocking by pushbutton for XCS Beゃゃ and by key operated lock for XCS Ceゃe．
（4）Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch．
Other versions：please consult your Regional Sales Office．

## Safety detection solutions

## Guard switches

Metal, turret head (1), types XCS A, XCS B,
XCS C and XCS E
1 or 2 cable entries M20 x 1.5 (2)

| Type of switch | With interlocking, locking by solenoid |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Type of interlocking | Locking on de-energisation and unlocking on energisation of solenoid (3). <br> To order a guard switch with locking on energisation and unlocking on de-energisation of the solenoid, replace the 2 nd number (3) by 5 in the references shown below. <br> Example: XCS E5312 becomes XCS E5512.. |  |  |  |  |  |  |
| LED indication | Orange LED: "guard open" signalling. Green LED: "guard closed and locked" signalling. |  |  |  |  |  |  |
| Supply voltage of solenoid | $\begin{aligned} & \sim \text { or }=24 \mathrm{~V} \\ & (50 / 60 \mathrm{~Hz} \text { on } \sim) \end{aligned}$ |  | $\begin{aligned} & \sim \text { or }-\mathrm{F}_{48 \mathrm{~V}} \\ & (50 / 60 \mathrm{~Hz} \text { on } \\ & \sim) \end{aligned}$ | $\begin{array}{\|l} \hline \sim \text { or }-= \\ 110 / 120 \mathrm{~V}(4) \\ (50 / 60 \mathrm{~Hz} \text { on } \sim) \\ \hline \end{array}$ |  | $\begin{aligned} & \sim \text { or }--\quad \\ & 220 / 240 \mathrm{~V}(4) \\ & (50 / 60 \mathrm{~Hz} \text { on } \sim) \end{aligned}$ |  |
| Type of contact on solenoid | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ | N/C + N/O | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ |
| References of switches without actuator ( $\Theta$ N/C contact with positive opening operation) |  |  |  |  |  |  |  |
| 3-pole N/C + N/O + N/O (2 N/O staggered) slow break (5) | XCS E5312 | - | - | - | - | XCS E5342 | - |
|  | XCS E7312 | XCS E73127 | - | XCS E7332 | XCS E73327 | XCS E7342 | XCS E73427 |
|  | XCS E8312 <br> (6) | XCS E83127 (6) | XCS E8322 <br> (6) | - | - | - | - |
| Weight (kg) | 1.140 | 1.140 | 1.140 | 1.140 |  | 1.140 |  |
| Solenoid characteristics |  |  |  |  |  |  |  |
| Load factor | 100\% |  |  |  |  |  |  |
| Rated operational voltage | $\begin{aligned} & \sim \underset{\sim}{\text { or }--~} \\ & 24 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \sim \text { or }-- \\ & 24 \mathrm{~V} \end{aligned}$ | $\begin{array}{\|l} \sim \mathrm{or}-- \\ 48 \mathrm{~V} \end{array}$ | $\begin{aligned} & \sim \text { or }-= \\ & 110 / 120 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & \sim \text { or }-\bar{\prime} \\ & 220 / 240 \mathrm{~V} \end{aligned}$ |  |
| Voltage limits | $-20 \%,+10 \%$ of the rated operational voltage (including ripple on ---) conforming to IEC/EN 60947-1 |  |  |  |  |  |  |
| Service life | 20000 hours |  |  |  |  |  |  |
| Consumption | Inrush: 10 VA. Sealed: 10 VA |  |  |  |  |  |  |
| LED indicator characteristics |  |  |  |  |  |  |  |
| Rated insulation voltage | 50 V conforming to IEC/EN 60947-1 |  |  | 250 V conforming to IEC/EN 60947-1 |  |  |  |
| Current consumption | 7 mA |  |  | 7 mA |  |  |  |
| Rated operational voltage | $\sim$ or -- $24 / 48 \mathrm{~V}$ |  |  |  | $\sim 110 / 240 \mathrm{~V}$ |  |  |
| Voltage limits | ~ or --. 20... 52 V (including ripple) |  |  |  | $\sim 95 . .264 \mathrm{~V}$ (including ripple) |  |  |
| Service life | 100000 hours |  |  |  | 100000 hours |  |  |
| Protection against overvoltages | Yes |  |  |  | Yes |  |  |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) For cable entries tapped for $n^{\circ} 13$ (Pg 13.5) cable gland, replace the last number in the reference (2) by 1 (see page 3/23).

Example: XCS E5312 becomes XCS E5311.
(3) A key operated lock enables forced opening of the interlocking mechanism, by authorised personnel, allowing withdrawal of the actuator and subsequent opening of the N/C safety contacts.
(4) For use on --. 110/120 V or--- 220/240 V, remove the LED indicator module.
(5) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(6) Switches supplied with a single green LED.

Other versions: please consult your Regional Sales Office.

| Dimensions: | Schemes: <br> page $3 / 27$ and $3 / 28$ |
| :--- | :--- |

References， characteristics

## Safety detection solutions

## Guard switches

Metal，turret head（1），types XCS A，XCS B，
XCS C and XCS E
Cable entries tapped for $\mathrm{n}^{\circ} 13(\operatorname{Pg} 13.5)$ cable gland
Type of switch

| LED indication on opening of N／C contacts | Without | $\begin{aligned} & 1 \text { orange LED } \\ & \approx 24 / 48 \mathrm{~V} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1 \text { orange LED } \\ \sim 110 / 240 \mathrm{~V} \end{array}$ | Without | $\begin{aligned} & 1 \text { orange LED } \\ & \sim 24 / 48 \mathrm{~V} \end{aligned}$ | Without | $\begin{aligned} & 1 \text { orange LED } \\ & \sim 24 / 48 \mathrm{~V} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| References of switches without actuator（ $\Theta$ N／C contact with positive opening operation） |  |  |  |  |  |  |  |
| 3-pole N/C + N/O + N/O | XCS A501 | XCS A511 | XCS A521 | XCS B501 | XCS B511 | XCs C501 | XCS C511 |
|  | XCS A701 | XCS A711 | XCS A721 | XCS B701 | － | XCS C701 | － |
|  | XCS A801 | － | － | XCS B801 | － | XCS C801 | － |
| Weight（kg） | 0.440 | 0.440 | 0.440 | 0.475 | 0.475 | 0.480 | 0.480 |

Complementary characteristics not shown under General characteristics（3／19）

| Actuation speed | Maximum： $0.5 \mathrm{~m} / \mathrm{s}$, minimum： $0.01 \mathrm{~m} / \mathrm{s}$ |
| :--- | :--- |
| Resistance to forcible withdrawal of <br> actuator | XCS B and XCS C： $1500 \mathrm{~N} ;$ XCS E： 2000 N |
| Mechanical durability | XCS A and XCS E：$>1$ million operating cycles <br> XCS B and XCS C： 0.6 million operating cycles |
| Maximum operating rate | For maximum durability： 600 operating cycles per hour |
| Minimum force for extraction of actuator | $\geqslant 20 \mathrm{~N}$ |
| Cable entry | XCS A，XCS B，XCS C： 1 cable entry． <br> XCS E： 2 cable entries <br> Entries tapped for n 13 cable gland conforming to NF C 68－300（DIN Pg 13．5）．Clamping capacity 9 to 12 mm |
| Materials | Body：zamak．Head：zamak．Safety screws：5－lobe torque．Protective plate：steel． |

References of actuators

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Straight actuator | Actuator with wide fixing | Pivoting actuator | Latch for sliding doors （Padlockable in open position） |
| For guard switches XCS A，B，C，E | XCS Z01 | XCS Z02 | XCS Z03 | XCS Z05 |
| Weight（kg） | 0.020 | 0.020 | 0.095 | 0.600 |

[^31]Other versions：please consult your Regional Sales Office．

| Dimensions： | Schemes： |
| :--- | :--- |
| page $3 / 27$ and $3 / 28$ | page $3 / 29$ |

## Safety detection solutions

## Guard switches

Metal, turret head (1), types XCS A, XCS B,
XCS C and XCS E
Cable entries tapped for $\mathrm{n}^{\circ} 13(\operatorname{Pg} 13.5)$ cable gland

| Type of switch | With interlocking, locking by solenoid |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Type of interlocking | Locking on de-energisation and unlocking on energisation of solenoid (2). <br> To order a guard switch with locking on energisation and unlocking on de-energisation of the solenoid, replace the 2nd number (3) by 5 in the references shown below. <br> Example: XCS E5311 becomes XCS E5511. |  |  |  |  |  |  |  |
| LED indication | Orange LED: "guard open" signalling. Green LED: "guard closed and locked" signalling. |  |  |  |  |  |  |  |
| Supply voltage of solenoid | $\begin{aligned} & \sim \text { or }-24 \mathrm{~V} \\ & (50 / 60 \mathrm{~Hz} \text { on } \sim) \end{aligned}$ |  | $\begin{aligned} & \sim \text { or }-\mathrm{-r} 48 \mathrm{~V} \\ & (50 / 60 \mathrm{~Hz} \text { on } \sim) \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \sim \text { or -- 110/120 V (3) } \\ & (50 / 60 \mathrm{~Hz} \text { on ~) } \end{aligned}$ |  | $\begin{aligned} & \sim \text { or }--220 / 240 \mathrm{~V} \text { (3) } \\ & (50 / 60 \mathrm{~Hz} \text { on } \sim) \end{aligned}$ |  |
| Type of contact on solenoid | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ | N/C + N/O | 2 N/C | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ |
| References of switches without actuator ( $\Theta$ N/C contact with positive opening operation) |  |  |  |  |  |  |  |  |
|  | XCS E5311 | - | XCS E5321 | - | XCS E5331 | - | XCS E5341 | - |
|  | XCS E7311 | XCS E73117 | XCS E7321 | XCS E73217 | XCS E7331 | XCS E73317 | XCS E7341 | XCS E73417 |
|  | XCS E8311 <br> (5) | XCS E83117 (5) | - | - | XCS E8331 <br> (5) | XCS E83317 | - | XCS E83417 |
| Weight (kg) | 1.140 |  | 1.140 |  | 1.140 |  |  |  |
| Solenoid characteristics |  |  |  |  |  |  |  |  |
| Load factor | 100\% |  |  |  |  |  |  |  |
| Rated operational voltage | $\sim$ or -- 24 V |  | $\sim$ or $-=48 \mathrm{~V}$ |  | $\sim$ or --- 110/120 V |  | $\sim$ or --. $220 / 240 \mathrm{~V}$ |  |
| Voltage limits | $-20 \%,+10 \%$ of the rated operational voltage (including ripple on ---) conforming to IEC/EN 60947-1 |  |  |  |  |  |  |  |
| Service life | 20000 hours |  |  |  |  |  |  |  |
| Consumption | Inrush: 10 VA. Sealed: 10 VA |  |  |  |  |  |  |  |
| LED indicator characteristics |  |  |  |  |  |  |  |  |
| Rated insulation voltage | 50 V conforming to IEC/EN 60947-1 |  |  |  | 250 V conforming to IEC/EN 60947-1 |  |  |  |
| Current consumption | 7 mA |  |  |  | 7 mA |  |  |  |
| Rated operational voltage | $\sim$ or - 24/48 V |  |  |  | $\sim 110 / 240 \mathrm{~V}$ |  |  |  |
| Voltage limits | $\sim$ or --. $20 \ldots 52 \mathrm{~V}$ (including ripple) |  |  |  | ~ 95... 264 V (including ripple) |  |  |  |
| Service life | 100000 hours |  |  |  | 100000 hours |  |  |  |
| Protection against overvoltages | Yes |  |  |  | Yes |  |  |  |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) A key operated lock enables forced opening of the interlocking mechanism, by authorised personnel, allowing withdrawal of the actuator and subsequent opening of the N/C safety contacts.
(3) For use on $=-110 / 120$ V or $-=220 / 240 \mathrm{~V}$, remove the LED indicator module.
(4) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(5) Switches supplied with a single green LED.

Other versions: please consult your Regional Sales Office.

References, characteristics

## Safety detection solutions

## Guard switches <br> Metal, turret head (1), types XCS A, XCS B, <br> XCS C and XCS E <br> Cable entries tapped 1/2" NPT

| Type of switch |  | Without locking of actuator |  |  | \| With locking of actuator, manual unlocking (2) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| LED indication on opening of N/C contacts |  | Without | $\begin{aligned} & 1 \text { orange LED } \\ & \sim 24 / 48 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 1 \text { orange LED } \\ & \sim 110 / 240 \mathrm{~V} \end{aligned}$ | Without | $\begin{aligned} & 1 \text { orange LED } \\ & \sim 24 / 48 \mathrm{~V} \end{aligned}$ | $\begin{array}{\|l} 1 \text { orange LED } \\ \sim 110 / 240 \mathrm{~V} \end{array}$ | Without |
| References of switches without actuator $\Theta$ N/C contact with positive opening operation) |  |  |  |  |  |  |  |  |
| 3-pole N/C + N/O + N/O (2 N/O staggered) slow break (3) |  | XCS A503 | - | XCS A523 | XCS B503 | - | - | - |
|  |  | XCS A703 | XCS A713 | XCS A723 | XCS B703 | XCS B713 | XCS B723 | XCS C703 |
| $\begin{array}{ll\|c\|c\|} \hline \begin{array}{ll} \text { 3-pole N/C + N/C + N/C } \\ \text { slow break (3) } \end{array} & \digamma & \stackrel{\sim}{N} & \bar{m} \\ & \sim & \sim & \sim \\ \hline \end{array}$ |  | XCS A803 | - | - | XCS B803 | - | - | XCS C803 |
| Weight (kg) |  | 0.440 | 0.440 | 0.440 | 0.475 | 0.475 | 0.475 | 0.480 |
| Complementary characteristics not shown under General characteristics (page 3/19) |  |  |  |  |  |  |  |  |
| Actuation speed | Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$ |  |  |  |  |  |  |  |
| Resistance to forcible withdrawal of actuator | XCS B and XCS C: 1500 N ; XCS E: 2000 N |  |  |  |  |  |  |  |
| Mechanical durability | XCS A and XCS E: $>1$ million operating cycles XCS B and XCS C: $\mathbf{0 . 6}$ million operating cycles |  |  |  |  |  |  |  |
| Maximum operating rate | For maximum durability: 600 operating cycles per hour |  |  |  |  |  |  |  |
| Minimum force for extraction of actuator | $\geq 20 \mathrm{~N}$ |  |  |  |  |  |  |  |
| Cable entry | XCS A, XCS B, XCS C: 1 cable entry <br> XCS E: 2 cable entries <br> Entries tapped for 1/2" NPT (USAS B2-1) conduit |  |  |  |  |  |  |  |
| Materials | Body: zamak. Head: zamak. Safety screws: 5-lobe torque. Protective plate: steel. |  |  |  |  |  |  |  |
| References of actuators |  |  |  |  |  |  |  |  |



(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) Unlocking by pushbutton for XCS B $\bullet \bullet \bullet$ and by key operated lock for XCS C $\bullet \bullet \bullet$.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.

Other versions: please consult your Regional Sales Office.

## Safety detection solutions

## Guard switches <br> Metal, turret head (1), types XCS A, XCS B, <br> XCS C and XCS E <br> Cable entries tapped $1 / 2$ " NPT

| Type of switch | \| With interlocking, locking by solenoid |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Type of interlocking | Locking on de-energisation and unlocking on energisation of solenoid (2). <br> To order a guard switch with locking on energisation and unlocking on de-energisation of the solenoid, replace the 2 nd number (3) by 5 in the references shown below. <br> Example: XCS E5313 becomes XCS E5513. |  |  |  |
| LED indication | Orange LED: "guard open" signalling. Green LED: "guard closed and locked" signalling. |  |  |  |
| Supply voltage of solenoid | $\begin{aligned} & \sim \text { or }-24 \mathrm{~V} \\ & (50 / 60 \mathrm{~Hz} \text { on } \sim) \end{aligned}$ |  | $\begin{aligned} & \sim \text { or c 110/120 V (3) } \\ & (50 / 60 \mathrm{~Hz} \text { on } \sim) \end{aligned}$ |  |
| Type of contact on solenoid | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ | N/C + N/O | $2 \mathrm{~N} / \mathrm{C}$ |
| References of switches without actuator ( $\Theta$ N/C contact with positive opening operation) |  |  |  |  |
| 3-pole N/C + N/O + N/O (2 N/O staggered) slow break (4) | XCS E5313 | - | XCS E5333 | - |
|  | XCS E7313 | XCS E73137 | XCS E7333 | XCS E73337 |
| 3-pole N/C + N/C + N/C slow break (4) | XCS E8313 (5) | - | - | - |
| Weight (kg) | 1.140 |  |  |  |
| Solenoid characteristics |  |  |  |  |
| Load factor | $100 \%$ |  |  |  |
| Rated operational voltage | $\sim$ or --. 24 V |  | $\sim$ or $-=110 / 120 \mathrm{~V}$ |  |
| Voltage limits | $-20 \%,+10 \%$ of the rated operational voltage (including ripple on ---) conforming to IEC/EN 60947-1 |  |  |  |
| Service life | 20000 heures |  |  |  |
| Consumption | Inrush: 10 VA. Sealed: 10 VA |  |  |  |
| LED indicator characteristics |  |  |  |  |
| Rated insulation voltage | 50 V conforming to IEC/EN 60947-1 |  | 250 V conforming to IEC/EN 60947-1 |  |
| Current consumption | 7 mA |  | 7 mA |  |
| Rated operational voltage | $\sim$ or -- 24/48 V |  | $\sim 110 / 240 \mathrm{~V}$ |  |
| Voltage limits | $\sim$ or --- $20 \ldots 52 \mathrm{~V}$ (including ripple) |  | $\sim 95 . .264 \mathrm{~V}$ (including ripple) |  |
| Service life | 100000 hours |  | 100000 hours |  |
| Protection against overvoltages | Yes |  | Yes |  |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) A key operated lock enables forced opening of the interlocking mechanism, by authorised personnel, allowing withdrawal of the actuator and subsequent opening of the N/C safety contacts.
(3) For use on -- 110/120 V, remove the LED module.
(4) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(5) Switches supplied with a single green LED.

Other versions: please consult your Regional Sales Office.

## Safety detection solutions

## Guard switches

Metal, turret head, types XCS A, XCS B, XCS C and XCS E





XCS Z90

| Separate components |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | For use with | Supply voltage | Reference | Weight kg |
| 1 orange LED indicator module | $\begin{aligned} & \text { XCS A } \\ & \text { XCS B } \end{aligned}$ | $\sim$ or --- $24 / 48 \mathrm{~V}$ | XCS Z31 | 0.040 |
| with cover, seal and 2 fixing screws | XCS C | $\sim 110 / 240 \mathrm{~V}$ | XCS Z32 | 0.040 |
| 1 orange LED + 1 green LED indicator module with cover + lock (1), seal and 4 fixing screws (2 keys included for lock) | XCS E73•• | $\sim$ or --- $24 / 48 \mathrm{~V}$ | XCS Z43 | 0.175 |

(1) Lock incorporated as standard on guard switches XCS E: key withdrawal in LOCK and UNLOCK positions.

| Description | For use <br> with | Key withdrawal <br> positions from lock | Unit reference | Weight <br> $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- | ---: |
| Blanking plugs for <br> operating head slot <br> (Sold in lots of 10) | XCS A, | - | XCS B, C, |  |
| XCS E |  |  |  |  |


| Keys for interlock <br> "forced opening" <br> device | XCS B, C, <br> XCS E | - | XCS Z25 | 0.100 |
| :--- | :--- | :--- | :--- | :--- |
| (Sold in lots of 10) |  |  |  |  |


| Padlocking device | XCS A, | - | XCS Z90 | 0.055 |
| :--- | :--- | :--- | :--- | :--- |
| to prevent insertion | XCS B, C, |  |  |  |
| of actuator, for up to | XCS E |  |  |  |
| 3 padlocks (padlocks <br> not included) |  |  |  |  |


| Description | For use with | Unit reference | Weight <br> $\mathbf{k g}$ |
| :--- | :--- | :--- | ---: |
| $\mathbf{1 / 2 " ~ N P T ~ c o n d u i t ~}$ <br> adaptor <br> (Sold in lots of 5) | XCS A, XCS B, XCS C, XCS E | DE9 RA2012 | 0.048 |
| M20 x 1.5 adaptor <br> (Sold in lots of 5) | XCS A, XCS B, XCS C, XCS E | DE9 RA13520 | 0.010 |

Safety detection solutions
Guard switches
Metal，turret head，types XCS A，XCS B，XCS C and XCS E

Dimensions

## Guard switches

## XCS A•••


$-7$

（1） 1 tapped entry for cable gland
$\varnothing$ ： 2 elongated holes $\varnothing 5.3 \times 7.3$



（1） 1 tapped entry for cable gland
$\varnothing$ ： 2 elongated holes $\varnothing 5.3 \times 7.3$

Guard switches
XCS Eeゃ・•


M20 $\mathbf{x} 1.5$ adaptor DE9 RA13520

（1）M20 $\times 1.5$ tapped entry
（2）Pg 13.5 threaded shank

1／2＂NPT conduit adaptor DE9 RA2012

（1）Tapped entry for $1 / 2^{\prime \prime}$ NPT conduit
（2）$M 20 \times 1.5$ threaded shank
（1） 1 tapped entry for cable gland
Ø： 2 elongated holes $\varnothing 5.3 \times 7.3$

## Safety detection solutions

## Guard switches

Metal, turret head, types XCS A, XCS B, XCS C and XCS E


Fixing axis \% related to actuator.
Operating radius required for actuator

## XCS Z01



## XCS Z02



XCS Z03

$\mathrm{R}=$ minimum radius

| References: | Schemes: |
| :--- | :--- |
| pages $3 / 20$ to $3 / 25$ | page $3 / 29$ |

Setting-up, schemes

## Safety detection solutions

## Guard switches

Metal, turret head, types XCS A, XCS B, XCS C and XCS E

| Setting-up <br> Functional diagrams <br> XCS $\mathbf{5} \bullet \bullet \bullet$ |
| :--- |

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance

Wiring to category 1 conforming to EN 954-1/ ISO 13849-1
Example with 3 -pole N/C + N/O + N/O contact and protection fuse to prevent shunting of the N/C contact, either by cable damage or by tampering.

(1) Signalling contact

Wiring to category 3 conforming to EN 954-1/ISO 13849-1

Example with 3-pole N/C + N/O + N/O contact with mixed redundancy of the contacts and the associated control relays. To activate K1, it is necessary to remove and re-insert the actuator when the supply is switched on.


H 1 : "actuator not inserted" indicator

Wiring to category 4 conforming to EN 954-1/ISO 13849-1. Wiring method used in conjunction with Preventa safety module (The guard switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy)
Method for machines with quick rundown time (low inertia)
Method for machines with long rundown time (high inertia)
Locking or interlocking device based on the principle of redundancy and self-monitoring.
The safety modules ensure these functions.


Locking of actuator and operation in positive mode associated
with a safety module. with a safety module.


Interlocking device for actuator fitted on guard and zero speed detection.

Safety detection solutions
Guard switches with solenoid interlocking Metal, turret head, type XCS E

Wiring to category 1 conforming to EN 954-1/ISO 13849-1
Wiring examples with protection fuse to prevent shunting of the N/C contact, either by cable damage or by tampering.

Locking on de-energisation, N/C + N/O + N/O XCS E53••

(1) Solenoid
(2) Auxiliary contact

E1-E2: Solenoid supply
43-44: Solenoid signalling contact
13-14: Safety contact, available for redundancy
33-X1: LED (orange): actuator withdrawn
51-X1: LED (green): actuator inserted and locked
21-52: Safety pre-wiring obligatory

Locking on energisation, $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$
XCS E55••

(1) Solenoid
(2) Auxiliary contact

E1-E2: Solenoid supply
51-52: Solenoid signalling contact
13-14: Safety contact, available for redundancy
33-X1: LED (orange): actuator withdrawn
43-X1: LED (green): actuator inserted and locked
21-44: Safety pre-wiring obligatory

Note: These schemes are given as examples only, the designer must refer relevant safety standards for guidance.

## Safety detection solutions

## Guard switches with solenoid interlocking Metal, turret head, type XCS E

Wiring to category 3 conforming to EN 954-1/ISO 13849-1
Wiring examples with redundancy for the guard switch contacts, without monitoring or redundancy in the power circuit

Locking on de-energisation, $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$
XCS E73••


## (1) Solenoid

(2) Auxiliary contact

E1-E2: Solenoid supply
43-44: Solenoid signalling contact
21-22 and 31-32: Safety contacts, available for redundancy
13-X1: LED (orange): actuator withdrawn
51-X1: LED (green): actuator inserted and locked
21-52: Safety pre-wiring obligatory

Locking on de-energisation, $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$
XCS E73••7

(1) Solenoid
(2) Auxiliary contact

E1-E2: Solenoid supply
41-42 and 51-52: Solenoid signalling contacts
21-22 and 31-32: Safety contacts, available for redundancy
13-X1: LED (orange): actuator withdrawn
51-X1: LED (green): actuator inserted and locked
21-52 and 42-31: Safety pre-wiring obligatory

## Locking on energisation, $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$

XCS E75••


[^32]| References: | Dimensions: |
| :--- | :--- |
| pages $3 / 20$ to $3 / 25$ | pages $3 / 27$ and $3 / 28$ |

References, characteristics

## Safety detection solutions

## Safety switches

Plastic, double insulated, fixed head, type XCS MP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m
Type of switch | Without locking of operating key


| References of switches without operating key ( $\Theta$ N/C contact with positive opening operation) (1) |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 2-pole N/C + N/O } \\ & \text { break before make, slow break (2) } \end{aligned}$ |  | XCS MP59L• |
| $\begin{aligned} & \text { 2-pole N/C + N/C } \\ & \text { slow break (2) } \end{aligned}$ |  | XCS MP79L• $\Theta$ |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/O } \\ & \text { break before make, slow break (2) } \end{aligned}$ |  | XCS MP70L• |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/C } \\ & \text { slow break (2) } \end{aligned}$ |  | XCS MP80L• |
| Weight (kg) |  | 0.110 |

Complementary characteristics not shown under general characteristics (page 3/19)

| Actuation speed | Maximum: $1.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.05 \mathrm{~m} / \mathrm{s}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Resistance to forcible withdrawal of operating key | 8 N |  |  |  |  |
| Mechanical durability | >1 million operating cycles |  |  |  |  |
| Connection | Pre-cabled, $4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ |  |  |  |  |
| Maximum operating rate | For maximum durability: 1200 operating cycles per hour |  |  |  |  |
| Minimum force for extraction of key | $\geq 8 \mathrm{~N}$ |  |  |  |  |
| References of operating keys |  |  |  |  |  |
| Description | Straight key | Right-angled key | Pivoting key <br> For right-hand door | For left-hand d |  |
|  |  |  |  |  |  |
| For switches XCS MP | XCS Z81 | XCS Z84 | XCS Z83 | XCS Z85 |  |
| Weight (kg) | 0.015 | 0.025 | 0.085 | 0.085 |  |
| Spare parts |  |  |  |  |  |
| Description | Unit reference |  |  |  | Weight kg |
| Blanking plugs (Sold in lots of 10) | XCS Z29 |  |  |  | 0.005 |

(1) Blanking plug for operating head slot included with switch (3). Basic reference, to be completed: replace the $\bullet$ by 2 for a 2 m long cable, by 5 for 5 m long cable or by 10 for a 10 m long cable. Example: XCS MP59L $\bullet$ becomes XCS MP59L10 for a switch with a 10 m long cable.
(2) Schematic diagrams shown represent the contact states whilst the operating key is inserted in the head of the switch.

## Safety detection solutions

## Safety switches

Plastic, double insulated, fixed head, type XCS MP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

## Dimensions

XCS MP

## XCS $\mathbf{Z 8 1}$


(1) $\varnothing 7.6$, length 2,5 or 10 m .



XCS Z83

(1) 2 elongated holes $\varnothing 4.2 \times 6$.

XCS Z85

(1) 2 elongated holes $\varnothing 4.2 \times 6$.

Operation, Functional diagrams

## Safety detection solutions

Safety switches
Plastic, double insulated, fixed head, type XCS MP
Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

Operating radius required for key XCS Z81


XCS $\mathbf{Z 8 3}$
XCS Z84


## XCS $\mathbf{Z 8 5}$



Functional diagrams

## XCS MP59•



Contact operation


Contact closed
Contact open

## Safety detection solutions

## Safety switches

Plastic, double insulated, fixed head, type XCS MP Pre-cabled, length $2 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m

## Connections

Wiring to category 1 conforming to EN 954-1/ ISO 13849-1
Example with 3-pole N/C + N/C + N/O contact and protection
fuse to prevent shunting of the N/C contact, either by cable damage or by tampering.


Wiring to category 3 conforming to EN 954-1/ISO 13849-1

Example with 2-pole N/C + N/O contact with mixed redundancy of the contacts and the associated control relays.
Operating key withdrawal and re-insertion necessary on power-up, in order to activate K1.

(1) Signalling contact

Wiring to category 4 conforming to EN 954-1/ISO 13849-1. Wiring method used in conjunction with Preventa safety module (the key operated safety switch is generally used in conjunction with a standard limit switch)

## Method for machines with quick rundown time (low inertia)

Locking or interlocking mechanism uses the principles of redundancy and autocheck.
The safety modules ensure these functions.


[^33]References, characteristics

## Safety detection solutions

## Guard switches

Plastic, turret head (1), types XCS PA,
XCS TA and XCS TE
1 or 2 cable entries M16 $\times 1.5$ (2)

Type of switch |Without locking of actuator


References of switches without actuator ( $\Theta \mathrm{N} / \mathrm{C}$ contact with positive opening operation)

| 2-pole N/C + N/O (3) <br> break before make slow break | $$ | XCS PA592 | $\Theta$ | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2-pole N/C + N/O (3) <br> snap action |  | XCS PA192 | $\Theta$ |  |  |
| 2-pole N/O + N/C (3) make before break slow break |  | XCS PA692 | $\Theta$ | - |  |
| $\begin{aligned} & \text { 2-pole N/C + N/C (3) } \\ & \text { slow break } \end{aligned}$ | $\left.\begin{array}{l\|l\|} =\mid & \overline{-} \\ \approx & \sim \\ \approx & \approx \end{array} \right\rvert\,$ | XCS PA792 | $\Theta$ | - |  |
| 2-pole N/C + N/C (3) snap action |  | XCS PA292 | $\Theta$ |  |  |
| 3-pole N/C + N/O + N/O (3) (2 N/O staggered) slow break |  | XCS PA892 | $\Theta$ | XCS TA592 | $\Theta$ |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/O (3) } \\ & \text { (N/O staggered) } \\ & \text { slow break } \end{aligned}$ |  | XCS PA992 | $\Theta$ | XCS TA792 | $\Theta$ |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/O (3) } \\ & \text { snap action } \end{aligned}$ |  | XCS PA492 | $\Theta$ | - |  |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/C (3) } \\ & \text { slow break } \end{aligned}$ |  | - |  | XCS TA892 | $\Theta$ |
| Weight (kg) |  | 0.110 |  | 0.160 |  |

Complementary characteristics not shown under General characteristics (page 3/19)

| Actuation speed | Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Resistance to forcible withdrawal of actuator | XCS PA, XCS TA: 10 N ( 50 N using actuators XCS Z12 or XCS Z13 together with guard retaining device XCS Z21) <br> XCS TE: 500 N |  |  |  |
| Mechanical durability | XCS PA, XCS TA: > 1 million operating cycles XCS TE: 1 million operating cycles |  |  |  |
| Maximum operating rate | For maximum durability: 600 operating cycles per hour |  |  |  |
| Minimum force for positive opening | $\geqslant 15 \mathrm{~N}$ |  |  |  |
| Cable entry | XCS PA, XCS TE: 1 entry tapped M16 $\times 1.5$ for ISO cable gland XCS TA: 2 entries tapped M16 $\times 1.5$ for ISO cable gland |  |  |  |
|  | Clamping capacity 7 to 10 mm |  |  |  |
| Materials | Body: zamak. Head: zamak. Safety screws: 5-lobe torque. Protective plate: steel.. |  |  |  |
| References of accessories |  |  |  |  |
|  | Description | For use with | Unit reference | Weight kg |
|  | Blanking plugs for operating head slot (Sold in lots of 10) | $\begin{aligned} & \text { XCS PA, } \\ & \text { XCS TA, XCS TE } \end{aligned}$ | XCS Z28 | 0.050 |
|  | Tool for forced opening of interlocking device (Sold in lots of 10) | XCS TE | XCS Z100 | 0.050 |
|  | Padlocking device <br> to prevent insertion of actuator, for up to <br> 3 padlocks (padlocks not included) | XCS PA, <br> XCS TA, XCS TE | XCS $\mathbf{Z 9 1}$ | 0.053 |
|  | Centreur de clé-languette (4) (Vis de fixation fournis) | $\begin{aligned} & \text { XCS PA, } \\ & \text { XCS TA, XCS TE } \end{aligned}$ | XCS Z200 | 0.022 |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) For cable entries tapped for $n^{\circ} 11$ (Pg 11) cable gland, replace the last number in the reference (2) by 1 (see page 3/38) Example: XCS PA592 becomes XCS PA591.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Do not use with XCS Z91.

Other versions: please consult your Regional Sales Office

| Dimensions: | Schemes: |
| :--- | :--- |
| page $3 / 42$ and $3 / 43$ | page $3 / 44$ |

# Safety detection solutions 

## Guard switches

Plastic, turret head (1), types XCS PA,
XCS TA and XCS TE
1 or 2 cable entries M16 $\times 1.5$ (2)

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) For cable entries tapped for $n^{\circ} 11$ (Pg 11) cable gland, replace the last number in the reference (2) by 1 (see page 3/39). Example: XCS TE5312 becomes XCS TE5311.
(3) A special tool included with the guard switch enables forced opening of the interlocking mechanism, by authorised personnel, allowing withdrawal of the actuator and subsequent opening of the N/C safety contacts.
(4) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch
(5) 2 actuator lengths, XCS Z12: $L=40 \mathrm{~mm}$, XCS Z15: $L=29 \mathrm{~mm}$.
(6) Only for use with guard switches XCS PA and XCS TA (without the actuator centering device XCS Z200), used in conjunction with actuators XCS Z12, XCS Z13 or XCS $Z 15$.

Other versions: please consult your Regional Sales Office.

References, characteristics

## Safety detection solutions

## Guard switches

Plastic, turret head (1), types XCS PA,
XCS TA and XCS TE
Cable entries tapped for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland
| Without locking of actuator


References of switches without actuator $\Theta \mathrm{N} / \mathrm{C}$ contact with positive opening operation)

| 2-pole N/C + N/O (2) <br> break before make slow break |  | XCS PA591 | $\Theta$ | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2-pole N/C + N/O (2) <br> snap action |  | XCS PA191 | $\Theta$ |  |  |
| 2-pole N/O + N/C (2) make before break slow break |  | XCS PA691 | $\Theta$ | - |  |
| $\begin{aligned} & \text { 2-pole N/C + N/C (2) } \\ & \text { slow break } \end{aligned}$ | $\begin{aligned} & =\left\|\begin{array}{l} - \\ \sim \\ \sim \mid \\ \approx \\ \approx \end{array}\right\| \end{aligned}$ | XCS PA791 | $\Theta$ | - |  |
| 2-pole N/C + N/C (2) <br> snap action |  | XCS PA291 | $\Theta$ |  |  |
| 3-pole N/C + N/O + N/O (2) <br> (2 N/O staggered) slow break |  | XCS PA891 | $\Theta$ | XCS TA591 | $\Theta$ |
| 3-pole N/C + N/O + N/O (2) snap action |  | XCS PA391 | $\Theta$ |  |  |
| 3-pole N/C + N/C + N/O (2) (N/O staggered) slow break |  | XCS PA991 | $\Theta$ | XCS TA791 | $\Theta$ |
| 3-pole N/C + N/C + N/O (2) <br> snap action |  | XCS PA491 | $\Theta$ | - |  |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/C (2) } \\ & \text { slow break } \end{aligned}$ |  | - |  | XCS TA891 | $\Theta$ |
| Weight (kg) |  | 0.110 |  | 0.160 |  |

Complementary characteristics not shown under General characteristics (page 3/19)

| Actuation speed | Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Resistance to forcible withdrawal of actuator | XCS PA, XCS TA: 10 N ( 50 N using actuators XCS Z12 or XCS Z13 together with guard retaining device XCS Z21). XCS TE: 500 N |  |  |  |
| Mechanical durability | XCS PA, XCS TA: > 1 million operating cycles; XCS TE: 1 million operating cycles |  |  |  |
| Maximum operating rate | For maximum durability: 600 operating cycles per hour |  |  |  |
| Minimum force for positive opening | $\geqslant 15 \mathrm{~N}$ |  |  |  |
| Cable entry | XCS PA, XCS TE: 1 entry tapped for $\mathrm{n}^{\circ} 11$ cable gland conforming to NF C 68-300 (DIN Pg 11). XCS TA: 2 entries tapped for $n^{\circ} 11$ cable gland conforming to NF C 68-300 (DIN Pg 11). Clamping capacity 7 to 10 mm . |  |  |  |
| Materials | Body: zamak. Head: zamak. Safety screws: 5-lobe torque. Protective plate: steel. |  |  |  |
| References of accessories |  |  |  |  |
|  | Description | For use with | Unit reference | Weight kg |
|  | Blanking plugs for operating head slot (Sold in lots of 10) | $\begin{aligned} & \text { XCS PA, } \\ & \text { XCS TA, XCS TE } \end{aligned}$ | XCS $\mathbf{Z 2 8}$ | 0.050 |
|  | Tool for forced opening of interlocking device (Sold in lots of 10) | XCS TE | XCS Z100 | 0.050 |
|  | Padlocking device to prevent insertion of actuator, for up to 3 padlocks (padlocks not included) | $\begin{aligned} & \text { XCS PA, } \\ & \text { XCS TA, XCS TE } \end{aligned}$ | XCS Z91 | 0.053 |
| (1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch. <br> (2) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch. <br> (3) Do not use with XCS Z91. | Actuator centering device (3) (Fixing screws included) | $\begin{aligned} & \hline \text { XCS PA, } \\ & \text { XCS TA, XCS TE } \end{aligned}$ | XCS Z200 | 0.022 |
|  | 1/2" NPT conduit adaptor <br> (Sold in lots of 10) <br> M16 $\mathbf{x} 1.5$ adaptor (Sold in lots of 10) | XCS PA/TA/TE | DE9RA1012 | 0.048 |
|  |  | XCS PA/TA/TE | DE9RA1016 | 0.048 |

Other versions: please consult your Regional Sales Office

References,
characteristics (continued)

## Safety detection solutions

## Guard switches

Plastic, turret head (1), types XCS PA,
XCS TA and XCS TE
Cable entries tapped for $n^{\circ} 11$ (Pg 11) cable gland


References of actuators and guard retaining device

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Straight actuator | Actuator with wide fixing (5) |  | Pivoting actuator | Right-angled actuator | Guard retaining device (4) |
| For guard switches XCS PA, TA, TE | XCS Z11 | XCS Z12 | XCS Z15 | XCS Z13 | XCS Z14 | XCS Z21 |
| Weight (kg) | 0.015 | 0.015 | 0.012 | 0.085 | 0.025 | 0.080 |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) A special tool included with the guard switch enables forced opening of the interlocking mechanism, by authorised personnel, allowing withdrawal of the actuator and subsequent opening of the N/C safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Only for use with guard switches XCS PA and XCS TA (without the actuator centering device XCS Z200), used in conjunction with actuators XCS Z12, XCS Z13 or XCS Z15.
(5) 2 actuator lengths, XCS Z12: $L=40 \mathrm{~mm}$, XCS Z15: $L=29 \mathrm{~mm}$.

Other versions: please consult your Regional Sales Office.

References, characteristics

## Safety detection solution

## Guard switches

Plastic, turret head (1), types XCS PA,
XCS TA and XCS TE
Cable entries tapped 1/2" NPT

Type of switch
| Without locking of actuator


References of switches without actuator ( $\Theta \mathrm{N} / \mathrm{C}$ contact with positive opening operation)

| 2-pole N/C + N/O (2) break before make slow break |  | XCS PA593 | $\Theta$ | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2-pole N/C + N/O snap action |  | XCS PA193 | $\Theta$ |  |  |
| 2-pole N/O + N/C (2) make before break slow break |  | XCS PA693 | $\Theta$ | - |  |
| $\begin{aligned} & \text { 2-pole N/C + N/C (2) } \\ & \text { slow break } \end{aligned}$ |  | XCS PA793 | $\Theta$ | - |  |
| $\begin{aligned} & \text { 2-pole N/C + N/C } \\ & \text { snap action } \end{aligned}$ |  | XCS PA293 | $\Theta$ |  |  |
| 3-pole N/C + N/O + N/O (2) <br> (2 N/O staggered) <br> slow break |  | XCS PA893 | $\Theta$ | XCS TA593 | $\Theta$ |
| 3-pole N/C + N/C + N/O (2) (N/O staggered) slow break |  | XCS PA993 | $\Theta$ | XCS TA793 | $\Theta$ |
| 3-pole N/C + N/C + N/O snap action |  | XCS PA493 | $\Theta$ | - |  |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/C (2) } \\ & \text { slow break } \end{aligned}$ |  | - |  | XCS TA893 | $\Theta$ |
| Weight (kg) |  | 0.110 |  | 0.160 |  |

## Complementary characteristics not shown under General characteristics (page 3/19)

| Actuation speed | Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Resistance to forcible withdrawal of actuator | XCS PA, XCS TA: 10 N ( 50 N using actuators XCS Z12 or XCS Z13 together with guard retaining device XCS Z21) <br> XCS TE: 500 N |  |  |  |
| Mechanical durability | XCS PA, XCS TA: > 1 million operating cycles; XCS TE: 1 million operating cycles |  |  |  |
| Maximum operating rate | For maximum durability: 600 operating cycles per hour |  |  |  |
| Minimum force for positive opening | $\geqslant 15 \mathrm{~N}$ |  |  |  |
| Cable entry | XCS PA: 1 entry tapped for 1/2" NPT (USAS B2-1) conduit. <br> XCS TE: 1 entry tapped 11 mm and fitted with metal adaptor DE9 RA1012 for 1/2" NPT (USAS B2-1) conduit. <br> XCS TA: 2 entries tapped 11 mm , 1 fitted with metal adaptor DE9 RA1012 for 1/2" NPT (USAS B2-1) conduit. Second entry fitted with blanking plug. |  |  |  |
| Materials | Body: zamak. Head: zamak. Safety screws: 5-lobe torque. Protective plate: steel. |  |  |  |
| References of accessories |  |  |  |  |
|  | Description | For use with | Unit reference | Weight kg |
|  | Blanking plugs for operating head slot (Sold in lots of 10) | $\begin{aligned} & \text { XCS PA, } \\ & \text { XCS TA, XCS TE } \end{aligned}$ | XCS $\mathbf{Z 2 8}$ | 0.050 |
|  | Tool for forced opening of interlocking device (Sold in lots of 10) | XCS TE | XCS Z100 | 0.050 |
|  | Padlocking device <br> to prevent insertion of actuator, for up to <br> 3 padlocks (padlocks not included) | XCS PA, <br> XCS TA, XCS TE | XCS $\mathbf{Z 9 1}$ | 0.053 |
|  | Actuator centering device (3) (Fixing screws included) | XCS PA, <br> XCS TA, XCS TE | XCS Z200 | 0.022 |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.
(2) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(3) Do not use with XCS Z91.

Other versions: please consult your Regional Sales Office

| Dimensions: | Schemes: |
| :--- | :--- |
| page $3 / 42$ and $3 / 43$ | page $3 / 44$ |

page $3 / 42$ and $3 / 43 \quad$ page $3 / 44$

References, characteristics (continued)

## Safety detection solutions

## Guard switches

Plastic, turret head (1), types XCS PA,
XCS TA and XCS TE
Cable entries tapped 1/2" NPT


[^34](2) A special tool included with the guard switch enables forced opening of the interlocking mechanism, by authorised personnel, allowing withdrawal of the actuator and subsequent opening of the N/C safety contacts.
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.
(4) Only for use with guard switches XCS PA and XCS TA (without the actuator centering device XCS Z200), used in conjunction with actuators XCS Z12, XCS Z13 or XCS Z15.
(5) 2 actuator lengths, XCS Z12: $L=40 \mathrm{~mm}$, XCS Z15: $L=29 \mathrm{~mm}$.

Other versions: please consult your Regional Sales Office.

Safety detection solutions
Guard switches
Plastic, turret head, types XCS PA, XCS TA and XCS TE


| References: | Schemes: |
| :--- | :--- |
| pages $3 / 36$ to $3 / 41$ | page $3 / 44$ |

Safety detection solutions

## Guard switches

Plastic, turret head, types XCS PA, XCS TA and XCS TE

$\mathrm{R}=$ minimum radius

## Safety detection solutions

## Guard switches

Plastic, turret head, types XCS PA, XCS TA and XCS TE


## Contact operation

- Contact closed
$\qquad$
Contact open Unstable


## Setting-up

Functional diagrams
XCS TA8••


Contact operation

- Contact closed
$\square$ Contact open
Unstable

Schemes Note: These schemes are given as examples only, the designer must refer to the relevant safety standards for guidance

Wiring to category 1 conforming to EN 954-1/ ISO 13849-1
Example with 3-pole N/C + N/O + N/O contact and protection fuse to prevent shunting of the N/C contact, either by cable damage or by tampering.



Wiring to category 3 conforming to EN 954-1/

## ISO 13849-1

Example with 2-pole N/C + N/O contact with mixed redundancy of the contacts and the associated control relays. To activate K1, it is necessary to remove and re-insert the actuator when the supply is switched on.

(1) Signalling contact

Wiring to category 4 conforming to EN 954-1/ISO 13849-1
Wiring method used in conjunction with safety module
(The guard switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy)

Method for machines with quick rundown time (low inertia)
Locking or interlocking device based on the principle of redundancy and self-monitoring.
The safety modules ensure these functions.


Method for machines with long rundown time (high inertia)


Interlocking device for actuator fitted on guard and zero speed detection.

## Safety detection solutions

## Guard switches

Plastic, turret head, type XCS TE


Wiring to category 3 conforming to EN 954-1/ISO 13849-1
Wiring examples with redundancy for the guard switch contacts, without monitoring


## (1) Solenoid

(2) Solenoid auxiliary contact

E1-E2: Solenoid supply
11-12: Safety contact, available for redundancy

## Presentation

Safety detection solutions
Guard switches with lever or spindle operator Plastic, double insulated, turret head, types XCS PL, XCS TL, XCS PR and XCS TR

With rotary operating head, with elbowed lever (flush with rear of switch) or straight lever, for hinged covers and guards



Pages $3 / 48,3 / 50$ and $3 / 52$
With rotary operating head, with spindle operator, for hinged covers and guards


Pages $3 / 48,3 / 50$ and $3 / 52$
With rotary operating head, with elbowed lever (flush with rear of switch) or straight lever, for hinged covers and guards


Pages $3 / 48,3 / 50$ and $3 / 52$

With rotary operating head, with spindle operator, for hinged covers and guards


## Safety detection solutions

## Guard switches with lever or spindle operator

Plastic, double insulated, turret head, types XCS PL, XCS TL, XCS PR and XCS TR

## Environment characteristics

| Conformity to standards | Products | EN/IEC 60947-5-1, EN/IEC 60947-5-4, UL 508, CSA C22-2 n 14 |
| :---: | :---: | :---: |
|  | Machine assemblies | EN/IEC 60204-1, EN 1088/ISO 14119, EN/ISO 12100 |
| Product certifications |  | UL, CSA, BG |
| Protective treatment |  | Standard version: "TC" and "TH" |
| Ambient air temperature | For operation | $-25 \ldots+70^{\circ} \mathrm{C}$ |
|  | For storage | $-40 \ldots+70^{\circ} \mathrm{C}$ |
| Vibration resistance |  | $50 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to IEC 60068-2-6 |
| Shock resistance |  | 50 gn (duration 11 ms ) conforming to IEC 60068-2-27 |
| Electric shock protection |  | Class 2 conforming to IEC 60536 |
| Degree of protection |  | IP 67 conforming to IEC 60529 |
| Cable entry |  | Depending on model, either: 1 tapped entry for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland, tapped M16 $\times 1.5$ or tapped 1/2" NPT |
| Materials |  | Polyamide PA66 fibre glass impregnated case Stainless steel lever and fixings |
| Contact block characteristics |  |  |
| Rated operational characteristics | 2 and 3 contact versions slow break | ```XCS PL, XCS TL, XCS PR, XCS TR: ~AC-15, A300: Ue=240 V, le = 3 A or Ue=120 V, le =6A All models: =-- DC-13, Q300: Ue=250 V, le = 0.27 A or Ue= 125 V, le=0.55 A conforming to IEC/EN 60947-5-1``` |
| Rated insulation voltage | 2 and 3 contact versions | XCS PL, XCS TL, XCS PR, XCS TR: <br> $\mathrm{Ui}=500 \mathrm{~V}$ conforming to IEC/EN 60947-1 <br> $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$ |
|  | 3 contact version | XCS PL, XCS PR: <br> $\mathrm{Ui}=400 \mathrm{~V}$ degree of pollution 3 conforming to IEC 60947-1 <br> $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$ |
| Rated impulse withstand voltage | 2 and 3 contact versions | XCS PL, XCS TL, XCS PR, XCS TR: Uimp $=6 \mathrm{kV}$ conforming to IEC/EN 60947-5-1 |
|  | 3 contact version | XCS PL, XCS PR: <br> Uimp $=4 \mathrm{kV}$ conforming to IEC/EN 60947-5-4 |
| Positive operation |  | N/C contacts with positive opening operation conforming to EN/IEC 60947-5-1 Section 3 |
| Resistance across terminals |  | $\leqslant 30 \mathrm{~m} \Omega$ conforming to EN/IEC 60947-5-4 |
| Short-circuit protection | 2 and 3 contact versions | XCS PL, XCS TL, XCS PR, XCS TR: <br> 10 A cartridge fuse type gG (gl) |
|  | 3 contact version | XCS PL, XCS PR: <br> 6 A cartridge fuse type gG (gl) |
| Connection | 2 contact version | XCS PL, XCS TL, XCS PR, XCS TR: <br> Clamping capacity, $\min : 1 \times 0.5 \mathrm{~mm}^{2}, \max : 2 \times 1.5 \mathrm{~mm}^{2}$ with or without cable end |
|  | 3 contact version | XCS PL, XCS PR: <br> Clamping capacity, $\min : 1 \times 0.34 \mathrm{~mm}^{2}$, max: $1 \times 1 \mathrm{~mm}^{2}$ or $2 \times 0.75 \mathrm{~mm}^{2}$ |
| Minimum actuation speed | 3 contact version | $0.01 \mathrm{~m} /$ second |
| Electrical durability |  |  |

[^35]
## d.c. supply =-

Power broken in W for 1 million operating cycles

| Voltage | V | $\mathbf{2 4}$ | $\mathbf{4 8}$ | $\mathbf{1 2 0}$ |
| :--- | :--- | :--- | :--- | :--- |
| mm | W | 13 | 9 | 7 |

References, characteristics

Safety detection solutions
Guard switches with lever or spindle operator Plastic, double insulated, turret head (i), types XCS PL, XCS TL, XCS PR and XCS TR
1 or 2 cable entries M16 x 1.5 (2)

| Type |  | \| Elbowed lever (flush with rear of switch) |  |  | Straight lever | Spindle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Operator |  | To left | Centred | To right | To right OR to left | Length 30 mm (3) |
| References $(\Theta$ N/C contact with positive opening operation) |  |  |  |  |  |  |
| 2-pole N/C + N/O break before make slow break |  | XCS PL592 $\Theta$ | XCS PL582 $\Theta$ | XCS PL572 $\Theta$ | XCS PL562 $\Theta$ | XCS PR552 $\Theta$ |
| $\begin{aligned} & \text { 2-pole N/C + N/C } \\ & \text { slow break } \end{aligned}$ | $\begin{aligned} & =\left\|\begin{array}{c} \bar{N} \\ \approx \\ \approx \\ \hline \end{array}\right\| \end{aligned}$ | - | - | - | XCS PL762 $\Theta$ | XCS PR752 $\Theta$ |
| 3-pole $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$ ( $2 \mathrm{~N} / \mathrm{O}$ staggered) slow break |  | - | - | - | XCS PL862 $\Theta$ | - |
| 3-pole N/C + N/C + N/O <br> (N/O staggered) <br> slow break |  | - | - | - | Xcs PL962 $\Theta$ | XCS PR952 $\Theta$ |
| Weight (kg) |  | 0.095 | 0.095 | 0.095 | 0.095 | 0.105 |
| Type \| Straight lever |  |  |  | Spindle |  |  |



| Operator |  | To right OR to left | Length 30 mm (3) |
| :---: | :---: | :---: | :---: |
| References ( $\Theta$ N/C contact with positive opening operation) |  |  |  |
| 3-pole N/C + N/O + N/O <br> (2 N/O staggered) slow break |  | XCS TL562 $\Theta$ | - |
| 3-pole N/C + N/C + N/O <br> (N/O staggered) <br> slow break |  | XCS TL762 $\Theta$ | XCS TR752 $\Theta$ |
| 3-pole N/C + N/C + N/C <br> slow break |  | - | XCS TR852 $\Theta$ |
| Weight (kg) |  | 0.145 | 0.155 |

Complementary characteristics not shown under General characteristics (page 3/47)

| Tripping angle | $5^{\circ}$ |
| :---: | :---: |
| Mechanical durability | 1 million operating cycles |
| Minimum torque | For tripping: 0.1 N.m; for positive opening: 0.25 N.m (XCS PL and XCS PR), 0.45 N.m (XCS TL and XCS TR) |
| Cable entry | XCS Pe: 1 entry tapped M16 $\times 1.5$ for ISO cable gland. Clamping capacity 7 to 10 mm XCS Te: 2 entries tapped M16 $\times 1.5$ for ISO cable gland. Clamping capacity 7 to 10 mm (switch supplied with 1 entry fitted with blanking plug) |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Switches supplied with 2 additional self-locking screws for positive fixing of the head.
(2) For cable entries tapped for $n^{\circ} 11$ (Pg 11) cable gland, replace the last number in the reference (2) by 1 (see page 3/50).

Example: XCS PL592 becomes XCS PL591.
(3) For switches with 80 mm spindle: replace the $2^{\text {nd }}$ number in the reference (5) by 6. Example: XCS PR562. The weight increases by 0.032 kg .

Other versions: please consult your Regional Sales Office.

Operation, dimensions, schemes

Safety detection solutions
Guard switches with lever or spindle operator Plastic, double insulated, turret head (1), types XCS PL, XCS TL, XCS PR and XCS TR 1 or 2 cable entries $\mathrm{M} 16 \times 1.5{ }^{(2)}$

| Operation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Operator displacement |  |  |  |  |
| XCS PLe62 | XCS PLe82 | XCS TL•62 | XCS PR•52 | XCS TR•52 |
|  |  |  |  |  |
| Functional diagrams |  |  |  |  |
| XCS PL592, PL572, PL562 | XCS PL582 | XCS TL562 | XCS PR552 | XCS TR752 |
|  | $\overbrace{10^{\circ}}^{-90^{\circ}-5^{\circ}+5^{\circ}}+90^{20}$ |  |  |  |
| XCS PL762 | XCS PL862 | XCS TL762 | XCS PR752 | XCS TR852 |
|  |  |  | $\stackrel{-270^{\circ}+5^{\circ}-5^{\circ}+270^{\circ}}{\square}$ |  |
| Contact operation | XCS PL962 |  | XCS PR952 |  |
| $\square$ contact closed $\square$ contact open |  |  |  |  |

## Dimensions

XCS PLoo 2

(1) 1 cable entry tapped M16 $\times 1.5$
$\varnothing$ : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres

XCS PR••2

(1) 1 cable entry tapped M16 $\times 1.5$
$\varnothing$ : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres
2 holes $\varnothing 4.3$ on 20 centres
L = 30 (XCS PR•52) or 80 (XCS PR•62)

XCS TLeゃ2

(1) 2 cable entries tapped M16 $\times 1.5$
(2) 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres
(3) 2 elongated holes $\varnothing 5.3 \times 13.3$

XCS TR••2

(1) 2 cable entries tapped M16 $\times 1.5$
(2) 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres,

2 holes $\varnothing 4.3$ on 20 centres
(3) 2 elongated holes $\varnothing 5.3 \times 13.3$

L = 30 (XCS TR•52) or 80 (XCS TR•62)

## Wiring schemes

Category 1 to EN 954-1/ISO 13849-1
Example with cable short-circuit protection fuse


Category 3 to EN 954-1/ISO 13849-1
Example with 3-pole N/C + N/O + N/O contact with mixed redundancy of the contacts and the associated control relays.


To activate K1, the lever or spindle must be rotated when the supply is switched on. H 1 : "lever or spindle displaced from initial position" indicator. When used in conjunction with an XPS safety module and another safety switch, the rotary lever or spindle operator guard switch can provide a category 3 or 4 control and monitoring system for moving guards to EN 954-1/ISO 13849-1.

References, characteristics

Safety detection solutions
Guard switches with lever or spindle operator
Plastic, double insulated, turret head (i),
types XCS PL, XCS TL, XCS PR and XCS TR
Cable entries tapped for $n^{\circ} 11$ (Pg 11) cable gland

| Type | \| Elbowed lever (flush with rear of switch) |  |  | Straight lever |  | Spindle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Operator | To left | Centred | To right | To right OR to left | Centred | Length 30 mm (2) |
| References ( $\Theta$ N/C contact with positive opening operation) |  |  |  |  |  |  |
| 2-pole N/C + N/O break before make slow break | XCS PL591 | XCS PL581 | XCS PL571 | XCS PL561 | XCS PL551 | XCS PR551 |
|  | XCS PL791 | XCS PL781 | XCS PL771 | XCS PL761 | XCS PL751 | XCS PR751 |
| 3-pole N/C + N/O + N/O <br> (2 N/O staggered) slow break | - | - | - | - | - | XCS PR851 |
| 3-pole N/C + N/C + N/O <br> (N/O staggered) slow break | - | XCS PL981 | - | - | - | XCS PR951 |
| Weight (kg) | 0.095 | 0.095 | 0.095 | 0.095 | 0.095 | 0.105 |


|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operator | To left | Centred | To right | To right OR to left | Centred | Length 30 mm (2) |
| References $(\Theta$ N/C contact with positive opening operation) |  |  |  |  |  |  |
| 3-pole N/C + N/O + N/O (2 N/O staggered) slow break | - | XCS TL581 | - | XCS TL561 | XCS TL551 | XCS TR551 |
|  | XCS TL791 | XCS TL781 | XCS TL771 | XCS TL761 | XCS TL751 | XCS TR751 |
|  | - | XCS TL881 | XCS TL871 | XCS TL861 | - | XCS TR851 |
| Weight (kg) | 0.145 | 0.145 | 0.145 | 0.145 | 0.145 | 0.155 |

Complementary characteristics not shown under General characteristics (page 3/47)

| Tripping angle | $5^{\circ}$ |
| :--- | :--- |
| Mechanical durability | 1 million operating cycles |
| Minimum torque | For tripping: 0.1 N.m; for positive opening: 0.25 N.m (XCS PL and XCS PR), <br> $0.45 \mathrm{N.m} \mathrm{(XCS} \mathrm{TL} \mathrm{and} \mathrm{XCS} \mathrm{TR)}$ |
| Cable entry | XCS P•: 1 entry tapped for $\mathrm{n}^{\circ} 11$ cable gland conforming to NF C 68-300 (DIN Pg 11). <br>  <br> Clamping capacity 7 to 10 mm <br> XCS T•: 2 entries tapped for $n^{\circ} 11$ cable gland conforming to NF C 68-300 (DIN Pg 11). <br> Clamping capacity 7 to 10 mm (switch supplied with 1 entry fitted with blanking plug) |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Switches supplied with 2 additional self-locking screws for positive fixing of the head.
(2) For switches with 80 mm spindle: replace the $2^{\text {nd }}$ number in the reference (5) by 6. Example: XCS PR561. The weight increases by 0.032 kg .

Other versions: please consult your Regional Sales Office.

## Safety detection solutions

## Guard switches with lever or spindle operator

 Plastic, double insulated, turret head, types XCS PL, XCS TL, XCS PR and XCS TR Cable entries tapped for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland
(1) 1 tapped entry for $n^{\circ} 11$ cable gland $\varnothing$ : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres

## XCS PRe•1


(1) 1 tapped entry for $n^{\circ} 11$ cable gland $\varnothing$ : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres
L = 30 (XCS PR•51) or 80 (XCS PR•61)



\begin{tabular}{|c|c|}
\hline XCS TL561 \& XCS TL581, TL551 <br>
\hline $0^{5^{\circ}} \quad 180^{\circ}$ \& $-90^{\circ}{ }^{-5} 0^{\circ}+5^{\circ}+90^{\circ}$ <br>
\hline $\square{ }^{21-22}$ \& 21-22 <br>
\hline $13-14$
$33-34$ \& 13-14 <br>
\hline $10^{\circ}$ \& $10^{\circ}$ <br>
\hline XCS TL791, TL771, \& \multirow[t]{2}{*}{XCS TL781, TL751} <br>
\hline TL761 \& <br>
\hline \multirow[t]{3}{*}{$180^{\circ}$

21-22
$31-32$
$13-14$} \& $-90^{\circ}-5^{\circ}+5^{\circ}+90^{\circ}$ <br>
\hline \& 21-22 <br>
\hline \& 13-14 <br>
\hline $10^{\circ}$ \& $10^{\circ}$ <br>
\hline XCS TL871, TL861 \& XCS TL881, TL851 <br>

\hline \multirow[t]{3}{*}{| $180^{\circ}$ |
| :--- |
| 11-12 21-22 $31-32$ |} \& $-90^{\circ}{ }^{-5^{\circ}}+5^{\circ}+90^{\circ}$ <br>

\hline \& 11-12 <br>
\hline \& $\square \begin{aligned} & \text { 21-22 } \\ & 31-32\end{aligned}$ <br>
\hline
\end{tabular}


(1) 2 tapped entries for $n^{\circ} 11$ cable gland (2) 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres,

2 holes $\varnothing 4.3$ on 20 centres
3) 2 elongated holes $\varnothing 5.3 \times 13.3$

## XCS TR••1


(1) 2 tapped entries for $n^{\circ} 11$ cable gland
(2) 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres
(3) 2 elongated holes $\varnothing 5.3 \times 13.3$
$\mathrm{L}=30$ (XCS TR•51) or 80 (XCS TR•61)

XCS PR•51


## Wiring schemes

Category 1 to EN 954-1/ISO 13849-1

## Example with cable short-circuit protection

 fuse

Category 3 to EN 954-1/ISO 13849-1
Example with 3-pole N/C + N/O + N/O contact with mixed redundancy of the contacts and the associated control relays


To activate K1, the lever or spindle must be rotated when the supply is switched on. H 1 : "lever or spindle displaced from initial position" indicator. When used in conjunction with an XPS safety module and another safety switch, the rotary lever or spindle operator guard switch can provide a category 3 or 4 control and monitoring system for moving guards to EN 954-1/ISO 13849-1.

References, characteristics

## Safety detection solutions

Guard switches with lever or spindle operator
Plastic, double insulated, turret head (i),
types XCS PL, XCS TL, XCS PR and XCS TR
Cable entries tapped $1 / 2^{\prime \prime}$ NPT


| Operator | To left | Length 30 mm |
| :---: | :---: | :---: |
| References ( $\Theta$ N/C contact with positive opening operation) |  |  |
| $\begin{aligned} & \text { 2-pole N/C + N/C } \\ & \text { slow break } \end{aligned}$ | XCS PL793 $\Theta$ | XCS PR753 $\Theta$ |
| Weight (kg) | 0.110 | 0.120 |
| Complementary characteristics not shown under General characteristics (page 3/47) |  |  |
| Tripping angle | $5^{\circ}$ |  |
| Mechanical durability | 1 million operat |  |
| Minimum torque | For tripping: 0.1 0.45 N.m (XCS | N.m (XCS PL and XCS PR), |
| Cable entry | XCS Pe: 1 entry XCS T•: 2 entrie B2-1) conduit and | -1) conduit. <br> etal adaptor DE9 RA1012 for 1/2" NPT (USAS |

(1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Switches supplied with 2 additional self-locking screws for positive fixing of the head.

Other versions: please consult your Regional Sales Office.

Operation, dimensions, schemes

## Safety detection solutions

Guard switches with lever or spindle operator Plastic, double insulated, turret head, types XCS PL, XCS TL, XCS PR and XCS TR
Cable entries tapped $1 / 2$ " NPT
Operation
Operator displacement
XCS PL793 XCS PR753

| Dimensions |  |
| :---: | :---: |
| XCS PL793 | XCS PR753 |
|  |  |
| (1) 1 entry tapped for $1 / 2^{\prime \prime}$ NPT conduit <br> $\varnothing$ : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres | (1) 1 entry tapped for $1 / 2^{\prime \prime}$ NPT conduit <br> $\varnothing$ : 2 elongated holes $\varnothing 4.3 \times 8.3$ on 22 centres, 2 holes $\varnothing 4.3$ on 20 centres |

## Wiring schemes

Category 1 conforming to EN 954-1/ISO 13849-1
Example with cable short-circuit protection fuse


Safety detection solutions
Coded magnetic switches
Plastic


XCS DMR

Pages $3 / 56$ and $3 / 57$

Rectangular, standard: $88 \times 25 \times 13$
Pre-cabled connection
Connector on flying lead connection


Pages $3 / 56$ and $3 / 57$


Pages $3 / 56$ and $3 / 57$

## Safety detection solutions <br> Coded magnetic switches <br> Plastic

| Environment |  |  |  |
| :---: | :---: | :---: | :---: |
| Conformity to standards | Products |  | IEC/EN 60947-5-1, UL 508, CSA C22 2 n 14 |
|  | Machine assemblies |  | IEC/EN 60204-1, EN/ISO 12100, EN 1088/ISO 14119 (XCS DM•5ゃゃ only) |
| Product certifications |  |  | UL-CSA, BG |
| Protective treatment |  |  | Standard version: "TH" |
| Ambient air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | $-25 \ldots+85$ |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 . . .+85$ |
| Vibration resistance |  |  | $10 \mathrm{gn} \mathrm{(10...150} \mathrm{Hz)} \mathrm{conforming} \mathrm{to} \mathrm{IEC} \mathrm{60068-2-6}$ |
| Shock resistance |  |  | 30 gn (11 ms) conforming to IEC 60068-2-7 |
| Sensitivity to magnetic fields |  | mT | $\geq 0.3$ |
| Electric shock protection |  |  | Class II conforming to IEC 60536 |
| Degree of protection | Conforming to IEC 60529 |  | IP 66 and IP 67 for coded magnetic switches with pre-cabled connection IP 67 for coded magnetic switches with connector on flying lead connection |
| Materials |  |  | Thermoplastic case (PBT) PVC cable (ROHS) |
| Contact block characteristics |  |  |  |
| Rated operational characteristics |  |  | Ue: =-- 24 V , le: 100 mAmax . |
| Rated insulation voltage (Ui) |  |  | Ui: --- 100 V |
| Rated impulse withstand voltage (U imp) |  | kV | 2.5 conforming to EN/IEC 60947-5-1 |
| Resistance across terminals | Contact with LED | $\Omega$ | 57 |
|  | Contact without LED | $\Omega$ | 10 |
| Protection (not using safety module) |  |  | External cartridge fuse: 500 mAgG (gl) |
| $\begin{array}{ll}\text { Connection } & \text { XCS DMC } \\ \end{array}$ |  |  | Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M8 connector on 0.15 m flying lead |
|  | 2 contact model |  | Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead |
|  | 3 contact model |  | Pre-cabled, $6 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead |
| XCS DMR |  |  | Pre-cabled, $4 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector on 0.15 m flying lead |
| Contact material |  |  | Rhodium |
| Electrical durability |  |  | 1.2 million operating cycles |
| Maximum switching voltage |  | V | -- 100 |
| Switching capacity | Contact with LED | mA | 5... 100 |
|  | Contact without LED | mA | 0.1... 100 |
| Insulation resistance |  | MW | 1000 |
| Maximum breaking capacity | Contact with LED | VA | 3 |
|  | Contact without LED | VA | 10 |
| Maximum switching frequency |  | Hz | 150 |

References, characteristics

Safety detection solutions
Coded magnetic switches
Plastic, pre-cabled

Type

| Rectangular | Standard | Cylindrical |
| :--- | :--- | :--- |
| Compact | $88 \times 25 \times 13$ | Diameter 30 |
| $51 \times 16 \times 7$ | Length 38.5 |  |

References of switches (1) $\triangle$ must be used in conjunction with safety modules XPS, see pages $3 / 62$ to $3 / 64$ Contact states shown are with the magnet positioned in front of the switch

| 2-pole N/C + N/O <br> (N/C staggered) |  | XCS DMC5902 | XCS DMP5902 | XCS DMR5902 |
| :---: | :---: | :---: | :---: | :---: |
| 2-pole $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$ (2) <br> ( $1 \mathrm{~N} / \mathrm{O}$ staggered) |  | XCS DMC7902 | XCS DMP7902 | XCS DMR7902 |
| 3-pole $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> ( $1 \mathrm{~N} / \mathrm{C}$ staggered) |  | - | XCS DMP5002 | - |
| 3-pole N/C + N/O + N/O (2) <br> ( $1 \mathrm{~N} / \mathrm{O}$ staggered) |  | - | XCS DMP7002 | - |
| 2-pole N/C + N/O <br> (N/C staggered) |  | XCS DMC5912 | XCS DMP5912 | XCS DMR5912 |
| $\begin{aligned} & \text { 2-pole N/O + N/O (2) } \\ & \text { (1 N/O staggered) } \end{aligned}$ |  | XCS DMC7912 | XCS DMP7912 | XCS DMR7912 |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/O } \\ & \text { (1 N/C staggered) } \end{aligned}$ |  | - | XCS DMP5012 | - |
| $\begin{aligned} & \text { 3-pole N/C + N/O + N/O (2) } \\ & \text { (1 N/O staggered) } \end{aligned}$ |  | - | XCS DMP7012 | - |
| Weight (kg) |  | 0.101 | 0.180 | 0.146 |

(1) Magnetic switch + coded magnet (XCS ZC••••).

Switch pre-cabled with 2 m long cable. For other cable lengths, replace the last number of the reference (2) by 5 for a 5 m long cable or by 10 for a 10 m long cable. Example: rectangular, compact switch with N/C + N/O contacts and 10 m cable becomes XCS DMC59010.
(2) Only to be wired in conjunction with an XPS AF module (see page 3/63).

Complementary characteristics not shown under General characteristics (page 3/55)

| Operating zone | Sao: 5 mm <br> Sar: 15 mm | Sao: 8 mm <br> Sar: 20 mm | Sao: 8 mm <br> Sar: 20 mm |
| :--- | :--- | :--- | :--- |
| Approach directions | 3 directions | 3 directions | 1 direction |

## Accessories (page 3/58)

## Safety detection solutions

## Coded magnetic switches

Plastic, connector on flying lead


References of switches (1) $\triangle$ must be used in conjunction with safety modules XPS, see pages $3 / 62$ to $3 / 64$ Contact states shown are with the magnet positioned in front of the switch

| $\begin{aligned} & \begin{array}{l} \text { 2-pole N/C + N/O } \\ \text { (N/C staggered) } \end{array} \\ & \hline \end{aligned}$ |  | XCS DMC590L01M8 | XCS DMP590L01M12 | XCS DMR590L01M12 |
| :---: | :---: | :---: | :---: | :---: |
| 2-pole N/O + N/O (2) <br> (1 N/O staggered) |  | XCS DMC790L01M8 | XCS DMP790L01M12 | XCS DMR790L01M12 |
| $\begin{aligned} & \text { 3-pole N/C + N/C + N/O } \\ & \text { (1 N/C staggered) } \end{aligned}$ |  | - | XCS DMP500L01M12 | - |
| $\begin{aligned} & \text { 3-pole N/C + N/O + N/O (2) } \\ & \text { (1 N/O staggered) } \end{aligned}$ |  | - | XCS DMP700L01M12 | - |
| 2-pole N/C + N/O <br> ( $\mathrm{N} / \mathrm{C}$ staggered) |  | XCS DMC591L01M8 | XCS DMP591L01M12 | XCS DMR591L01M12 |
| 2-pole N/O + N/O (2) <br> ( $1 \mathrm{~N} / \mathrm{O}$ staggered) |  | XCS DMC791L01M8 | XCS DMP791L01M12 | XCS DMR791L01M12 |
| 3-pole N/C + N/C + N/O <br> ( $1 \mathrm{~N} / \mathrm{C}$ staggered) |  | - | XCS DMP501L01M12 | - |
| 3-pole N/C + N/O + N/O (2) <br> ( $1 \mathrm{~N} / \mathrm{O}$ staggered) |  | - | XCS DMP701L01M12 | - |
| Weight (kg) |  | 0.101 | 0.180 | 0.146 |

(1) Magnetic switch + coded magnet (XCS ZC•••••)
(2) Only to be wired in conjunction with an XPS AF module (see page 3/63).

Complementary characteristics not shown under General characteristics (page 3/55)

| Operating zone | Sao: 5 mm <br> Sar: 15 mm | Sao: 8 mm <br> Sar: 20 mm | Sao: 8 mm <br> Sar: 20 mm |
| :--- | :--- | :--- | :--- |
| Approach directions | 3 directions | 3 directions | 1 direction |

## Accessories (page 3/58)

References， characteristics

## Safety detection solutions

Coded magnetic switches
Accessories

| Accessories |  |  |  |
| :---: | :---: | :---: | :---: |
| Accessories for coded magnetic switches | XCS DMC•eゃ2 <br> XCS DMCeeッL | XCS DMP•・ゃ2 XCS DMP•eゃL | XCS DMR・ゃゃ2 XCS DMReゃゃL |
| Fixing clamp | － |  | XSZ B130 |
| Weight（kg） | － |  | 0.080 |
| Additional coded magnet | XCS ZC1 | XCS ZP1 | XCS ZR1 |
| Weight（kg） | 0.009 | 0.050 | 0.018 |
| Non－magnetic shims | XCS ZCC（lot of 2） | XCS ZCP（lot of 2） | XCS ZCR |
| Weight（kg） | 0.008 | 0.012 | 0.002 |

## Pre－wired female connectors for conne ctor version switches

Pre－wired connector characteristics

| Pre－wired connector type |  | XZ CP0941Le，XZ CP1041L• | XZ CP29P11L• | XZ CP1141Le，XZ CP1241L• |
| :---: | :---: | :---: | :---: | :---: |
| Type of connection |  | Screw threaded（metal clamping ring） | Screw threaded（metal clamping ring） | Screw threaded（metal clamping ring） |
| Number of contacts |  | 4 | 8 | 4 |
| Degree of protection |  | IP 67 （with clamping ring correctly tightened） |  |  |
| Ambient air temperature | Static | $-35 . . .+90^{\circ} \mathrm{C}$ | $-35 . . .+90^{\circ} \mathrm{C}$ | $-35 . . .+90^{\circ} \mathrm{C}$ |
|  | Dynamic | $-5 . . .+90^{\circ} \mathrm{C}$ | $-5 \ldots+90^{\circ} \mathrm{C}$ | $-5 . . .+90^{\circ} \mathrm{C}$ |
| Cabling |  | $\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $4 \times 0.34 \mathrm{~mm}^{2}$ | $\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $8 \times 0.25 \mathrm{~mm}^{2}$ | $\varnothing 5.2 \mathrm{~mm}$ cable， wire c．s．a．： $4 \times 0.34 \mathrm{~mm}^{2}$ |
| LED signalling |  | － | － | － |
| Nominal voltage |  | $\sim 60 \mathrm{~V},-\mathrm{-} 75 \mathrm{~V}$ | $\sim 250 \mathrm{~V},-\mathrm{s} 300 \mathrm{~V}$ | $\sim 250 \mathrm{~V},-\mathrm{z} 300 \mathrm{~V}$ |
| Nominal current |  | 4A | 2A | 4A |
| Insulation resistance |  | $>10^{9} \Omega$ | $>10^{9} \Omega$ | $>10^{9} \Omega$ |
| Contact resistance |  | $\leqslant 5 \mathrm{~m} \Omega$ | $\leqslant 5 \mathrm{~m} \Omega$ | $\leqslant 5 \mathrm{~m} \Omega$ |



## Safety detection solutions

Coded magnetic switches

| Function diagrams with magnet present (pre-cabled version) |  |  |  |  |  |  |  |  |  |  | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| XCS DMC59•๑ |  |  | XCS DMC79•• |  |  | XCS DMP50•๑ |  |  | XCS DMP70•• |  |
|  |  | Colour <br> (N/O): BN/BU <br> (N/C): BK/WH |  |  | Colour <br> (N/O): BN/BU <br> (N/O): BK/WH | $\begin{aligned} & \left.0{ }^{08}\right\|^{\|S a z\|} \\ & \text { F } \\ & 0 \\ & 0 \end{aligned}$ |  | Colour <br> ( $\mathrm{N} / \mathrm{O}$ ): $\mathrm{BN} / \mathrm{BU}$ <br> (N/C): BK/WH <br> (N/C): GY/PK |  | Colour <br> (N/O): BN/BU <br> (N/O): BK/WH <br> (N/C): GY/PK |
| XCS DMR59•e/XCS DMP59•๑ |  |  | XCS DMR79•®/XCS DMP79•๑ |  |  |  |  |  |  |  |
|  | $1420 \mathrm{~mm}$ <br> \| |Sar | Colour <br> (N/O): BN/BU <br> (N/C): BK/WH |  |  | Colour (N/O): BN/BU (N/O): BK/WH |  |  |  |  |  |



|  | Contact closed |
| :--- | :--- |
| Contact open | Sao: assured operating distance. <br> Sar: assured tripping distance. <br> Conforming to EN/IEC 60947-5-3. |
| $\square$ |  |
|  |  |

Safety detection solutions
Coded magnetic switches
Plastic

## Coded magnetic switches

## XCS DMC

Pre-cabled connection

## Connector on flying lead connection


(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$.

XCS DMP
Pre-cabled connection
Connector on flying lead connection

(1) 4 or 6-pin M12 connector.

XCS DMR
Pre-cabled connection

(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$.
(2) M8 4-pin connector.

## Connector on flying lead connection


(1) M12 4-pin connector.

Coded magnet for XCS DMC XCS ZC1

(1) Counterbored: $\varnothing 6 \times 3.5 \mathrm{~mm}$.

Coded magnet for XCS DMP
XCS ZP1


Coded magnet for XCS DMR XCS ZR1

(1) $2 \times \varnothing 4.3$, countersunk: $\varnothing 7.5$ at $45^{\circ}$.

[^36]Dimensions (continued), schemes, mounting

Safety detection solutions
Coded magnetic switches
Plastic

(1) 2 elongated holes $\varnothing 4 \times 8$.

Pre-wired female connectors


Schemes

M8 pre-wired female connector
XZ CP0941L•


M12 pre-wired female connector XZ CP1141Le, XZ CP1241L•

XZ CP29P11L•




| XCS | a | b | c | d | e |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMC | 40 | 13 min. | - | $81 \times 55$ | - |
| DMP | 100 | 10 min. | - | $118 \times 55$ | - |
| DMR | 40 | 12 min. | $>10$ | $\varnothing 45$ | 20 |
|  |  | - | $>10$ | $\varnothing 45$ | 13 |
|  |  | 12 min. | $<10$ | - | 20 |
|  |  | - | $<10$ | - | 17 |


| Non-magnetic shims |  |
| :---: | :---: |
| $\mathbf{A}$ | XCS ZCC |
| B | XCS ZCP |
| $\mathbf{C}$ | XCS ZCR |

Schemes， connections

Safety detection solutions
Coded magnetic switches
Plastic，pre－cabled

XCS DMP5eeゃ with XPS DMB
Wiring to category 4 conforming to EN 954－1／ISO 13849－1．Example with 3－pole N／C＋N／C＋N／O（1 N／C staggered）contact．


ESC：External start conditions．
XCS DMC5・ゃゃ，XCS DMP5ゃゃゃ，XCS DMR5 $0 \bullet \bullet$ with XPS DME
Wiring to category 4 conforming to EN 954－1／ISO 13849－1．Example with 2－pole N／C＋N／O（N／C staggered）contact．


ESC：External start conditions．

Schemes, connections (continued)

Safety detection solutions
Coded magnetic switches
Plastic, pre-cabled

Connection of up to 3 magnetic switches, with an LED on one input, with XPS DM• (1)

## Wiring to category 3 conforming to EN 954-1/ISO 13849-1

Example with 2-pole N/C + N/O contact


Example with 3-pole N/C + N/C + N/O contact

(1) Input: S11, S12, S13 or S21, S22, S23.

XCS DM•7・ゃゃ with XPS AF
Wiring to category 4 conforming to EN 954-1/ISO 13849-1. Example with 2-pole N/C + N/C contact (not conforming to standard EN 1088/ISO 14119)


[^37]ESC: External start conditions.

Schemes， connections

Safety detection solutions
Coded magnetic switches
Plastic，connector on flying lead

XCS DMP5eeゃ with XPS DMB
Wiring to category 4 conforming to EN 954－1／ISO 13849－1．Example with 3－pole N／C＋N／C＋N／O（1 N／C staggered）contact．


ESC：External start conditions．
XCS DMC5・ゃゃ，XCS DMP5ゃゃゃ，XCS DMR5 $0 \bullet \bullet$ with XPS DME
Wiring to category 4 conforming to EN 954－1／ISO 13849－1．Example with 2－pole N／C＋N／O（N／C staggered）contact．

$\overline{\mathrm{ESC}}$ ：External start conditions．

[^38]Schemes, connections (continued)

Safety detection solutions
Coded magnetic switches
Plastic, connector on flying lead

Connection of up to 3 magnetic switches, with an LED on one input, with XPS DM• (1)

## Wiring to category 3 conforming to EN 954-1/ISO 13849-1

Example with 2-pole N/C + N/O contact


Example with 3-pole N/C + N/C + N/O contact

(1) Input: S11, S12, S13 or S21, S22, S23.

XCS DM•7・ゃゃ with XPS AF
Wiring to category 4 conforming to EN 954-1/ISO 13849-1. Example with 2-pole N/C + N/C contact (not conforming to standard EN 1088/ISO 14119)


[^39]
## Safety detection solutions

Coded magnetic systems

## Coded magnetic system

Pre-cabled connection

## SIL 2 and 3/Categories 3 and 4 <br> XCS DM3791•• /XCS DM4801••



Page $3 / 68$

## SIL 2 and 3/Categories 3 and 4

XCS DM3791M12/ XCS DM4801M12

## M12 connector connection



## Safety detection solutions <br> Coded magnetic systems

| Coded magnetic system type |  |  | SIL2/Category 3 XCS DM3 | SIL3/Category 4 XCS DM4 |
| :---: | :---: | :---: | :---: | :---: |
| Environment |  |  |  |  |
| Conformity to standards |  |  | IEC 61508, EN/IEC 62061( SIL2 and SIL3), EN 13849-1 (Category 3 and Category 4), EN 1088/ISO 14119, EN/IEC 60947-5-1; EN/IEC 60947-5-2; EN/IEC 60947-5-3 |  |
| Product certifications |  |  | C $\in$, UL, CSA, TÜV |  |
| Ambient air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | $-25 \ldots+70^{\circ} \mathrm{C}$ |  |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+85^{\circ} \mathrm{C}$ |  |
| Vibration resistance | Conforming to IEC 60068-2-6 |  | $10 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ |  |
| Shock resistance | Conforming to IEC 60068-2-7 |  | $30 \mathrm{gn}, 11 \mathrm{~ms}$ |  |
| Sensitivity to magnetic fields |  | mT | $\leqslant 0,5$ |  |
| Electric shock protection | Conforming to IEC 61140 |  | Class III |  |
| Degree of protection | Conforming to IEC 60529 |  | Pre-cabled version: IP 66, IP 67 Connector version: IP 67 |  |
|  | Conforming to DIN 40050 |  | Pre-cabled version: IP 69K |  |
| Materials |  |  | Thermoplastic case (PBT); PVC cable |  |
| Characteristics |  |  |  |  |
| Rated operational characteristics |  |  | Ub : -- $24 \mathrm{~V}+10 \%-20 \%$ |  |
| Rated insulation voltage (Ui) |  |  | Ui : $-\mathrm{-}$ 36V |  |
| Rated impulse withstand voltage (U imp) | Conforming to EN 60947-5-1 | kV | 2,5 |  |
| Integrated output protection |  |  | Overload and short-circuit protection |  |
| Connection | Conforming to IEC 60947-5-2-A3 and IEC 61076 |  | Pre-cabled, $6 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector (A coding) | Pre-cabled, $8 \times 0.25 \mathrm{~mm}^{2}$, length: 2,5 or 10 m depending on model or M12 connector (A coding) |
| Cable diameter |  | mm | 6,1+/-0,3 |  |
| Cable resistance |  | $\mathrm{m} \Omega / \mathrm{m}$ | 90 |  |
| Safety outputs (OSSD) (Output Signal Switching Devices) |  |  | 2 PNP type (NO) solid-state outputs, $1.5 \mathrm{~A}\left(2 \mathrm{~A}\right.$ up to $60^{\circ} \mathrm{C}$ ), - - 24 V (short-circuit protected) |  |
| Alarm output |  |  | $-$ | 1 solid-state output, 0.5 A, --- 24 V , PNP |
| Signalling |  |  | LED (green/red/orange) |  |
| Maximum switching frequency |  | Hz | 3 |  |
| Activation delay |  | ms | 100 |  |
| Discordance time |  | s | 2 |  |
| HFT (Hardware Fault Tolerance) |  |  | 1 |  |
|  |  |  | Test interval: 12 months |  |
| Tightening torque |  | Nm | 1,8 maxi. |  |
| Chaining in series |  |  | 32 maximum with 2 m long cable | - |
| Functions |  |  |  |  |
| Functions |  |  | - LED status signalling | - Auto/Manual start via "Start"input <br> - Monitoring of external switching devices <br> (EDM: External Devices Monitoring) <br> - Display of operating modes (LED) <br> - Monitoring of the function (open or closed) as well as the response time of the power components. |

References, characteristics

Safety detection solutions
Coded magnetic systems
Plastic, solid-state PNP type output

Type
Magnetic system with dedicated transmitter
Pre-cabled connection


| References |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Type of connection | SIL2/Category 3 | SIL3/Category 4 | Weight kg |
| Magnetic system with dedicated transmitter (1) | Pre-cabled, $\mathrm{L}=2 \mathrm{~m}$ | XCS DM379102 | XCS DM480102 | 0,320 |
|  | Pre-cabled, L=5 m | XCS DM379105 | XCS DM480105 | 0,480 |
|  | Pre-cabled, L = 10 m | XCS DM379110 | XCS DM480110 | 0,745 |

(1) Self-contained system not requiring use of safety module or non-magnetic shim.

## Detection characteristics

Assured operating distance
Assured tripping distance
Approach directions
Approach speed

| Sao : 10 mm |
| :--- |
| Sar : 20 mm |
| 9 |
| $0,01 \mathrm{~m} / \mathrm{s} \mathrm{mini}$ |

## Output status (pre-cabled connection)

Output states shown are with the dedicated transmitter positioned in front of the receiver.

## XCS DM3791••



Output closed Output open Transitional state

XCS DM4801••

"OFF" = Error
Sao : Assured operating distance.
Sar: Assured tripping distance.
Conforming to EN/IEC 60947-5-3

## Approach directions



## Safety detection solutions

Coded magnetic systems
Plastic, solid-state PNP type output


| References |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Type of connection | SIL2/Category 3 | SIL3/Category 4 | Weight kg |
| Magnetic system with dedicated transmitter (1) | M12 connector | XCS DM3791M12 | XCS DM4801M12 | 0,215 |

1) Self-contained system not requiring use of safety module or non-magnetic shim.

## Detection characteristics

| Assured operating distance | Sao : 10 mm |
| :--- | :--- |
| Assured tripping distance | Sar: 20 mm |
| Approach directions | 9 |
| Approach speed | $0,01 \mathrm{~m} / \mathrm{s} \mathrm{mini}$ |

## Output status (pre-cabled connection)

Output states shown are with the dedicated transmitter positioned in front of the receiver.

## XCS DM3791M12



Output closed
Output open
Transitional state

XCS DM4801M12


Sao : Assured operating distance.
Sar: Assured tripping distance.
Conforming to EN/IEC 60947-5-3

## References, characteristics (continued)

## Safety detection solutions

Coded magnetic systems
Accessories

| Accessories |  |  | Reference |
| :--- | :--- | :--- | ---: | | Weight |
| ---: |
| Description |

Pre-wired female connectors for connector version coded magnetic systems
Pre-wired connector characteristics

|  | Pre-wired connector type |  |  | XZ CP29P12L• |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type of connection |  |  | Screw threaded (metal clamping ring) |  |  |  |  |
|  | Number of contacts |  |  | 8 |  |  |  |  |
| 3 | Degree of protection |  |  | IP 67 (with clamping ring correctly tightened) |  |  |  |  |
|  | Ambient air temperature | Operation | ${ }^{\circ} \mathrm{C}$ | -25 ... 70 |  |  |  |  |
|  |  | Storage | ${ }^{\circ} \mathrm{C}$ | -40...+85 |  |  |  |  |
|  | Cabling | Conforming to IEC 60947-5-2 |  | $\varnothing 6.1$ mm PUR cable, wire c.s.a.: $8 \times 0.25 \mathrm{~mm}^{2}$ |  |  |  |  |
|  | LED signalling |  |  | - |  |  |  |  |
|  | Nominal current |  | A 2 | 2 |  |  |  |  |
|  | Insulation resistance |  | $\Omega \quad>1$ | $>10^{9}$ |  |  |  |  |
|  | Contact resistance |  | $\mathrm{m} \Omega \quad \leqslant 5$ | $\leqslant 5$ |  |  |  |  |
|  | References of pre-wired connectors |  |  |  |  |  |  |  |
|  |  <br> XZ CP29P12L• |  | Type of connector | No. of contacts | For use with Type | Cable length m | Reference | Weight kg |
|  |  |  | Female, M1 (Coding A) | $8$ | XCS DM3/4•••02 Straight <br> XCS DM3/4•••05 <br> XCS DM3/4•••10 | 2 | XZ CP29P12L2 | 0,100 |
|  |  |  | 5 |  |  | XZ CP29P12L5 | 0,290 |
|  |  |  | 10 |  |  | XZ CP29P12L10 | 0,470 |

Safety detection solutions
Coded magnetic systems
Plastic

## Coded magnetic systems

Pre-cabled connection

XCS DM3/4•••02/05/10


M12 connector (Coding A) connection
XCS DM3/4•••M12


Accessory
Replacement dedicated transmitter

XCS DMT


## Pre-wired female connectors

XZ CP29P12L


Connections, mounting

## Safety detection solutions

Coded magnetic systems

## Connection

M12 pre-wired female connector
XZ CP29P12L•


Mounting XCS DM3/DM4


## Schemes

Category 3 (this Category 3 scheme can attain SIL2)

## Pre-cabled connection

XCS DM3791••


SIL3/Category 4
Pre-cabled connection
XCS DM4801••


Chaining coded magnetic systems (2) XCS DM3791••


## M12 connector (A coding) connection

XCS DM3791M12


M12 connector (A coding) connection
XCS DM4801M12


Wiring to SIL3/Category 4 with Preventa module
Example: XCS DM3•••७ゃ + XPS AFL5130


## (1) Mechanically linked contacts

(2) Maximum chaining: 32 maximum with 2 m long cable.
(3) $2 A$ maxi

Safety detection solutions
Safety limit switches
Miniature design, metal, type XCS M

## XCS M

pre-cabled
With head for linear movement (plunger). Fixing by the body


Page 3/76
With head for rotary movement (lever). Fixing by the body


Safety detection solutions

## Safety limit switches <br> Miniature design, metal, type XCS M


(1) Protection against prolonged immersion: the test conditions are subject to agreement between the manufacturer and the user.

References, characteristics

## Safety detection solutions

## Safety limit switches

Miniature design, metal, type XCS M
Pre-cabled

| Type of head | Plunger (fixing by the body) | Rotary (fixing by the body) |
| :--- | :--- | :--- |


| Type of operator |  | Metal end plunger | Roller plunger | Thermoplastic roller lever | Steel roller lever |
| :---: | :---: | :---: | :---: | :---: | :---: |
| References |  |  |  |  |  |
|  | 3-pole N/C+N/C+N/O snap action contact |  | XCS M3902L1 <br> $\Theta$ |  | XCS M3916L1 |
|  | 3-pole N/C+N/C+N/O break before make, slow break contact |  | XCS M3702L1 |  | XCS M3716L1 |
|  | 4-pole N/C+N/C+N/O+N/O <br> snap action contact | XCS M4110L1 | XCS M4102L1 <br> $\Theta$ |  | XCS M4116L1 <br> $\Theta$ |
| Weight (kg) |  | 0.165 | 0.170 | 0.205 | 0.210 |
| Contact operation |  | $\square$ closed |  | (A) = cam displacemen <br> $(P)=$ positive opening p <br> $\Theta N / C$ contact with op | ing positive operation |

Complementary characteristics not shown under general characteristics (page 3/75)

| Switch actuation |  |
| :--- | :--- |
| Type of actuation |  |
|  |  |
| Maximum actuation speed |  |
| Mechanical durability |  |
| Minimum force or torque | Tripping |
| Cabling | $\frac{\text { 3-pole contacts }}{\text { 4-pole contacts }}$ |


| On end |  |  |
| :--- | :--- | :--- | :--- | :--- |

Dimensions, connections

Safety detection solutions
Safety limit switches
Miniature design, metal, type XCS M Pre-cabled

(1) Protective plate fixed by 5-lobe torque safety screws.

## Connections

Wiring to category 1 conforming to EN 954-1/ IEC 13849-1
Example with 3-pole $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ contact and protection fuse to prevent shunting of the N/C contacts, either by cable damage or by tampering.

(1) Signalling contact

## Wiring to category 3 conforming to EN 954-1/IEC 13849-1

Example with 3-pole $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ contact with mixed redundancy of the contacts and the associated control relyas. Opening and closing of the guard necessary to activate K1.


H1: "guard closed" indicator light

Example of guard monitoring using 2 switches and 1 safety module (category 4)
Operation in positive and negative (combined) mode


Safety detection solutions
Safety limit switches
Compact design, metal, type XCS D
Compact design, plastic, type XCS P

## $\square$ With head for linear movement (plunger)

## XCS D

XCS P

## with 1 cable entry

conforming to EN 50047


Pages $3 / 80$ and $3 / 81$
$\square$ With head for rotary movement (lever) XCS D

Pages $3 / 80$ and $3 / 81$


XCS $P$


[^40]Safety detection solutions
Safety limit switches
Compact design, metal, type XCS D
Compact design, plastic, type XCS P

## Environmental characteristics

| Conformity to standards | Products | IEC/EN 60947-5-1, UL 508, CSA C22-2 n 14 |
| :---: | :---: | :---: |
|  | Machine assemblies | IEC/EN 60204-1, EN 1088/ISO 14119 |
| Product certifications |  | UL, CSA |
| Protective treatment | Standard version | "TC" |
| Ambient air temperature | For operation | $-25 \ldots+70^{\circ} \mathrm{C}$ |
|  | For storage | $-40 \ldots+70^{\circ} \mathrm{C}$ |
| Vibration resistance | Conforming to IEC 60068-2-6 | $25 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ |
| Shock resistance | Conforming to IEC 60068-2-27 | 50 gn ( 11 ms ) |
| Electric shock protection |  | Class I conforming to IEC 61140 and NF C 20-030 for XCS D |
|  |  | Class II conforming to IEC 61140 and NF C 20-030 for XCS P |
| Degree of protection | Conforming to IEC 60529 | IP 66 and IP 67 |
|  | Conforming to EN 50102 | IK 06 for XCS D IK 04 for XCS P |
| Repeat accuracy |  | 0.1 mm on the tripping points, with 1 million operating cycles for head with end plunger |
| Cable entry | Depending on model | Tapped entry for 13.5 cable gland, tapped ISO M20 $\times 1.5$ or tapped 1/2" NPT |
| Materials |  | XCS D zamak bodies and heads, XCS P plastic bodies, zamak heads Plastic protective cover, secured by 5-lobe socket head safety screw |

## Contact block characteristics



References, characteristics, dimensions

Safety detection solutions
Safety limit switches
Compact design, metal, type XCS D
Complete switches with 1 cable entry

| Type of head | Plunger |  | \| Rotary |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Type of operator | Metal end plunger | Steel roller plunger | Thermoplastic roller lever | Steel roller lever |
| References of complete switches with 3-pole N/C + N/C + N/O snap action contact |  |  |  |  |
| With ISO M20 x 1.5 cable entry |  |  |  |  |
|  | XCS D3910P20 | XCS D3902P20 | XCS D3918P20 | XCS D3919P20 |
| With Pg 13.5 cable entry |  |  |  |  |
|  | XCS D3910G13 | XCS D3902G13 | XCS D3918G13 | XCS D3919G13 |
| With 1/2" NPT cable entry |  |  |  |  |
|  | XCS D3910N12 | XCS D3902N12 | XCS D3918N12 | XCS D3919N12 |
| Weight (kg) | 0.215 | 0.220 | 0.255 | 0.255 |
| Contact functional diagrams |  |  |  |  |
|  |  |  |  |  |
| Contact operation | contact closed $(A)=$ cam displacement <br> contact open $(P)=$ positive opening point <br> $\Theta N / C$ contact with positive opening operation  |  |  |  |

Complementary characteristics not shown under general characteristics (page 3/79)


References， characteristics， dimensions（continued）

## Safety detection solutions

Safety limit switches
Compact design，metal，type XCS D
Complete switches with 1 cable entry
Type of head

References of complete switches with 3－pole N／C＋N／C＋N／O break before make，slow break contact With ISO M20 x 1.5 cable entry

| With ISO M20 x 1.5 cable entry |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | XCS D3710P20 | XCS D3702P20 | XCS D3718P20 | XCS D3719P20 |
| With Pg 13.5 cable entry |  |  |  |  |
|  | XCS D3710G13 | XCS D3702G13 | XCS D3718G13 | XCS D3719G13 |
| With 1／2＂NPT cable entry |  |  |  |  |
|  | XCS D3710N12 | XCS D3702N12 | XCS D3718N12 | XCS D3719N12 |
| Weight（kg） | 0.215 | 0.220 | 0.255 | 0.255 |
| Contact functional diagrams |  |  |  |  |
|  |  |  |  |  |
| Contact operation | contact closed $(A)=$ cam displacement <br> contact open $(P)=$ positive opening point |  |  |  |

Complementary characteristics not shown under general characteristics（page 3／79）

| Switch actuation | On end | By $30^{\circ} \mathrm{cam}$ |  |
| :---: | :---: | :---: | :---: |
| Type of actuation |  |  |  |
| Maximum actuation speed | $0.5 \mathrm{~m} / \mathrm{s}$ |  | $1.5 \mathrm{~m} / \mathrm{s}$ |
| Mechanical durability （in millions of operating cycles） | 15 | 10 |  |
| Minimum force or torque For tripping | 15 N | 12 N | 0．1 N．m |
| For positive opening | 45 N | 36 N | 0.25 N．m |
| Cable entry | 1 entry tapped M20 $\times 1.5 \mathrm{~mm}$ for ISO cable gland，clamping capacity 7 to 13 mm 1 entry tapped Pg 13.5 for cable gland，clamping capacity 9 to 12 mm 1 entry tapped for $1 / 2^{\prime \prime}$ NPT（USAS B2－1）conduit |  |  |
| Dimensions |  |  |  |
|  | XCS D3•18・ゃゃ，XCS D3•19・ゃ๑ |  |  |


（1）Tapped entry for ISO M20 $\times 1.5$ or Pg 13.5 cable gland or 1／2＂NPT conduit．
（2） 2 elongated holes $\varnothing 4.3 \times 6.3 \mathrm{~mm}$ on 22 mm centres or 2 holes $\varnothing 4.3$ on 20 mm centres．
（3） $2 \times \varnothing$ 3 holes for studs，depth 4 mm ．

References, characteristics, dimensions

Safety detection solutions
Safety limit switches
Compact design, plastic, type XCS P
Complete switches with 1 cable entry

| Type of head | Plunger |  | Rotary |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Type of operator | Metal end plunger | Steel roller plunger | Thermoplastic roller lever | Steel roller lever |
| References of complete switches with 3-pole N/C + N/C + N/O snap action contact |  |  |  |  |
| With ISO M20 x 1.5 cable entry |  |  |  |  |
|  | XCS P3910P20 | XCS P3902P20 | XCS P3918P20 | XCS P3919P20 |
| With Pg 13.5 cable entry |  |  |  |  |
|  | XCS P3910G13 | XCS P3902G13 | XCS P3918G13 | XCS P3919G13 |
| With 1/2" NPT cable entry |  |  |  |  |
|  | XCS P3910N12 <br> $\Theta$ | XCS P3902N12 | XCS P3918N12 | XCS P3919N12 |
| Weight (kg) | 0.215 | 0.220 | 0.255 | 0.255 |
| Contact functional diagrams |  |  |  |  |
| 3-pole N/C + N/C + N/O snap action contact |  |  |  |  |
| Contact operation | $\begin{array}{ll} \text { contact closed } \quad(A)=\text { cam displacement } \\ \text { contact open } & (P)=\text { positive opening point } \\ \Theta N / C \text { contact with positive opening operation } \end{array}$ |  |  |  |

Complementary characteristics not shown under general characteristics (page 3/79)


References, characteristics, dimensions (continued)

## Safety detection solutions

Safety limit switches
Compact design, plastic, type XCS P
Complete switches with 1 cable entry


## Safety detection solutions

 Safety matsApplications

## Function

## Conforming to standards

Product certifications

| Degree of protection |
| :--- |
| Dimensions $(\mathrm{mm})$ |
| Response time |
| Type of outputs |


| Sensitivity |
| :--- |
| Maximum supply voltage |
| Unit type |

## Page

Packaging, conveyor systems, materials handling, warehousing, storage, etc.

Zone protection keeping machine operators away from dangerous movements.


EN 1760-1, EN 60947-5-1, EN 60204-1, UL 508, CSA C22-2 No. 14

Category 3 safety conforming to EN 954-1, BG with safety modules XPS A K and XPS MP/MC, cULus

## IP 67

$$
500 \times 500
$$

$$
500 \times 750
$$

$\leq 40 \mathrm{~ms}$ with XPS AK, $\leq 30 \mathrm{~ms}$ with XPS MP/MC

2 cables; 2 conductors on male/female connectors diameter 8

Single mat: > 20 kg
Group of mats: $>35 \mathrm{~kg}$

$$
=-30 \mathrm{~V}
$$

## XY2 TP1

XY2 TP2

3/89


Category 3 safety conforming to EN 954-1, BG with safety modules XPS AK and XPS MP/MC, cULus

| IP 67 |
| :--- |
| $750 \times 750$ |
| 40 ms with XPS AK, $\leq 30 \mathrm{~ms}$ with XPS MP/MC |
| \begin{tabular}{l\|l}
\hline
\end{tabular} |
| 2 cables; 2 conductors on male/female connectors <br> diameter 8 |
| Single mat: $>20 \mathrm{~kg}$ <br> Group of mats: $>35 \mathrm{~kg}$ <br> - 30 V <br> XY2 TP3 |

Presentation, description

## Safety detection solutions

## Preventa safety mats <br> Type XY2 TP



## Presentation <br> <br> Zone protection

 <br> <br> Zone protection}The equipment comprises category 3 safety mats, installed in front of or around potentially dangerous machines and/or robots. They provide a protection zone between machine operators and any dangerous movements.
They form protection zones that are mainly designed to ensure the safety of personnel.
They thus supplement safety devices by enabling free access for the loading/ unloading of machines.
The safety mats are used either in conjunction with safety modules or combined with other zone protection systems. They are particularly suited for use in polluted environments (dust, oil, etc.).
"Protect Area Design" configuration software (1) enables design and setting-up of the installation.

## Applications

Safety mats are mainly used in:
ㅁ assembly and packaging lines,
$\square$ conveying and handling lines,
$\square$ warehousing and storage systems.

## Description

$\square$ A safety mat comprises:

- a sensing zone 1 ,
- a border comprising aluminium rails 2
- and rail corners which secure the assembly 3.
$\square$ Safety mats can be butt mounted in order to define the safety zone.
$\square$ Mats are electrically interconnectable, without loss of sensitivity.


## Operating principle

Safety modules type XPS AK and safety controllers type XPS MP/MC used in conjunction with safety mats XY2 TP establish a category 3 safety device conforming to standard EN 954-1/ISO 13849-1.
■ The hazardous zone 1 is defined by the dangerous movement of a machine.

- The safety zone 2, defined in accordance with standard EN 999/ISO 13855, comprises one or several butt mounted safety mats 3 ( 10 maximum for XPS AK and 30 maximum for XPS MP/MC).

■ Safety mats are used for detecting persons stepping onto the mat or falling objects in accordance with standard EN 1760-1/ISO 13856;

- weight $>20 \mathrm{~kg}$ for a single mat,
- weight $>35 \mathrm{~kg}$ for a group of mats.
- Any detection of movement on the safety mat immediately instigates the stopping of the dangerous movement of the machine to be made safe. The resetting of the machine can be performed manually or automatically, depending on the wiring configuration of the safety module within the process.
■ The safety mats can also be used for detection applications not related to safety.


## Directives and standards

■ The safety mats conform to the following standards:

- EN/ISO 12100,
- EN 1050/ISO 14121,
- EN/IEC 60947-5-1,
- EN 954-1/ISO 13849-1,
- EN 1760-1/ISO 13856-1,
- EN/IEC 60204-1,
- UL 508,
- CSA C22-2 $\mathrm{n}^{\circ} 14$.

■ The safety mats are c UL us and BG (when used in conjunction with safety
modules XPS AK and safety controllers type XPS MP/MC) certified and approved.

# Safety detection solutions <br> Preventa safety mats <br> Type XY2 TP 


$S=$ minimum distance between the hazardous zone and the detection limit.
$\xrightarrow{\text { Safety zone }}$

## Installation precautions <br> Standard EN 999/ISO 13855 defines: <br> - the minimum distance between the hazardous zone and the detection limit of the device furthest away from the hazardous zone, see calculation below, <br> $\square$ the body approach speed. <br> Standard EN 1760-1/ISO 13856-1 states the following requirements: <br> ■ surface layout drawing, <br> - surface preparation, <br> - handling and connection, <br> - starting and testing.

## Safety rules

Detection of failures liable to compromise safety and stopping of the machine The design of the machine and its control system must be to the same level of safety as that of the safety mat system in order to ensure the immediate stopping of the machines dangerous movement as soon as the hazardous zone is entered. It must not be possible to enter the protected zone without tripping the protection system. Therefore, safety mats must be installed in such a way that they cannot be avoided.
The machine can only be restarted if no danger exists and no personnel are present in the hazardous zone.

## Calculation of the minimum safety distance according to the application <br> Standard EN 999/ISO 13855 states the following calculation of distance: <br> ■ Safety mat installed on a flat surface: <br> $S=(1600 \mathrm{~mm} / \mathrm{s} \times(\mathrm{t} 1+\mathrm{t} 2))+1200 \mathrm{~mm}$. <br> - Safety mat installed on a step: <br> $\mathrm{S}=(1600 \mathrm{~mm} \times(\mathrm{t} 1+\mathrm{t} 2))+(1200 \mathrm{~mm}-0.4 \mathrm{H})$.

$S=$ minimum distance in mm , in a horizontal plane, between the hazardous zone and the detection limit of the device furthest away from the hazardous zone.
$\mathrm{T}=$ overall response time $=\mathrm{t} 1+\mathrm{t} 2$.
t 1 = maximum time in seconds between activation of the detection function (safety mat) and the changeover of the output signal switching devices to the inhibited state (e.g. safety module type XPS AK).
t2 = response time of machine in seconds. Time required to stop the dangerous movement of the machine.
$\mathrm{H}=$ distance above reference plane (e.g. height of step in mm ).
Note: in all cases $S>750 \mathrm{~mm}$.

Example of an application processed using "Protect Area Design" software (1) - Unintentional access to the hazardous zone of a machine must be detected by a safety device.
■ The estimated risk combined with a very dusty environment indicates that a floor mounted sensing device (safety mat) would be appropriate.
$\square$ The stopping time of the machine is 300 ms and the response time of the sensing device is $\leq 40 \mathrm{~ms}$.
Calculation formula: $S=(1600 \mathrm{~mm} / \mathrm{s} \times \mathrm{T})+(1200 \mathrm{~mm}-0.4 \times \mathrm{H})=(1600 \times 0.34)$
$+\mathbf{( 1 2 0 0 - 0 )}=1744 \mathrm{~mm}$.
(1) See pages 3/92 to 3/94.

## Safety detection solutions

## Preventa safety mats <br> Type XY2 TP

## Environment

Products designed for max. use in safety related parts of control systems (conforming to EN 954-1)

| Conformity to standards | Products |
| :---: | :---: |
|  | Machine assemblies |
| Product certifications |  |
| Ambient air temperature | For operation |
|  | For storage |
| Sensitivity | Single mat |
|  | Group of mats |
| Electric shock protection |  |
| Degree of protection |  |
| Type of covering |  |
| Materials of mounting accessories | Rail connectors and corners |

Electrical characteristics
Rated operational characteristics

| Rated operational characteristics |  |  |
| :---: | :---: | :---: |
| Contact | Material |  |
|  | Type |  |
|  | Resistance | $\Omega$ |
|  |  | $\mathrm{M} \Omega$ |
|  | Response time | ms |
| Mechanical durability | In millions of operating cycles |  |
| Connection |  |  |

Mechanical characteristics

| Maximum permissible load on mat | $\mathrm{N} / \mathrm{cm}^{2}$ | 2000 |
| :---: | :---: | :---: |
| Compression |  | 5 tonnes max. |
| Rated impulse withstand voltage |  | U imp $=6 \mathrm{kV}$ conforming to EN/IEC 60947-1, EN/IEC 60664 |
| Maximum number of mats per safety module |  | 10 |
| Tensile strength | $\mathrm{N} / \mathrm{mm}^{2}$ | 7 |
| Resistance to friction | mg | 120 |
| Shore A hardness |  | $70 \pm 5$ |
| Amount of stretch to tear | \% | 250 |
| Behaviour in fire (DIN 4102) |  | B2 |
| Resistance to incandescent materials |  | Resistant |
| Chemical resistance (1) Acetone |  | Resistant |
| Alkaline washing water |  |  |
| Ammonia |  |  |
| Caustic potassium solution |  |  |
| Citric acid |  |  |
| Greases |  |  |
| Hydrochloric acid, 10\% solution |  |  |
| Methylated spirits |  |  |
| Oil, ASTM N ${ }^{\circ} 1 / 2 / 3$ |  |  |
| Petrol |  |  |
| Resistance to ultraviolet rays |  |  |
| Water |  |  |
| Acetic acid |  | Limited resistance |
| Brake fluid |  |  |
| Cutting compound |  |  |
| Methyl alcohol |  |  |
| Nitrated solution |  |  |
| Sodium hydroxide |  |  |
| Stamping oil |  |  |

[^41]Safety detection solutions

## Preventa safety mats

Type XY2 TP

Characteristics,
references, connections

## Safety detection solutions

Preventa safety mats
Jumper cables $\varnothing 8$ mm-M8 and M8-M8


## XZ CPTPO•••••

(1) The maximum number of jumper cables that can go through a rail is 4 .

## Connections

BU: (-) blue
BN: (+) brown BK: (Output) black

Dimensions, connections

Safety detection solutions

## Preventa safety mats

Type XY2 TP


## Connections

Wiring example to category 3, with an XPS AK module


# Safety detection solutions <br> ProtectArea Design <br> Software configurator for safety installations incorporating light curtains or safety mats 

## Presentation <br> Preparation and standards

Before using the configurator, it is necessary to perform the following 2 procedures: risk assessment in accordance with EN 1050/ISO 14121 and risk reduction in accordance with EN/ISO 12100-1, in order to decide the contribution of the risk from the light curtain or safety mat and to select the appropriate control system category.

## The Protect Area Design software

Protect Area Design software is a configurator that enables selection of the zone protection device (sensing mats, light curtains) required for safety applications. This software enables the user, via a graphic interface, to create, test or modify a safe working area in the vicinity of a potentially dangerous machine.
Having established the predefined fields (desired control system category, dimensions of the machine, etc.), the Protect Area Design software calculates the safety distance in relation to the reaction time of the machine, the light curtain and the approach direction to the hazardous zone. It then displays a recommended safety protection solution and creates the list of products (references, quantities and accessories to be used).
Protect Area Design software is user-friendly and compatible with Windows 98, NT, 2000 and XP.

## Main functions of the software

The software enables creation of an application using the procedures stated below or selection from applications previously established:

- assisted procedure for light curtains,

■ unassisted or assisted procedure for sensing mats.

Reference of Protect Area Design software

| Description | Compatibility | Language | Reference | Weight <br> kg |
| :--- | :--- | :--- | :--- | ---: |
| Protect Area Design <br> software configurator <br> supplied on CD-ROM | Windows 98/ | French/English | SIS CD104200 | 0.085 |



# Safety detection solutions <br> ProtectArea Design <br> Software configurator for safety installations incorporating light curtains or safety mats 



Control system category and its sensitivity


Type of approach into the hazardous zone


Description of the installation and calculation of safety distance


List of products


Graphical representation of the light curtain configuration

## Configuration of light curtains

The Protect Area Design software enables selection of the type of application depending on the approach movement (at right-angles, parallel to, at an angle) into the hazardous zone.
■ For configuration in "Assisted procedure" mode the software enables access to the following menus:
$\square$ selection of the control system category and object to detect,
$\square$ description of the machine and its reaction time,
$\square$ selection of a type of application depending on the approach direction into the hazardous zone,
$\square$ calculation and selection of the following parameters:

- detection capability: finger, hand or whole body
- type of output: alarm/auxiliary,
- protection: Lexan cover (1) or IP 67 tube (1),
- monitoring modules options: 2 to 4 light curtains,
- muting modules option: 1 light curtain and 1 or 2 light curtains,
- light curtain options: EDM (2), MTS (1), Blanking (2),

Floating blanking (2) (1 or 2 light beams).

## On-screen results

Following calculation of the safety distance, the software displays the following results:

- component selection (description of products),
- graphical representation of the configuration,
- list of selected components (references and quantities),
- configuration of products.
(1) See page 3/104.
(2) For further information, refer to pages $3 / 98$ to $3 / 103$.


Description of the installation


Configuration according to the zone to cover


List of products


Graphical representation of the sensing mat configuration

## Configuration of safety mats

The Protect Area Design software enables determination of the shape to be covered and optimisation of the use of mats using proposed solutions such as "Coverage of the zone to be protected" or "Optimised coverage of the zone to be protected".
■ For configuration in "Assisted procedure" mode the software enables access to the following menus:
$\square$ description of the installation: description of the machine, reaction time,
$\square$ description of the structure and access to the hazardous zone,
$\square$ selection of configuration according to the zone to be covered,
$\square$ calculation.
■ For configuration in "Unassisted procedure" mode the software enables access to the following menus:
$\square$ replacement of an existing installation,
$\square$ selection of surface to cover and measurements.

## On-screen results

Following calculation of the safety distance, the software displays the following results:
■ component selection (description of products),

- graphical representation of the configuration,

■ list of selected components (references and quantities).

Selection guide
Safety detection solutions
Safety light curtains

| Applications |
| :--- |
| Functions |



| Conformity |
| :--- |
|  |


| Product certifications |
| :--- |
| Degree of protection |
| Cross-section |
| Height protected $\quad$ Conforming to EN 999 |
| Nominal sensing distance |
| Response time |



| Materials handling, packaging, etc. |
| :--- |
| Finger protection $(14 \mathrm{~mm})$ or hand protection $(\mathbf{3 0} \mathrm{mm})$ |

Safety light curtains, type 4
Multi-beam, infrared transmission, light curtains
(1 transmitter-receiver pair)

Compact model, solid-state safety outputs (PNP)


ANSI/RIA R15.06, ANSI B11:19-1990, OSHA 1910.217(C), OSHA 1910.212, type 4 (ESPE) conforming to IEC 61496-1 and 2

Machinery directive 98/37/EC, Work equipment directive 89/655/EEC and EMC directive 89/336 EEC

## CE, TUV, UL, CSA

IP 65 (IP 67 with protection tube)

## $35 \mathrm{~mm} \times 50 \mathrm{~mm}$

260... 1390 mm (finger protection)
350... 2095 mm (hand protection)
$0.3 \ldots .7 .5 \mathrm{~m}$ (finger protection)
$0.3 \ldots 9 \mathrm{~m}$ or $0.3 \ldots 20 \mathrm{~m}$ (hand protection)
Depending on height protected: $20 \ldots 40 \mathrm{~ms}$ (finger protection)
Depending on height protected: $20 \ldots 35 \mathrm{~ms}$ (hand protection)
2 solid-state PNP outputs (N/O)

| $-24 \mathrm{~V}, \leq 500 \mathrm{~mA}$ |
| :--- |
| Short-circuit protection |
|  |
| 1 solid-state $100 \mathrm{~mA},=-24 \mathrm{~V}$, PNP or NPN output depending on model |

Functions integrated in the light curtain:
Auto/Manual start and manual 1st cycle,

- EDM (external devices monitoring),
- test input,
- Blanking (ECS/B), Floating Blanking (FB) and Blanking + Floating Blanking,
- Muting via external module

$$
=-24 \mathrm{~V} \pm 20 \%, 2 \mathrm{~A}
$$

## XUS LT

$3 / 105$ to $3 / 107$

| Packaging, conveyor systems, materials handling |
| :--- |
| Body protection ( $\mathbf{3 0 0}, \mathbf{4 0 0}, \mathbf{5 0 0}$ and $\mathbf{6 0 0} \mathbf{~ m m}$ ) |
| Safety light curtains, type 4 |
| 1 to 6 beam light curtains with infrared |
| transmission |
| (1 transmitter-receiver pair) |
| Type 4 model, solid-state output |




ANSI/RIAR15.06, ANSI B11:19-1990, OSHA 1910.217(C), OSHA 1910.212
type 4 (ESPE) conforming to IEC 61496-1 and 2 Machinery directive 98/37/EC, Work equipment directive 89/655/EEC and EMC directive 89/336/EEC

## CE, TUV, UL, CSA

IP 67
$52 \mathrm{~mm} \times 55 \mathrm{~mm}$
$750 \ldots 1800 \mathrm{~mm}$ (1 to 6 light beams)
$0.8 \ldots 20 \mathrm{~m}$ or $0.8 \ldots 70 \mathrm{~m}$ dpg. on configuration
$0.8 \ldots 8 \mathrm{~m}$ for light curtains with passive receiver
$<16 \ldots<24 \mathrm{~ms}$ depending on light beam coding selected

| 2 solid-state PNP outputs (N/O) |
| :--- |
| $=-24 \mathrm{~V}, \leq 650 \mathrm{~mA}$ |
| Short-circuit protection |
| 1 solid-state $100 \mathrm{~mA},-=24 \mathrm{~V}$ PNP output |
|  |
| Functions integrated in the light curtain: |
| Auto/Manual start and manual 1 st cycle, |
| - EDM (external devices monitoring), |
| - test input, |
| - 3 light beam codings available, |
| - Muting via external module |

$=-24 \mathrm{~V} \pm 20 \%, 2 \mathrm{~A}$

## XUS LPс๐๐๐

3/121

## Body protection

## Safety light curtains, type 2

Single-beam, infrared transmission, light curtains (Preventa safety monitoring module +1 to 4 thru-beam photo-electric sensors)

Type 2 model, relay outputs (N/O)


IEC 60947-1, EN 61496-1, EN 60825-1, UL 508, type 2 (ESPE) conforming to IEC 61496-1 and 2

Machinery directive 98/37/EC, Work equipment directive 89/655/EEC and EMC directive 89/336/EEC EN 60825-1 (emission class 1)

CE type approval BIA/Cologne. UL, CSA
IP 67
$\varnothing$ of sensors: 18 mm
$750 \ldots 1200 \mathrm{~mm}$ (1 to 4 light beams)

8 m
$<20 \mathrm{~ms}$ (sensors + safety module)

Solid-state PNP
Preventa safety module XPS CM outputs
2 guided contact relays, each $1 \mathrm{~N} / \mathrm{O}$
AC-15: C300, 1800 VA inrush, 180 VA maintained
DC-13: -- $24 \mathrm{~V} / 1.5 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=50 \mathrm{~ms}$
Maximum thermal current $=2.5 \mathrm{~A}$
$=-24 \mathrm{~V}, 20 \mathrm{~mA}$
"Muting" integrated in the safety monitoring module XPS CM

- automatic or manual start depending on version
- Muting via external module
$=-24 \mathrm{~V} \pm 20 \%, 2 \mathrm{~A}$


## XUS LNG5Coee๐, XUS LNG5Dece•

# Safety detection solutions <br> Safety light curtains 

## Presentation

## Protection of personnel

Safety light curtains are electro-sensitive protection equipment (ESPE) designed for the protection of persons operating or working in the vicinity of machinery, by stopping the dangerous movement of parts as soon as one of the light beams is broken.
In particular, they provide protection to ensure the safety of personnel operating dangerous machinery (annex IV of 98/37/EC) but they are equally suitable for use with many other types of machines. They make it possible to protect personnel whilst allowing free access to machines.

The absence of a door or guard reduces the time required for loading, inspection or adjustment operations as well as making access easier.

## Conformity to standards

## These light curtains conform to:

■ European Machinery Safety Directive 98/37/EC and European Work Equipment Directive 89/655/EEC,

- Low Voltage Directives 73/23/EEC and 93/68/EEC and also, the Electromagnetic

Compatibility Directive 89/336/EEC,
■ Standard EN/IEC 61496-1, EN/IEC 61496-2 (electro-sensitive protection
equipment: ESPE),
■ Standard EN 60825 (emission power),

- Standard EN 999/ISO 13855 (installation positioning),

These light curtains are UL, CSA and TÜV certified.
Application sectors

## Main applications

- Application sectors for type 2 products:
- assembly and packaging lines,
- conveying and handling lines,
- warehousing and storage systems,
- waste disposal skips.
- Types of machine requiring the use of type 4 products:
- presses (all types), shears and trimmers,
- hoisting equipment,
- saws (all types),
- machine tools (lathes, milling machines, machining centres),
- woodworking machines (planing machines, lathes, spindle moulding machines, side and face milling cutters),
- textile machinery (carding machines, weaving looms, steam rooms),
- assembly machines,
- assembly robots.


## Safety rules

## Detection of failures

Detection of failures liable to compromise safety and stopping of the machine
The design of the machine and its control system must be to the same level of safety as that of the safety light curtain in order to ensure the immediate stopping of the machines dangerous movement as soon as the hazardous zone, protected by the light curtain, is entered.

It must not be possible to enter the protected zone without breaking the protective light beams. The safety light curtain must therefore be installed in such a manner that the light beams cannot be avoided.
The machine can only be restarted if no danger exists and no personnel are present in the hazardous zone. The risk that persons might be inside the protected zone but out of the protective light beams must be addressed.

Installation rules


These are defined in standard EN 999. In particular:

- the safety distance between the light curtain and the hazardous zone,
- the body approach speed,
- multiple single-beam devices,
- multi-beam light curtains.

Calculation of minimum safety distance $S$ between the light curtain and the hazardous zone
$\mathbf{S}=\mathrm{K}(\mathbf{t} \mathbf{1}+\mathbf{t} \mathbf{2})+\mathbf{C}$ (general formula)
$\mathbf{S}=$ minimum distance in mm
$\mathbf{K}=$ body approach speed (or of part of the body) in $\mathrm{mm} / \mathrm{s}$
t1 = response time of protection device in s
t2 = stopping time of machine (dangerous movements) in s
$\mathbf{C}=$ additional distance in mm
■ For single-beam light curtains:
$K=1600 \mathrm{~mm} / \mathrm{s}$
$C=1200 \mathrm{~mm}$ for a single beam
$C=850 \mathrm{~mm}$ for several beams
The heights protected are as follows:

| Number of beams | Heights protected (mm) |
| :--- | :--- |
| 4 | $300,600,900,1200$ |
| 3 | $300,700,1100$ |
| 2 | 400,900 |
| 1 | 750 |

- For multi-beam light curtains:
$K=2000 \mathrm{~mm} / \mathrm{s}$
$\mathbf{C}=\mathbf{8}(\mathbf{d}-14)$ where $\mathbf{d}=$ detection capacity of the light curtain


## Special rules for presses

The use of safety light curtains and mechanical protectors on metal working presses is governed by specific standards and rules.
The standards specify that only safety light curtains or mechanical protectors must be used as safety devices so that, if a person enters the protective field whilst the dangerous movement is in progress, the machine stops as quickly as possible. "Quick stopping" means stopping of the ram before the operator can reach the hazardous zone, taking into account their speed of movement.

The continuous self-monitoring function of safety light curtains is essential for metal working press applications. If a fault occurs in the safety device, the potentially dangerous machine must be stopped automatically.

Once the protected zone is clear, the movement which was started and then interrupted by entry into the zone must not resume its normal travel, even after a Reset button has been pressed. Resetting must restart the movement from the beginning of the cycle. The safety light curtain must allow starting of a dangerous movement only if its correct operation has been proved (by pushing a test rod into the hazardous zone, or by means of an automatic device) and if a Reset button (start interlock) has been reactivated.

The safety distance $S$ is calculated in a special way for:

- mechanical presses: refer to EN 692,
- hydraulic presses, pneumatic folding machines, shears, bending and shaping machines: refer to prEN 693.


# Safety detection solutions <br> Safety light curtains 

## Prevention of access over top of light curtain



Without additional safety device: insufficient degree of protection


With additional safety device: light beam(s) broken, the machine stops

Prevention of access from beneath the light curtain


Without additional safety device: insufficient degree of protection


With additional safety device: light beam(s) broken, the machine stops

## Prevention of access from rear of light curtain



Without additional safety device: insufficient degree of protection


With additional safety device: light beam(s) broken, the machine stops


Addition of solid protection to the light curtain when using channel selection

## Additional safety devices

Safety light curtains can only be used on machines on which the movement of working components can be stopped at any time during a hazardous phase.

These light curtains provide a stop signal, not a control instruction. This stop signal must be stored.

Clearing of the light curtain must not result in restarting of moving parts.
Subsequent restarting must only be possible by means of deliberate operation of the appropriate control device, after having checked that there is no longer any danger.

Electrical interfacing between the light curtain and the machine circuits must correspond to the machine standard specifications.

Where safety light curtains do not provide an adequate degree of protection due to their location, additional suitable safety devices or additional light curtains must be used in order to prevent operators from entering the protective light curtain and reaching the hazardous zone (EN 294/ISO 13852, EN 811/ISO 13853, or from remaining in the area between the hazardous zone and the safety light curtain (EN 999/ISO 13855).

The position and size of these additional safety devices must be such that it is impossible for operators to reach the hazardous zone in any way whatsoever (over the top, from beneath, from behind or from the side) without breaking the beams of the light curtain.

These additional safety devices must be:

- either fixed
(if possible, screwed or welded to the machine),
- or moving
(with continuous monitoring of their position if they have to open).
It must be impossible for operators to disconnect or cut-out the switching circuits for these additional safety devices.


## Protection for "blanking" or "floating blanking" functions

The "blanking" (inhibition of light beams) or "floating blanking" (floating inhibition of light beams) functions create non protected areas in the detection field. These non protected areas are required for some applications. If an obstruction does not completely fill these unprotected areas, one of two actions must be implemented: - an increase of safety distance to take into account a larger opening in the light curtain,

- the area not filled by an obstruction must be guarded by a solid protection method (mechanical barrier: metal plate or unfolded structure).


## Safety detection solutions <br> Safety light curtains

Installation precautions


## Reflective surface

The devices must be installed such that the transmitter and associated receiver are mounted facing each other and correctly aligned for both height and angle.

The aperture angle of the optics and transmitter/receiver alignment tolerance are $\pm 2.5^{\circ}$.

Reflective surfaces located alongside the optical axis could result in stray reflections interfering with the beams which are the furthest away from the axis and, in consequence, prevent detection of an object entering the hazardous zone. The direct beam could then be joined by a stray reflected beam and this latter beam would not be broken when the object is in the axis.

For this reason, prEN 50100-1 and 2 and EN/IEC 61496-1 specify a minimum distance $\mathbf{D}$ whereby:

- for $0<L<3 \mathrm{~m}, \mathrm{D}=131 \mathrm{~mm}$,
- for $\mathbf{L}>3 \mathrm{~m}, \mathrm{D}=(\mathbf{0 . 0 3 5} \mathbf{x L} \mathrm{L})+5$ (with a minimum limit value of 131 mm ).

D = minimum distance between the light curtain and reflective surface in mm
$\mathrm{L}=$ sensing distance of the light curtain in mm

## Mutual interference

Certain installation configurations may require the installation of 2 (or more) safety light curtains side by side.

In this case, setting-up as indicated below is recommended.


## Environments subject to interference

Industrial applications sometimes place products in extreme operating conditions, mainly due to:

■ Electromagnetic interference generated by the proximity of variable speed drives, welding machines or walkie-talkies.
The products in the XUS L range are designed to be immune to such interference.
They conform to:

- level 3 according to EN/IEC 61496-1,
- resistance to interference caused by variable speed drives.

■ Light interference (conformity to standard EN/IEC 61496-2).

## Safety detection solutions <br> Safety light curtains

## Definitions



## Detection capacity (d)

This is the smallest diameter (object) that a type 4 safety light curtain is capable of detecting with absolute certainty.
$d=P+e$
$\mathbf{P}$ : distance between the axis of 2 adjacent beams
e : diameter of the beams

| XUS L range | $\mathbf{P}(\mathbf{m m})$ | $\mathbf{e}(\mathbf{m m})$ | $\mathbf{d}(\mathbf{m m})$ |
| :--- | :--- | :--- | :--- |
| XUS L 10.7 3.3 14 <br> Finger protection 21 9 30 <br> XUS L•   Hand protection |  |  |  |

## Protected height (Hp)

According to prEN 50100-2, this is the zone (or height) within which an object of equal diameter to the detection capacity $\mathbf{d}$ is detected with absolute certainty.


## Response time

European standard EN 999/ISO 13855 fully incorporates the various aspects of "response time" in the formula for calculating the minimum safety distance (see page 3/99):

$$
S=K(t 1+t 2)+C
$$

with, in particular:

- $\mathbf{t 1}$ : response time of the protection device (in s). This is the time indicated for the XPS CE and XUS L ranges. It is the total time between detection by the device and switching of the output component.
- t2: stopping time of the machine and, in particular, of its dangerous movements (in s). This information is supplied by the machine manufacturer. It is the time between the stop instruction and the actual stop of the dangerous mechanical components.


## Safety detection solutions <br> Safety light curtains

## Functions


#### Abstract

Protection mode AUTO/MAN (automatic/manual): this is what standard EN/IEC 61496 calls start (or restart) interlock of the safety light curtain: - in AUTO mode: on power-up or after the beams have been cleared, the light curtain resets itself automatically (closing of the OSSD output safety circuits), ■ in MANUAL mode: on power-up or after the beams have been cleared, the light curtain keeps its output safety circuits in the "open" position. Pressing (and releasing) the reset button will cause actual resetting of the light curtain (and closing of its OSSD output safety circuits).

Note: in all cases, a general start instruction for the machine will trigger its actual start-up.


## Monitoring of external switching devices

Also called EDM (External Devices Monitoring) by standard EN/IEC 61496, this consists of monitoring the function (open or closed), together with the time taken to reach that condition, of the machines power switching components.

## Auxiliary output

This is a low power solid-state output for signalling, when configurable (XUS LM/ XUS LP), to the automation system. This output closes when the light curtain switches to run mode.

## Alarm

This is a low power solid-state output for signalling to the automation system. This output closes when the light curtain switches to alarm mode.

## Signalling

LED display of operating modes and alarm.

## Alignment aid

Display by visible infrared LED of each beam broken.

## Muting (inhibition)

When activated, the "muting" function inhibits the detection function of the light curtain.
Activation (or deactivation) is achieved by means of standard sensors (photo-electric or other). When activated, a signal is sent to the automation system. This function is used to allow objects to access the hazardous zones during the process.
Signalling informs the operator or operators that they are not protected.

## Blanking

This function makes it possible to inhibit detection by a selected group of light beams in the light curtain (and not all the beams as with muting). This function (adapted to the size of the objects) allows the presence of objects during process operations. Caution when using: the detection capacity changes. This imposes a greater safety distance. In addition, the use of additional protection each side of the object present must be included, in order to prevent any intrusion into the free areas.

## Floating blanking

This function makes it possible to inhibit one or two light beams (adjacent or otherwise), anywhere in the light curtain. This configuration is used, for example, for metal plate feeding applications on folding presses or shears.

## Blanking plus floating blanking

The Blanking (fixed inhibition of light beams) and Floating Blanking (moving inhibition of one or two light beams) functions can be combined. Caution, these applications require complementary safety measures.

# Safety detection solutions <br> Safety light curtains，type 4 <br> Compact light curtains XUS LT with solid－state output 

| Light curtain type |  |  | XUS LTQ6••＊७（14 mm） | XUS LTR5•••・セ（30 mm） | XUS LTY5 ゃ－७ゃ७（30 mm） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Environmental characteristics |  |  |  |  |  |
| Conformity to standards |  |  | ANSI／RIA R15．06，ANSI B11：19－1990，OSHA 1910．217（C），OSHA 1910．212，EN／ IEC 61496－1 and EN／IEC 61496－2（Type 4） |  |  |
| Certifications |  |  | C $\in$ ，TUV，UL，CSA |  |  |
| European directives |  |  | Machinery directive 98／37／EC，Work equipment directive 89／655／EEC and EMC directive 89／336 EEC |  |  |
| Ambient air temperature | Operating | ${ }^{\circ} \mathrm{C}$ | 0．．．+55 |  |  |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | －25．．． 75 |  |  |
| Relative humidity |  |  | 95\％maximum，without condensation |  |  |
| Degree of protection |  |  | IP 65 |  |  |
| Shock and vibrationresistance |  |  | Shock resistance： 10 gn ，impulse 16 ms ， Vibration resistance： $10 \ldots 55 \mathrm{~Hz}$ ，amplitude： $0.35 \pm 0.05 \mathrm{~mm}$ |  |  |
| Materials |  |  | Casing：aluminium with electrostatically applied red（RAL 3000）polyester paint finish； end caps：20\％fibreglass impregnated polycarbonate． |  |  |
| Fixings |  |  | End brackets（included） |  |  |
| Optical characteristics |  |  |  |  |  |
| Minimum detection capacity |  | mm | 14 （finger） | 30 （hand） |  |
| Nominal sensing distance（Sn） |  | m | 0．3．．．7．5 | 0．3．．． 9 | 0．3．．． 20 |
| Height protected |  | mm | 260．．． 1390 | 350．．． 2095 |  |
| Effective aperture angle（EAA） |  |  | $2.5^{\circ}$ at 3 m （ $3^{\circ}$ when used with IP 67 protection tube） |  |  |
| Light source |  |  | GaAIAs LED， 850 nm |  |  |
| Immunity to ambient light |  |  | Conforming to IEC／EN 61496－2 |  |  |
| Electrical characteristics |  |  |  |  |  |
| Response time |  | ms | 20．．． 40 | 20．．． 35 |  |
| Power supply | Transmitter | mA | －－ $24 \mathrm{~V} \pm 20 \% 2$ A conforming to EN／IEC 61496 and EN／IEC 60204－1 |  |  |
|  |  |  | 285 |  |  |
|  | Receiver | A | 1.4 （with maximum load） |  |  |
| Maximum current consumption（no－load） | Transmitter | mA | 285 |  |  |
|  | Receiver | mA | 300 |  |  |
| Immunity to interference |  |  | Conforming to EN 61496－1 |  |  |
| Safety outputs OSSD（Output Signal Switching Devices） |  |  | 2 solid－state PNP（N／O）outputs $\leq 500 \mathrm{~mA},=-24 \mathrm{~V}$（Short－circuit protected） |  |  |
| Alarm output |  |  | 1 solid－state output $100 \mathrm{~mA},-\mathrm{-} 24 \mathrm{~V}, \mathrm{PNP}$ or NPN depending on model |  |  |
| Monitoring activation of output switching devices （MPCE／EDM） |  |  | $50 \mathrm{~mA},-\mathrm{=} 24 \mathrm{~V}$ |  |  |
| Signalling | Transmitter |  | 1 LED（power supply） |  |  |
|  | Receiver |  | 4 LEDs（stop，run，interlock，ECS／B Blanking or FB Floating Blanking） |  |  |
| Connections（1） | Transmitter |  | M12，5－pin，male connector on 0.25 m flying lead |  |  |
|  | Receiver |  | M12，8－pin，male connector on 0.25 m flying lead |  |  |
| Conductor c．s．a． | Transmitter | mm ${ }^{\text {²}}$ | 0.34 ．Tinned wires． |  |  |
|  | Receiver | mm ${ }^{2}$ | Power supply and output signals： 0.5 （white，orange and yellow wires）； 0.34 （grey，pink and violet wires）．Tinned wires． |  |  |
| Cable resistance | Transmitter | $\Omega$ | 0.056 per metre for $0.34 \mathrm{~mm}^{2}$ c．s．a．cable |  |  |
|  | Receiver | $\Omega$ | 0.040 per metre for $0.5 \mathrm{~mm}^{2}$ c．s．a．cable |  |  |
| Cable lengths |  | m | Pre－wired connectors with screened（ $60 \%$ coverage）cable lengths of $5,10,15$ and 30 m are available separately．The maximum cable length is 60 m ，depending on the load current and power supply． |  |  |
| Tightening torque |  |  | Receiver end cap assembly screw： 0.9 Nm |  |  |

## Functions

Functions

Monitoring of external switching devices
（EDM＝External Devices Monitoring）
＂Test＂function
＂Muting＂function（inhibition）
－Auto／Manual，manual $1^{\text {st }}$ cycle，
－Monitoring of external switching devices（EDM：External Devices Monitoring），
－Test（MTS：Monitoring Test Signal），
－Blanking（ECS／B），
－Floating Blanking（FB），
－Alignment aid by display of each light beam broken，
－LED display of operating modes and alarm．
Selection of Auto／Manual，blanking relay monitoring，floating／blanking and blanking＋ floating／blanking relay monitoring by configuration switches．
Monitoring of the function（open or closed）as well as the response time of the power components．
Parameterable using configuration switches．
Instigates the stop instruction of the light curtain by opening the contact（simulated intrusion）
Possible with external module XPS LCM1150
（1）Pre－wired female connectors to be ordered separately，see page 3／106．

| General： <br> pages 3／98 to 3／103 | References： <br> pages 3／105 to 3／107 | Dimensions： <br> page 3／108 | Connections： <br> pages $3 / 110$ and 3／111 |
| :--- | :--- | :--- | :--- |

# Safety detection solutions 

Safety light curtains，type 4
Compact light curtains XUS LT with solid－state output


| Transmitter－receiver pairs for finger protection（1） |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Detection capacity 14 mm ．Sensing distance $\mathbf{0 . 3}$ to 7.5 m ． |  |  |  |  |  |
| － 2 PNP safety outputs |  |  |  |  |  |
| Height protected | Response time | Number of light beams | Alarm output | Reference (2) (3) | Weight |
| mm | ms |  |  |  | kg |
| 260 | 20 | 24 | PNP | XUS LTQ6A0260 | 4.000 |
| 350 | 20 | 32 | PNP | XUS LTQ6A0350 | 4.270 |
| 435 | 20 | 40 | PNP | XUS LTQ6A0435 | 4.530 |
| 520 | 25 | 48 | PNP | XUS LTQ6A0520 | 4.800 |
| 610 | 25 | 56 | PNP | XUS LTQ6A0610 | 5.060 |
| 700 | 25 | 64 | PNP | XUS LTQ6A0700 | 5.330 |
| 785 | 30 | 72 | PNP | XUS LTQ6A0785 | 5.600 |
| 870 | 30 | 80 | PNP | XUS LTQ6A0870 | 5.860 |
| 955 | 35 | 88 | PNP | XUS LTQ6A0955 | 6.720 |
| 1045 | 35 | 96 | PNP | XUS LTQ6A1045 | 6.990 |
| 1130 | 35 | 104 | PNP | XUS LTQ6A1130 | 7.250 |
| 1215 | 40 | 112 | PNP | XUS LTQ6A1215 | 7.520 |
| 1305 | 40 | 120 | PNP | XUS LTQ6A1305 | 7.780 |
| 1390 | 40 | 128 | PNP | XUS LTQ6A1390 | 8.050 |

（1）Supplied with a test rod， 2 sets of 2 brackets with fixings and a user guide with certificate of conformity and 1 arc suppressor set．
Pre－wired female connectors to be ordered separately，see page 3／107．
（2）To order a transmitter－receiver pair with an NPN alarm output，replace the letter $\boldsymbol{A}$ by the letter $B$ in the reference．
Example：reference XUS LTQ6A0260 becomes XUS LTQ6B0260，with an NPN alarm output．
（3）To order a receiver only，add the letter $\boldsymbol{R}$ to the end of the reference for the corresponding transmitter－receiver pair．
Example：reference XUS LTQ6A0260 becomes XUS LTQ6A0260R for the receiver only． To order a transmitter only，replace the letter A or B by E and add the letter $\boldsymbol{T}$ to the end of the reference for the corresponding transmitter－receiver pair．
Example：reference XUS LTQ6A0260 becomes XUS LTQ6E0260T for the transmitter only．

## Transmitter－receiver pairs for hand protection（1） Detection capacity $\mathbf{3 0} \mathbf{m m}$ ．Sensing distance 0.3 to 9 m ．

－ 2 PNP safety outputs

| Height <br> protected | Response <br> time | Number of <br> light beams | Alarm <br> output | Reference <br> $(2)(3)$ | Weight |
| :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathbf{m m}$ | $\mathbf{m s}$ |  |  |  | $\mathbf{k g}$ |
| 350 | 20 | 16 | PNP | XUS LTR5A0350 | 4.270 |
| 520 | 20 | 24 | PNP | XUS LTR5A0520 | 4.800 |
| 700 | 20 | 32 | PNP | XUS LTR5A0700 | 5.330 |
| 870 | 20 | 40 | PNP | XUS LTR5A0870 | 5.860 |
| 1045 | 25 | 48 | PNP | XUS LTR5A1045 | 6.990 |
| 1215 | 25 | 56 | PNP | XUS LTR5A1215 | 7.520 |
| 1390 | 25 | 64 | PNP | XUS LTR5A1390 | 8.050 |
| 1570 | 30 | 72 | PNP | XUS LTR5A1570 | 8.580 |
| $\mathbf{1 7 4 5}$ | 30 | 80 | PNP | XUS LTR5A1745 | 9.110 |
| 1920 | 35 | 88 | PNP | XUS LTR5A1920 | 9.640 |
| 2095 | 35 | 96 | PNP | XUS LTR5A2095 | 10.160 |

Detection capacity $\mathbf{3 0} \mathbf{~ m m}$ ．Sensing distance $\mathbf{0 . 3}$ to $\mathbf{2 0 ~ m}$ ．
－ 2 PNP safety outputs
To order a transmitter－receiver pair with a sensing distance 0.3 to 20 m ，replace the letter $\mathbf{R}$ by $\mathbf{Y}$ ． Example：reference XUS LTR5A0350 becomes XUS LTY5A0350，with a sensing distance 0.3 to 20 m ．
（1）Supplied with a test rod， 2 sets of 2 brackets with fixings and a user guide with certificate of conformity and 1 arc suppressor set．
Pre－wired female connectors to be ordered separately，see page 3／107．
（2）To order a transmitter－receiver pair with an NPN alarm output，replace the letter $\boldsymbol{A}$ by the letter $B$ in the reference．
Example：reference XUS LTR5A0350 becomes XUS LTR5B0350，with an NPN alarm output．
（3）To order a receiver only，add the letter $\boldsymbol{R}$ to the end of the reference for the corresponding transmitter－receiver pair
Example：reference XUS LTR5A0350 becomes XUS LTR5A0350R for the receiver only． To order a transmitter only，replace the letter A or B by E and add the letter $\boldsymbol{T}$ to the end of the reference for the corresponding transmitter－receiver pair．
Example：reference XUS LTR5A0350 becomes XUS LTR5E0350T for the transmitter only．
Other versions Combining type 4 safety light curtains with external module for muting function．
See pages 2／220 to 2／225．

## Safety detection solutions

Safety light curtains, type 4
Compact light curtains XUS LT with solid-state output


## Separate components

Power supplies, $90^{\circ}$ mirror adaptors, protective covers, anti-vibration kit, fixing bases
See pages $3 / 124$ to $3 / 127$

| Accessories |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Usage | Length m | Reference | Weight kg |
| Fixings kit (2 brackets) | For light curtains XUS LT | - | XUS LZ213 | 0.100 |
| Pre-wired female connectors | Transmitter type | 5 | XSZ TCT05 | 0.360 |
|  |  | 10 | XSZ TCT10 | 0.690 |
|  |  | 15 | XSZ TCT15 | 1.000 |
|  |  | 30 | XSZ TCT30 | 1.930 |
|  | Receiver type | 5 | XSZ TCR05 | 0.460 |
|  |  | 10 | XSZ TCR10 | 0.900 |
|  |  | 15 | XSZ TCR15 | 1.290 |
|  |  | 30 | XSZ TCR30 | 2.440 |
| End cap with connector | Receiver type | - | XUS LZ222 | 0.010 |
| Validation kit | For light curtains XUS LT | - | XUS LZ100 | 0.007 |
| Arc suppressor (pair) | All types of light curtain | - | XUS LZ500 | 0.020 |
| Protection tube (see page 3/107) |  |  |  |  |
| User guide on CD-ROM | All types of light curtain | - | XUS LZ450 | 0.010 |


| General: <br> pages $3 / 98$ to 3/103 | Dimensions: <br> pages $3 / 108$ and $3 / 109$ | Connections: <br> pages $3 / 110$ and $3 / 111$ |
| :--- | :--- | :--- |

## Safety detection solutions

Safety light curtains, type 4
Compact light curtains XUS LT with solid-state output

| IP 67 protection tubes for compact light curtains XUS LT |  |  | XUSLZ7•••๑ |
| :---: | :---: | :---: | :---: |
| Environmental characteristics |  |  |  |
| Air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | 0... +40 |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-25 \ldots+70$ |
| Degree of protection |  |  | IP 67 conforming to IEC 60529 |
| Material |  |  | Acrylic |
| Sensing distance (Sn) reduction coefficient |  |  | 0.90 |
| Environmental chemicals |  |  |  |
| Chemical resistance | Aliphatic hydrocarbons | - | Resistant |
|  | Alkalis |  |  |
|  | Aqueous solutions |  |  |
|  | Detergents and cleaners |  |  |
|  | Inorganic diluted acids |  |  |
|  | Chlorinated or aromatic hydrocarbons |  | Limited resistance |
|  | Esters |  |  |
|  | Ketones |  |  |
| Environmental resistance | Adverse weather, sunlight (UV) |  | Resistant |
|  | Humidity |  |  |
|  | Immersion in water |  |  |

References of IP 67 protection tubes


XUS LZ7••••

| Description | For use with | Height mm | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: |
| IP 67 protection tubes for XUS LT••• <br> transmitter-receiver pair ( 0.90 Sn ) (1) <br> (Sold in sets of 2) | XUSLT•••260 | 262.9 | XUS LZ70260 | 2.700 |
|  | XUSLT•••350 | 350 | XUS LZ70350 | 2.700 |
|  | XUSLT•••435 | 436 | XUS LZ70435 | 2.700 |
|  | XUSLT•••520 | 523.8 | XUS LZ70520 | 3.200 |
|  | XUSLT•••610 | 610.9 | XUS LZ70610 | 3.200 |
|  | XUSLT•••700 | 697.7 | XUS LZ70700 | 3.200 |
|  | XUSLT•••785 | 784.6 | XUS LZ70785 | 3.200 |
|  | XUSLT•••870 | 871.1 | XUS LZ70870 | 3.200 |
|  | XUSLT•••955 | 958.6 | XUS LZ70955 | 3.200 |
|  | XUSLT•••1045 | 1045.5 | XUS LZ71045 | 4.100 |
|  | XUSLT•••1130 | 1132 | XUS LZ71130 | 4.100 |
|  | XUSLT•••1215 | 1219.5 | XUS LZ71215 | 4.500 |
|  | XUSLT•••1305 | 1306.3 | XUS LZ71305 | 4.500 |
|  | XUSLT•・セ1390 | 1393.4 | XUS LZ71390 | 4.500 |
|  | XUSLT•••1570 | 1567.4 | XUS LZ71570 | 6.800 |
|  |  | 1741.4 | XUS LZ71745 | 6.800 |
|  | XUSLT•••1920 | 1915.4 | XUS LZ71920 | 6.800 |
|  | XUSLT•・セ2095 | 2089.7 | XUS LZ72095 | 6.800 |

(1) Sensing distance reduction coefficient to be taken into account for each pair of IP 67 protection tubes used.

## Safety detection solutions

Safety light curtains，type 4
Compact light curtains XUS LT with solid－state output

Light curtains XUS LT•••

（1） 6 elongated holes $11.45 \times 6.75 \mathrm{~mm}$ ．
（2）M12 male connector on 0.27 m flying lead．

| XUS | b | b1 | H | Height protected |
| :---: | :---: | :---: | :---: | :---: |
| LT－0．0260 | 263 | 347.3 | 327 | 260 |
| LT•••0350 | 351 | 435.3 | 415 | 350 |
| LT－セ・0435 | 438 | 522.3 | 502 | 435 |
| LT•••0520 | 523 | 607.3 | 587 | 520 |
| LT•••0610 | 613 | 697.3 | 677 | 610 |
| LT•••0700 | 700 | 784.3 | 764 | 700 |
| LT•eッ0785 | 785 | 869.3 | 849 | 785 |
| LT•eッ0870 | 871 | 955.3 | 935 | 870 |
| LT•••0955 | 958 | 1042.3 | 1022 | 955 |
| LT－ゃャ1045 | 1046 | 1130.3 | 1110 | 1045 |
| LT•••1130 | 1133 | 1217.3 | 1197 | 1130 |
| LT－ゃゃ1215 | 1219 | 1303.3 | 1283 | 1215 |
| LT－eャ1305 | 1306 | 1390.3 | 1370 | 1305 |
| LT－0．1390 | 1394 | 1478.3 | 1458 | 1390 |
| LT－eャ1570 | 1570 | 1654.3 | 1634 | 1570 |
| LT－ゃゃ1745 | 1746 | 1830.3 | 1810 | 1745 |
| LT•••1920 | 1920 | 2004.3 | 1984 | 1920 |
| LT•••2095 | 2095 | 2179.3 | 2159 | 2095 |


| General： <br> pages3／98 to 3／103 | Characteristics： <br> page 3／104 | References： <br> page 3／105 |
| :--- | :--- | :--- |

Safety detection solutions
Safety light curtains, type 4
Compact light curtains XUS LT with solid-state output

Protection tube for compact light curtains XUS LT XUS LZ7••••



# Safety detection solutions <br> Safety light curtains, type 4 <br> Compact light curtains XUS LT with solid-state output 

Direct connection with XUS LT•••

(1) For testing prior to installation, the user can select MPCE/EDM OFF (default factory setting). In this case, the MPCE/EDM line must be connected to the 0 V line of the system.
(2) The auxiliary output connects to a PLC (optional).
(3) If remote start is not used, connect the start line to the 0 V line.
(4) The MPCE/EDM coils must be protected using the arc suppressors included in the documentation kit.
(5) Connect the $0 V$ terminal to earth.

Note: There must not be an unscreened connection exceeding 1 m in length (for example: start button, auxiliary outputs, power supply, MPCE/EDM, OSSD1 and OSSD2). Relays K1 and K2 must have mechanically linked contacts.

Connection via a Preventa XPS AFL module

(1) The auxiliary output connects to a PLC (optional).
(2) Connect the 0 V terminal to earth.
(3) The light curtain must be configured with MPCE/EDM OFF and with automatic start.

Note: There must not be an unscreened connection exceeding 1 m in length (for example: start button, auxiliary outputs, power supply, MPCE/EDM, OSSD1 and OSSD2). Relays K1 and K2 must have mechanically linked contacts.

| General: <br> pages 3/98 to 3/103 | Characteristics: <br> page 3/104 | References: <br> page 3/105 |
| :--- | :--- | :--- |



1 Yellow LED
(1) Light curtain test input.

Receiver
Remote connector of receiver


## Receiver status indicator



1 Blanking or floating blanking
Switches A orange LED

Switches B
2 Interlock or Alarm yellow LED
3 Connector
4 Machine stop red LED
5 Machine run green LED
6 Programming button

# Safety detection solutions <br> Safety light curtains, type 4 <br> Compact light curtains XUS LP with solid-state output 

\section*{| Light curtain type | XUS LP•••• |
| :--- | :--- |}

## Environmental characteristics

| Conformity to standards |  |  |
| :---: | :---: | :---: |
| Certifications |  |  |
| European directives |  |  |
| Ambient air temperature | Operating | ${ }^{\circ} \mathrm{C}$ |
|  | For storage | ${ }^{\circ} \mathrm{C}$ |
| Relative humidity |  |  |
| Degree of protection |  |  |
| Shock and vibration resistance | Conforming to IEC 61496-1 |  |
| Materials |  |  |

ANSI/RIA R15.06, ANSI B11:19-1990, OSHA 1910.217(C), OSHA 1910.212, EN/ IEC 61496-1-2 for type 4 ESPE
( $\in$, TUV, UL, CSA
Machinery directive 98/37/EC, Work equipment directive 89/655/EEC and EMC directive 89/336 EEC

0...+55

$95 \%$ maximum, without condensation
IP 65 and IP 67
Shock resistance: 10 gn , impulse 16 ms ,
Vibration resistance: $10 \ldots 55 \mathrm{~Hz}$, amplitude: $0.35 \pm 0.05 \mathrm{~mm}$
Casing: aluminium with electrostatically applied red (RAL 3000) polyester paint finish; end caps: 20\% fibreglass impregnated polycarbonate. Front face: acrylic.
End brackets (included)
Optical characteristics

| Minimum detection capacity | mm | 30 |
| :--- | :--- | :--- |
| Nominal sensing distance (Sn) | m | 0 |
| Height protected |  |  |
| Effective aperture angle (EAA) |  | 2. |
| Light source |  |  |
| Immunity to ambient light |  |  |

300, 400, 500, 600 and single beam (Body protection)
0.8 to 20 or 0.8 to 70 depending on configuration and
0.8 to 8 m for light curtains with passive receiver

Depending on number of light beams, see table on page 3/99
$2.5^{\circ}$ at 3 m
GaAIAs LED, 850 nm
Conforming to EN/IEC 61496-2

## Electrical characteristics

| Response time | ms | <16...<24 depending on light beam coding selected |
| :---: | :---: | :---: |
| Power supply | mA | -- $24 \mathrm{~V} \pm 20 \% 2$ A conforming to EN/IEC 61496 and EN/IEC 60204-1 |
| Transmitter |  | 100 |
| Receiver | A | 1.6 (with maximum load) |
| Maximum current consumption (no-load) | mA | 100 |
|  | mA | 300 |
| Immunity to interference |  | Conforming to EN/IEC 61496-1 |
| Safety outputs OSSD (Output Signal Switching Devices) |  | 2 solid-state PNP (N/O) outputs $\leq 650 \mathrm{~mA},-\mathrm{-} 24 \mathrm{~V}$ (Short-circuit protected) |
| Auxiliary output |  | 1 solid-state output $100 \mathrm{~mA},-\mathrm{-} 24 \mathrm{~V}$, PNP |
| Monitoring activation of output switching devices (MPCE/EDM) |  | $50 \mathrm{~mA},-\mathrm{-} 24 \mathrm{~V}$ |
| Signalling |  | 1 LED (power supply) |
|  |  | 3 LEDs (stop, run, interlock) and a 2-digit display for diagnostics |
| Connections (1) |  | M12, 5-pin, male connector or terminal block |
|  |  | M12, 8-pin, male connector or terminal block |
| Conductor c.s.a. $\begin{array}{l}\text { Transmitter/receiver pre-wired } \\ \text { connector }\end{array}$ | mm ${ }^{2}$ | 0.35 . Tinned wires. |
| Cable resistance Transmitter/receiver | $\Omega$ | 0.055 per metre for $0.35 \mathrm{~mm}^{2}$ c.s.a. cable |
| Cable lengths | m | Pre-wired connectors with cable lengths of $5,10,15$ and 30 m are available separately. The maximum cable length is 120 m , depending on the load current and power supply. |

## Functions

| Functions | Start: <br> - Auto/Manual, manual $1^{\text {st }}$ cycle, <br> - Monitoring of external switching devices (EDM: External Devices Monitoring), <br> - Test (MTS: Monitoring Test Signal) for XUS LPZ only, <br> - Alignment aid by display of each light beam broken, <br> - Display of operating modes and alarm by LEDs and 2-digit display. Selection of Auto/Manual, relay monitoring, alarm or auxiliary output functions, light beam coding and selection of sensing distance using configuration switches. |
| :---: | :---: |
| Monitoring of external switching devices (EDM = External Devices Monitoring) | Monitoring of the function (open or closed) as well as the response time of the power components. <br> Parameterable using configuration switches. |
| "Test" function | Instigates the stop instruction of the light curtain by opening the contact (simulated intrusion) |
| "Muting" function (inhibition) | Possible with external module XPS LCM1150 |

(1) Pre-wired female connectors to be ordered separately, see page 3/115

Auto/Manual, manual $1^{\text {st }}$ cycle,
Monitoring of external switching devices (EDM: External Devices Monitoring),

- Test (MTS: Monitoring Test Signal) for XUS LPZ only,

Alignment aid by display of each light beam broken,
2and
Selection of Auto/Manual, relay monitoring, alarm or auxiliary output functions, light wiches. components.
Parameterable using configuration switches
Instigates the stop instruction of the light curtain by opening the contact (simulated intrusion)
Possible with external module XPS LCM1150

| General: | References: | Dimensions: | Connections: |
| :--- | :--- | :--- | :--- |
| pages $3 / 98$ to $3 / 103$ | pages $3 / 113$ and $3 / 114$ | pages $3 / 116$ and $3 / 117$ | pages $3 / 118$ and $3 / 119$ |


| Transmitter-receiver pairs for body protection (1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Detection capacity 300, 400, 500, 600 mm and single beam. Sensing distance 0.8 to 20 m and 0.8 to 70 m (depending on configuration) |  |  |  |  |  |  |  |
| - 2 PNP safety outputs |  |  |  |  |  |  |  |
| Detection capacity | Response time Light beam coding |  |  | Number of light beams | Auxiliary output | Reference(2) | Weight |
|  | A | B | C |  |  |  |  |
| mm | ms | ms | ms |  |  |  | kg |
| - | < 24 | <20 | < 16 | 1 | PNP | XUS LPZ1AM | 4.500 |
| 500 | <24 | <20 | < 16 | 2 | PNP | XUS LPZ2A0500M | 6.300 |
| 600 | <24 | <20 | < 16 | 2 | PNP | XUS LPZ2A0600M | 6.700 |
| 400 | <24 | <20 | < 16 | 3 | PNP | XUS LPZ3A0400M | 7.200 |
| 500 | <24 | <20 | < 16 | 3 | PNP | XUS LPZ3A0500M | 8.600 |
| 300 | <24 | <20 | < 16 | 4 | PNP | XUS LPZ4A0300M | 8.200 |
| 300 | <24 | <20 | < 16 | 5 | PNP | XUS LPZ5A0300M | 9.500 |
| 300 | <24 | <20 | < 16 | 6 | PNP | XUS LPZ6A0300M | 10.400 |

(1) Supplied with 2 sets of 2 brackets with fixings and a user guide with certificate of conformity. Pre-wired female connectors to be ordered separately, see page 3/115.
(2) To order a receiver only, add the letter $\boldsymbol{R}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LPZ2A0600M becomes XUS LPZ2A0600MR for the receiver only. To order a transmitter only, add the letter $\boldsymbol{T}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LPZ2A0600M becomes XUS LPZ2A0600MT for the transmitter only.

## Transmitter-receiver pairs for body protection, with passive receiver(1)

Detection capacity $\mathbf{5 0 0}$ and $\mathbf{6 0 0} \mathbf{~ m m}$. Sensing distance 0.8 to $\mathbf{8 m}$
■ 2 PNP safety outputs

| Detection capacity | Response time Light beam coding |  |  | Number of light beams | Auxiliary output | Reference(2) | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C |  |  |  |  |
| mm | ms | ms | ms |  |  |  | kg |
| 500 | <24 | $<20$ | < 16 | 2 | PNP | XUS LPB2A500M | 6.300 |
| 600 | $<24$ | $<20$ | < 16 | 2 | PNP | XUS LPB2A600M | 6.700 |

(1) Supplied with 2 sets of 2 brackets with fixings and a user guide with certificate of conformity. Pre-wired female connectors to be ordered separately, see page 3/115.
(2) To order a passive receiver, replace the letter $\boldsymbol{M}$ by the letter $\boldsymbol{P}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LPB2A500M becomes XUS LPB2A500P for the passive receiver. To order a transmitter only, add the letter $\boldsymbol{R}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LPB2A600M becomes XUS LPB2A600MR for the transmitter only.

Other versions
Combining type 4 safety light curtains with external module for muting function
See pages $2 / 220$ to $2 / 225$.

## Safety detection solutions

Safety light curtains, type 4
Compact light curtains XUS LP with solid-state output, with terminal block


XUS LPZ1AB


XUS LPZ3A••••B

Transmitter-receiver pairs for body protection (1)
Detection capacity $300,400,500,600 \mathrm{~mm}$ and single beam.
Sensing distance 0.8 to 20 m and 0.8 to 70 m (depending on configuration)

- 2 PNP safety outputs

| Detection capacity | Response time Light beam coding |  |  | Number of light beams | Auxiliary output | Reference(2) | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C |  |  |  |  |
| mm | ms | ms | ms |  |  |  | kg |
| - | <24 | <20 | <16 | 1 | PNP | XUS LPZ1AB | 4.500 |
| 500 | <24 | <20 | <16 | 2 | PNP | XUS LPZ2A0500B | 6.300 |
| 600 | <24 | <20 | <16 | 2 | PNP | XUS LPZ2A0600B | 6.700 |
| 400 | <24 | <20 | <16 | 3 | PNP | XUS LPZ3A0400B | 7.200 |
| 500 | <24 | <20 | <16 | 3 | PNP | XUS LPZ3A0500B | 8.600 |
| 300 | <24 | <20 | <16 | 4 | PNP | XUS LPZ4A0300B | 8.200 |
| 300 | <24 | <20 | <16 | 5 | PNP | XUS LPZ5A0300B | 9.500 |
| 300 | <24 | <20 | <16 | 6 | PNP | XUS LPZ6A0300B | 10.400 |

(1) Supplied with 2 sets of 2 brackets with fixings and a user guide with certificate of conformity.
(2) To order a receiver only, add the letter $\boldsymbol{R}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LPZ2A0600B becomes XUS LPZ2A0600BR for the receiver only. To order a transmitter only, add the letter $\boldsymbol{T}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LPZ2A0600B becomes XUS LPZ2A0600BT for the transmitter only.

Other versions Combining type 4 safety light curtains with external module for muting function.
See pages $2 / 220$ to $2 / 225$.

| General: | Characteristics: | Dimensions: | Connections: |
| :--- | :--- | :--- | :--- |
| pages 3/98 to $3 / 103$ | page $3 / 112$ | pages $3 / 116$ and $3 / 117$ | pages $3 / 118$ and $3 / 119$ |



## Separate components

Power supplies, $90^{\circ}$ mirror adaptors, protective covers, anti-vibration kit, fixing bases
See pages $3 / 124$ to $3 / 131$.

| Accessories |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Usage | Length m | Reference | Weight kg |
| Fixings kit (2 brackets) | For light curtains XUS LP | - | XUS LZ219 | 0.450 |
| Pre-wired female connectors | Transmitter type | 5 | XSZ PCT05 | 0.350 |
|  |  | 10 | XSZ PCT10 | 0.700 |
|  |  | 15 | XSZ PCT15 | 1.020 |
|  |  | 30 | XSZ PCT30 | 2.020 |
|  | Receiver type | 5 | XSZ PCR05 | 0.350 |
|  |  | 10 | XSZ PCR10 | 0.700 |
|  |  | 15 | XSZ PCR15 | 1.020 |
|  |  | 30 | XSZ PCR30 | 2.020 |
| Sliding nuts for side fixing (4 nuts) | - | - | XUS LZ320 | 0.450 |
| User guide on CD-ROM | All types of light curtain | - | XUS LZ450 | 0.020 |
| Arc suppressor (pair) | All types of light curtain | - | XUS LZ500 | 0.020 |

Safety detection solutions
Safety light curtains, type 4
Compact light curtains XUS LP with solid-state output

## Light curtains

XUS LPZ•••


| XUS | b | b1 | G |
| :--- | :--- | :--- | :--- |
| LPZ1A• | 231,6 | - | 220.7 |
| LPZ2A0500• | 731,6 | 500 | 720.7 |
| LPZ2A0600• | 831,6 | 600 | 820.7 |
| LPZ3A0400• | 1031,6 | 400 | 1020.7 |
| LPZ3A0500• | 1231,6 | 500 | 1220.7 |
| LPZ4A0300• | 1141,1 | 300 | 1120.7 |
| LPZ5A0300• | 1431,6 | 300 | 1411.2 |
| LPZ6A0300• | 1731,6 | 300 | 1711.2 |

$\left.\begin{array}{lll}\hline \begin{array}{l}\text { General: } \\ \text { pages 3/98 to 3/103 }\end{array} & \begin{array}{l}\text { Characteristics: } \\ \text { page 3/112 }\end{array} & \begin{array}{l}\text { References: } \\ \text { pages } 3 / 113 \text { and 3/114 }\end{array}\end{array} \begin{array}{l}\text { Connections: } \\ \text { pages 3/118 and 3/119 }\end{array}\right]$

## Safety detection solutions

Safety light curtains, type 4
Compact light curtains XUS LP with solid-state output

Light curtains XUS LPB•••


Safety detection solutions
Safety light curtains, type 4
Compact light curtains XUS LP with solid-state output

## Direct connection with XUS LP•••


(1) For testing prior to installation, the user can select MPCE/EDM OFF (default factory setting). In this case, the MPCE/EDM line must be connected to the 0 V line of the system.
(2) The auxiliary output connects to a PLC (optional).
(3) If remote start is not used, connect the start line to the $0 V$ line.

## Connection via a Preventa XPS AFL module


(1) The auxiliary output connects to a PLC (optional).
(2) The light curtain must be configured with MPCE/EDM OFF and with automatic start.

| General: <br> pages 3/98 to 3/103 | Characteristics: | References: |  |
| :--- | :--- | :--- | :--- |

## Safety detection solutions

Safety light curtains, type 4
Compact light curtains XUS LP with solid-state output


Pre-wired connector of receiver (XUS LPZ) and pre-wired

## Connection to terminal block



## Receiver status indicator

Configuration indicator XUS LPZ and XUS LPB


1 Interlock or Alarm yellow LED
2 Machine stop red LED
1 Yellow LED

3 Machine run green LED
4 2-digit display


Connection to M12 connector

\(\left.$$
\begin{array}{lll}\hline \begin{array}{l}\text { General: } \\
\text { pages 3/98 to 3/103 }\end{array} & \begin{array}{l}\text { Characteristics: } \\
\text { page 3/112 }\end{array} & \begin{array}{l}\text { References: } \\
\text { pages } 3 / 113 \text { to } 3 / 115\end{array}\end{array}
$$ \begin{array}{l}Dimensions: <br>

pages 3 / 116 and 3/117\end{array}\right]\)| Schneider |
| :--- |
| Selectric |

## Safety detection solutions

Safety light curtains, type 2
Slim, compact light curtains XUS LN with solid-state output

| Light curtain type |  |  | XUS LNG••*७ (30 mm) |
| :---: | :---: | :---: | :---: |
| Environmental ch | cteristics |  |  |
| Conformity to standards |  |  | IEC 61496-1 and IEC 61496-2 (Type 2 ESPE) |
| Certifications |  |  | C , TUV, UL, CSA |
| European directives |  |  | Machinery directive 98/37/EC, Work equipment directive 89/655/EEC and EMC directive 89/336 EEC |
| Ambient air temperature | Operating | ${ }^{\circ} \mathrm{C}$ | 0... +55 |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | -25... 75 |
| Relative humidity |  |  | 95\% maximum, without condensation |
| Degree of protection |  |  | IP 65 |
| Shock and vibration resistance | Conforming to IEC 61496-1 |  | Shock resistance: 10 gn , impulse 16 ms , Vibration resistance: $10 \ldots 55 \mathrm{~Hz}$, amplitude: $0.35 \pm 0.05 \mathrm{~mm}$ |
| Materials |  |  | Casing: aluminium with electrostatically applied red (RAL 3000) polyester paint finish; end caps: $30 \%$ fibreglass impregnated nylon; front face: acrylic. |
| Fixings |  |  | End brackets (included) |

Optical characteristics

| Minimum detection capacity | mm |
| :--- | :--- |
| Nominal sensing distance (Sn) | m |
| Height protected | mm |
| Effective aperture angle (EAA) |  |
| Light source |  |
| Immunity to ambient light |  |


| 30 (Hand) |
| :--- |
| $0.3 \ldots 15$ |
| $150 \ldots 1500$ |
| $5^{\circ}$ at 3 m conforming to IEC 61496-1 and IEC 61496-2 (Type 2 ESPE) |
| GaAIAs LED, 880 nm |
| Conforming to IEC/EN 61496-2 |

## Electrical characteristics

| Response time |  | ms | 14... 24 |
| :---: | :---: | :---: | :---: |
| Power supply | Transmitter | mA | -- $24 \mathrm{~V} \pm 20 \% 2$ A conforming to IEC 61496 and IEC 60204-1 (-10\% using the EDM function) |
|  |  |  | 50 |
|  | Receiver | A | 1.09 (with maximum load) |
| Maximum current consumption (no-load) | Transmitter | mA | 50 |
|  | Receiver | mA | 90 |
| Immunity to interference |  |  | Conforming to EN 61496-1 and EN 61496-2 |
| Safety outputs OSSD (Output Signal Switching Devices) |  |  | 2 solid-state PNP (N/O) outputs $\leq 500 \mathrm{~mA},-\mathrm{-} 24 \mathrm{~V}$ (Short-circuit protection) |
| Signalling | Transmitter |  | 2 LEDs (power supply and diagnostic) |
|  | Receiver |  | 4 LEDs (stop, run, top alignment and bottom alignment) |
| Connections (1) | Transmitter |  | M12, 4-pin, male connector |
|  | Receiver |  | M12, 5-pin, male connector |
| Pre-wired connectors c.s.a. | Transmitter/Receiver | mm ${ }^{\text {²}}$ | 0.25 . Tinned wires. |
| Cable resistance | Transmitter/Receiver | $\Omega$ | 0.093 per metre for $0.25 \mathrm{~mm}^{2}$ c.s.a. cable |
| Cable lengths |  | m | Pre-wired connectors with cable lengths of 3,10 and 30 m are available separately. The maximum cable length is 50 m , depending on the load current and power supply. |

Functions
$\left.\begin{array}{l|l|l}\text { Functions } & & \begin{array}{l}\text { ■ Start: } \\ \square \\ \text { ■ Automatic: } \text { model XUSLNG5C } \\ \text { ■ Manual: model XUSLNG5D }\end{array} \\ \text { ■ Alignment aid using 2 LEDs } \\ \text { ■ LED display of operating modes } \\ \text { ■ Monitoring of external switching devices EDM/MPCE }\end{array}\right]$
(1) Pre-wired female connectors to be ordered separately, see page 3/121.

| References: | Dimensions: | Connections: |
| :--- | :--- | :--- |
| page 3/121 | page 3/122 | pages $3 / 122$ and $3 / 123$ |

# Safety detection solutions 

Safety light curtains, type 2
Slim, compact light curtains XUS LN with solid-state output



| Transmitter-receiver system for hand protection (1) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Detection capacity $\mathbf{3 0} \mathbf{m m}$. Sensing distance $\mathbf{0} .3$ to 15 m . |  |  |  |  |  |
| ■ 2 PNP safety outputs - Automatic start |  |  |  |  |  |
| Height protected | Response time | Number of light beams | Alarm output | Reference (2) | Weight |
| mm | ms |  |  |  | kg |
| 150 | 14 | 7 | PNP | XUS LNG5C0150 | 2.700 |
| 300 | 15 | 14 | PNP | XUS LNG5C0300 | 2.900 |
| 450 | 16 | 21 | PNP | XUS LNG5C0450 | 3.200 |
| 600 | 17 | 28 | PNP | XUS LNG5C0600 | 3.400 |
| 750 | 18 | 35 | PNP | XUS LNG5C0750 | 3.600 |
| 900 | 19 | 42 | PNP | XUS LNG5C0900 | 3.900 |
| 1050 | 20 | 49 | PNP | XUS LNG5C1050 | 4.100 |
| 1200 | 21 | 56 | PNP | XUS LNG5C1200 | 4.300 |
| 1350 | 22 | 63 | PNP | XUS LNG5C1350 | 4.500 |
| 1500 | 23 | 70 | PNP | XUS LNG5C1500 | 4.800 |
| - 2 PNP safety outputs - Manual start |  |  |  |  |  |
| Height protected | Response time | Number of light beams | Alarm output | Reference (2) | Weight |
| mm | ms |  |  |  | kg |
| 150 | 14 | 7 | PNP | XUS LNG5D0150 | 2.700 |
| 300 | 15 | 14 | PNP | XUS LNG5D0300 | 2.900 |
| 450 | 16 | 21 | PNP | XUS LNG5D0450 | 3.200 |
| 600 | 17 | 28 | PNP | XUS LNG5D0600 | 3.400 |
| 750 | 18 | 35 | PNP | XUS LNG5D0750 | 3.600 |
| 900 | 19 | 42 | PNP | XUS LNG5D0900 | 3.900 |
| 1050 | 20 | 49 | PNP | XUS LNG5D1050 | 4.100 |
| 1200 | 21 | 56 | PNP | XUS LNG5D1200 | 4.300 |
| 1350 | 22 | 63 | PNP | XUS LNG5D1350 | 4.500 |
| 1500 | 23 | 70 | PNP | XUS LNG5D1500 | 4.800 |

(1) Supplied with a test rod, 2 sets of 2 brackets with fixings and a user guide with certificate of conformity and 1 arc suppressor set.
Pre-wired female connectors to be ordered separately, see below.
(2) To order a transmitter only, replace the letter C or D by E and add the letter $\boldsymbol{T}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LNG5C0150 becomes XUS LNG5E0150T for the transmitter only. To order a receiver only, add the letter $\boldsymbol{R}$ to the end of the reference for the corresponding transmitter-receiver pair.
Example: reference XUS LNG5C0150 becomes XUS LNG5C0150R for the receiver only.

Other versions
Combining type 2 safety light curtains with external module for muting function and monitoring 2 to 4 light curtains. See pages $2 / 220$ to $2 / 225$.

| Accessories | For use with | Length | Reference | Weight <br> $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- | :--- | ---: |
| Description |  |  |  |  |

## Separate components

Power supplies, $90^{\circ}$ mirror adaptors, anti-vibration kit and fixing bases
See pages $3 / 124,3 / 126$ and $3 / 127$

| References: <br> page 3/121 | Dimensions: <br> page 3/122 | Connections: <br> pages $3 / 122$ and $3 / 123$ |
| :--- | :--- | :--- |

Dimensions， connections

## Safety detection solutions

## Safety light curtains，type 2

Slim，compact light curtains XUS LN with solid－state output

Dimensions
Slim，compact light curtains

## XUS LNo．e



| XUS | b | b1 | H | Height protected |
| :---: | :---: | :---: | :---: | :---: |
| LNeeャ0150 | 147 | 272 | 245.6 | 150 |
| LNeeャ0300 | 294 | 419 | 392.6 | 300 |
| LNee＊0450 | 441 | 566 | 539.5 | 450 |
| LNee＊0600 | 588 | 713 | 686.6 | 600 |
| LNeeゃ0750 | 735 | 860 | 833.6 | 750 |
| LNeeャ0900 | 882 | 1007 | 980.6 | 900 |
| LNee＊1050 | 1029 | 1154 | 1127.6 | 1050 |
| LNee1200 | 1176 | 1301 | 1274.6 | 1200 |
| LNeeャ1350 | 1323 | 1448 | 1421.6 | 1350 |
| LNeeャ1500 | 1470 | 1595 | 1568.6 | 1500 |

（1） 1 elongated hole $\varnothing 6.75 \times 16.75 \mathrm{~mm}$
（2）M12 male connector．

## Connections

Transmitter
Pre－wired connector of transmitter XSZ NCT


## Transmitter status indicator



1 Interlock or Alarm yellow LED
2 Switch－on／Machine run green LED

Receiver
Pre－wired connector of receiver XSZ NCR
Receiver status indicator


1 Top alignment
yellow LED
2 Bottom alignment
yellow LED
3 Stop
red LED
4 Run
green LED

Safety detection solutions
Safety light curtains, type 2
Slim, compact light curtains XUS LN with solid-state output

Connections (continued)
Direct connection with XUS LNG5D•e॰

(1) The K1 and K2 coils must be protected using the arc suppressors included in the documentation kit.
(2) For the EDM function, contactors LC1D $\bullet B D$ and control relays CAD $\bullet B D, C A 4 K N \bullet \bullet B W 3$ and CA3KN••BD are recommended (for more information on contactors and control relays, please refer to our "Motor starter solutions" catalogue).

Connection of light curtain XUS LN5Ceeゃ via a Preventa XPS AFL module


| Characteristics: | References: | Dimensions: |
| :--- | :--- | :--- |
| page $3 / 120$ | page $3 / 121$ | page $3 / 122$ |



XUS ZM／ZA••••

| $90^{\circ}$ mirror adaptor for light curtains |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | For use with light curtains |  |  | Height (2)$\mathrm{mm}$ | Reference | Weight kg |
|  | XUS LT | XUS LP | XUS LN |  |  |  |
| Glass mirror（0．88 Sn）（1） |  |  |  |  |  |  |
| $90^{\circ}$ mirror adaptor with rotatable fixings | － | XUS LPZ1A• | － | 140 | XUS ZM0102 | 1.040 |
|  | － | － | － | 191 | XUS ZM0152 | 1.300 |
|  | XUS LT•••0260 | － | XUS LN•••0150 | 343 | XUS ZM0305 | 1.900 |
|  | XUS LT•••0350 <br> XUS LT•••0435 | － | XUS LN•・セ0300 | 495 | XUS ZM0457 | 2.500 |
|  | － | － | XUS LN•••0450 | 546 | XUS ZM0508 | 2.800 |
|  | XUS LT•••0520 | XUS LP•2A500• | － | 648 | XUS ZM0610 | 3.200 |
|  | XUS LT•••0610 | XUS LP•2A0600• | XUS LN•••0600 | 749 | XUS ZM0711 | 3.700 |
|  | XUS LT•••0700 | － | － | 800 | XUS ZM0762 | 3.800 |
|  | XUS LT・セ・0785 | － | XUS LN•••0750 | 851 | XUS ZM0813 | 4.000 |
|  | XUS LT•••0870 | XUS LPZ3A0400• | － | 953 | XUS ZM0914 | 4.500 |
|  | XUS LT•••0955 |  | XUS LN•••0900 | 1054 | XUS ZM1016 | 5.000 |
|  | XUS LT・セ・1045 | XUS LPZ3A0500• | － | 1105 | XUS ZM1067 | 5.200 |
|  | XUS LT・セャ1130 | XUS LPZ4A0300• | XUS LN•••1050 | 1257 | XUS ZM1219 | 5.900 |
|  | XUS LT•••1215 <br> XUS LT•••1305 | XUS LPZ5A0300• | XUS LN•••1200 | 1359 | XUS ZM1321 | 6.300 |
|  | － | － | XUS LN••••1350 | 1410 | XUS ZM1372 | 6.500 |
|  | XUS LT•・ャ1390 | － | － | 1461 | XUS ZM1422 | 6.700 |
|  | － | － | XUS LN••••1500 | 1562 | XUS ZM1524 | 7.200 |
|  | XUS LT•••1570 | XUS LPZ6A0300• | － | 1664 | XUS ZM1626 | 7.600 |
|  | XUS LT•••1745 | － | － | 1867 | XUS ZM1830 | 8.500 |
|  | XUS LT•••1920 | － | － | 2172 | XUS ZM2134 | 9.800 |
|  | XUS LT・セセ2095 | － | － | 2172 | XUS ZM2134 | 9.800 |
| Stainless steel mirror（0．82 Sn）（1） |  |  |  |  |  |  |
| $90^{\circ}$ mirror adaptor with rotatable fixings | － | XUS LPZ1A• | － | 140 | XUS ZA0102 | 1.090 |
|  | － | － | － | 191 | XUS ZA0152 | 1.300 |
|  | XUS LT•••0260 | － | XUS LN•••0150 | 343 | XUS ZA0305 | 2.000 |
|  | XUS LT•••0350 <br> XUS LT•••0435 | － | XUS LN•••0300 | 495 | XUS ZA0457 | 2.700 |
|  | － | － | XUS LN•••0450 | 546 | XUS ZA0508 | 3.000 |
|  | XUS LT•••0520 | XUS LP•2A500• | － | 648 | XUS ZA0610 | 3.500 |
|  | XUS LT•••0610 | XUS LP•2A0600• | XUS LN•••0600 | 749 | XUS ZA0711 | 3.900 |
|  | XUS LT•••0700 | － | － | 800 | XUS ZA0762 | 4.200 |
|  | XUS LT•••0785 | － | XUS LN•••0750 | 851 | XUS ZA0813 | 4.400 |
|  | XUS LT•••0870 | XUS LPZ3A0400• | － | 953 | XUS ZA0914 | 4.500 |
|  | XUS LT•••0955 |  | XUS LN•••0900 | 1054 | XUS ZA1016 | 5.400 |
|  | XUS LT•・ャ1045 | XUS LPZ3A0500• | － | 1105 | XUS ZA1067 | 5.600 |
|  | XUS LT・セッ1130 | XUS LPZ4A0300• | XUS LN•••1050 | 1257 | XUS ZA1219 | 6.400 |
|  | XUS LT•••1215 <br> XUS LT•••1305 | XUS LPZ5A0300• | XUS LN•••1200 | 1359 | XUS ZA1321 | 6.800 |
|  | － | － | XUS LN•・セ1350 | 1410 | XUS ZA1372 | 7.000 |
|  | XUS LT•••1390 | － | － | 1461 | XUS ZA1422 | 7.300 |
|  | － | － | XUS LN•・セ1500 | 1562 | XUS ZA1524 | 7.800 |
|  | XUS LT•••1570 | XUS LPZ6A0300• | － | 1664 | XUS ZA1626 | 8.300 |
|  | XUS LT•••1745 | － |  | 1867 | XUS ZA1830 | 9.200 |
|  | XUS LT・セャ1920 | － | － | 2172 | XUS ZA2134 | 10.600 |
|  | XUS LT•••2095 | － | － | 2172 | XUS ZA2134 | 10.600 |



ABL 8RPS24050

Power supplies for light curtains XUS LT／LN／LP（3）

| Input voltage | Secondary |  |  | Reset | Conforming Reference to standard <br> EN 61000－3－2 |  | Weight kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Output voltage | Nominal power | Nominal current |  |  |  |  |
| Single phase（N－L1）or 2－phase（L1－L2）connection |  |  |  |  |  |  |  |
| $\sim 100 . .120 \mathrm{~V}$－ | 24．．．28．8 V＝－－ | 72 W | 3 A | Auto／man | Yes | ABL 8RPS24030 | 0.300 |
| 200．．．500 V |  | 120 W | 5 A | Auto／man | Yes | ABL 8RPS24050 | 0.700 |
| $\begin{aligned} & -15 \%,+10 \% \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ |  | 240 W | 10 A | Auto／man | Yes | ABL 8RPS24100 | 1.000 |

[^42]| Biroensiomistents ： pagessebrixiland $30388 / 9$ | Schémas：： page 3013018／9 |
| :---: | :---: |
| 3／124 | Schneider |

## Characteristic, references

## Safety detection solutions

Accessories for safety light curtains types 2 and 4


References (continued)
Safety detection solutions
Accessories for safety light curtains types 2 and 4

(1) Low frequency, high amplitude applications, such as punching presses where a powerful shock can exist.
(2) High frequency, low amplitude applications, such as offset printing machines where constant vibration can exist.
(3) Head: transmitter, receiver or mirror.

Shock absorber characteristics

| Characteristics per shock absorber |  | Compression mounted |  |  | Shear mounted |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum load | Torque | Natural frequency | Maximum load | Torque | Natural frequency |
|  |  | kg | Nm | Hz | kg | Nm | Hz |
| For anti- | XSZ SMK | 8.16 | 25.16 | 11 | 1.36 | 3.13 | 9.5 |
| vibration kit | XSZ SMK1 | 2.177 | 10.86 | 14 | 1.13 | 2.34 | 9 |
|  | XSZ SMK2 | 24.94 | 107.39 | 13 | 10.43 | 14.94 | 7.5 |

## References of anti-vibration kits

| Reference | For use with | Wescription <br> kg |
| :--- | :--- | :--- |

XUS LZ227
Dimensions:
page 3/129

$90^{\circ}$ mirror adaptors + fixing clamps

## XUS ZM•••๑/XUS ZA••••

## Fixing clamp (quantity 2)

| XUS |  |  |  |
| :--- | :--- | :--- | :--- |
| Glass | Stainless <br> steel | b | H |
| ZM0102 | ZA102 | 140 | 182 |
| ZM0152 | ZA152 | 191 | 233 |
| ZM0305 | ZA0305 | 343 | 386 |
| ZM0457 | ZA0457 | 495 | 538 |
| ZM0508 | ZA0508 | 546 | 589 |
| ZM0610 | ZA0610 | 648 | 690 |
| ZM0711 | ZA0711 | 749 | 792 |
| ZM0762 | ZA0762 | 800 | 843 |
| ZM0813 | ZA0813 | 851 | 894 |
| ZM0914 | ZA0914 | 953 | 995 |
| ZM1016 | ZA1016 | 1054 | 1097 |
| ZM1067 | ZA1067 | 1105 | 1148 |
| ZM1219 | ZA1219 | 1257 | 1300 |
| ZM1321 | ZA1321 | 1359 | 1402 |
| ZM1372 | ZA1372 | 1410 | 1452 |
| ZM1422 | ZA1422 | 1461 | 1503 |
| ZM1524 | ZA1524 | 1562 | 1605 |
| ZM1626 | ZA1626 | 1664 | 1706 |
| ZM1830 | ZA1830 | 1867 | 1910 |
| ZM2134 | ZA2134 | 2172 | 2214 |



Protective cover


## Anti-vibration kits (1)

XsZ SMK


## XSZ SMK1



## XSZ SMK2


(1) The anti-vibration kit comprises 8 shock absorbers, 16 washers and 16 nuts.

Fixing brackets for anti-vibration kit XUS LZ227 for XUS LN

(1) 2 elongated holes $\varnothing 5.10 \times 16.75 \mathrm{~mm}$.
(2) 1 elongated hole $\varnothing 6.75 \times 16.75 \mathrm{~mm}$.

Safety detection solutions
Accessories for safety light curtains types 2 and 4

## Fixing base

 XuS ZC...••

| XUS ZC1200 | 1200 |
| :--- | :--- |
| XUS ZC1800 | 1800 |
| XUS ZC2100 | 2100 |
| XUS ZC2400 | 2400 |
| XUS ZC3100 | 3100 |

## Floor fixing kit (quantity 4) for fixing base XUS ZC $\bullet \bullet \bullet \bullet$

## xus zcB

Scale: 2.5


1 Bolt,
21 lock nut,
3 washers,
4 Rubber insulator,
5 Spacer (tube),
62 standard nuts,
7 Rawplug.

## Dimensions

## ABL 8RPS24•••

Common side view


| Internal schemes |
| :--- |
| ABL 8RPS24030 |

ABL 8RPS24050
ABL 8RPS24100


# Safety detection solutions <br> Preventa safety modules and single-beam photo-electric sensors <br> With a test input associated with a built-in "muting" function 

## Operating principle

XPS CM safety modules form, with XU2 S single-beam photo-electric sensors (periodically tested), a category 2 light curtain conforming to standards IEC/EN 61496 parts 1 and 2 and EN 60825-1.
The connection of 1 to 4 pairs of XU2 S photo-electric sensors makes it possible to create a protected space up to 1200 mm high conforming to EN 999/ISO 13855 and 8 m long.

The built-in "muting" function allows for the automatic passage of parts to be machined or loaded pallets without interrupting the transportation movement. When the system is engaged by the operating control (in series with the main circuit feedback loop) and the light protection is not interrupted, the main circuit is closed by the two safety relays of the XPS CM module.

An interruption of the protection field causes the safety outputs to open instantaneously, and the process PLC receives a stop command. The LED on the XPS CM front panel changes from green to red. The "open" state is maintained until the module is restarted using the start button.

The "muting" function allows the light protection to be inhibited. This possibility allows a trolley transporting materials to pass through without triggering the main circuit. The "muting" function cannot be activated by supplying the inhibition devices unless the safety outputs have been switched on beforehand.

To trigger the "muting" function, the inhibition devices must be activated within the 3 -second time interval. This synchronisation time for the two inhibition inputs can be deactivated by connecting two configuration terminals. The "muting" cycle has a maximum duration of 60 seconds. During this period, materials can be transported through the protection field without deactivating the safety outputs. The 60 second limit value of the "muting" cycle may be made infinite by connecting two configuration terminals.

During the "muting" operation process, a light indicating the "muting" state is controlled by the XPS CM module. An error at the level of the indicator light (short-circuit, open-circuit) will be recognized straight away, and will deactivate the "muting" function. The indicator light comes on when a "muting" signal is generated and indicates the inhibition of the protection function.


D1, D2, D3, D4: monitoring photo-electric sensors.
MA1, MB1, MA2, MB2: "Muting" photo-electric sensors.
$\mathrm{m}=$ trolley length
$\mathrm{dM}=$ distance between MA1, MB1 and MA2, MB2.

## Conditions to be observed for the "muting" function

■ "Muting" sensors must be of the XU2 M18PP340 thru-beam or XU9 M18PP340
polarised reflex type or mechanical limit switches with contacts.
■ $\mathrm{dM} \leq \mathrm{m}$ to obtain continuous validation of the "muting" function.
■ Avoid the intrusion of persons during the "muting" phase. This phase is indicated
by an indicator light on the "muting" indicator output of the XPS CM module.
■ A materials transportation trolley must generate the "muting" signal before it enters the protection field and interrupt the signal when it is once again released from all the sensors of the protection field.

| Characteristics: | References: | Functional diagrams: | Connections: |
| :--- | :--- | :--- | :--- |
| page $3 / 141$ | page $3 / 134$ | page $3 / 136$ | page $3 / 137$ |

## Safety detection solutions

## Preventa safety modules and single-beam photo-electric sensors <br> With a test input associated with a built-in "muting" function

Characteristics of safety modules

| Module type |  |  | XPS CM1144 | XPS CM1144P |
| :---: | :---: | :---: | :---: | :---: |
| Products designed for max. use in safety related parts of control systems conforming to EN 954-1 |  |  | Category 2 (type 2) conforming to IEC/EN 61 | 61496-1 |
| Ambient air temperature |  | ${ }^{\circ} \mathrm{C}$ | Operation: -10... $+55^{\circ} \mathrm{C}$. Storage: - $25 \ldots+85$ |  |
| Degree of protection conforming to IEC 529 |  |  | Terminals: IP 20, enclosure: IP 40 |  |
| Supply | Voltage | V | --24, voltage limits: - 20... 20 \% |  |
| Maximum consumption |  | W | < 15, with thru-beam photoelectric sensors | and "muting" signalling |
| Module fuse protection |  |  | Internal, electronic |  |
| Rated insulation voltage (Ui) |  | V | 300 (degree of pollution 2 conforming to EN and 2) | /IEC 60947-5-1, DIN VDE 0110 parts 1 |
| Rated impulse withstand voltage (Uimp) |  | kV | 4 (overvoltage category 3 , conforming to EN 2) | /IEC 60947-5-1, DIN VDE 0110 parts 1 and |
| Inputs for sensors | Number of inputs to be monitored |  | 4 (terminals Z1, Z2, Z3, Z4) |  |
|  | Input voltage | V | --24 |  |
|  | Supply voltage of sensors | V | --24 (terminal U+/U-) |  |
|  | Supply current of sensors | mA | <200 |  |
| Inputs for the "muting" function | Number of "muting" inputs |  | 2 (terminals MA, MB) |  |
|  | Input voltage | V | -.-24 (terminal U+/U-) |  |
|  | Maximum current | mA | <200 |  |
|  | Synchronisation time for the activation of the MA/MB "muting" signal | s | 3 (+/-20\%) |  |
|  | "Muting" maximum duration | s | 60 (-10... $30 \%$ ) |  |
| Single-beam thru-beam photo-electric sensors for input monitoring Z1-Z2-Z3-Z4 <br> - sensors authorised for the protection field (max. 4) <br> - "muting" sensors <br> - Sensor supply resistivity |  |  | XU2 S18PP340••๑ (infrared) |  |
|  |  |  | XU2 M18PP340•๑७ or XU9 M18PP340^ャ๑ | photo-electric sensors or XC limit switches |
|  |  | $\Omega$ | 10 max. |  |
| Safety outputs <br> - number and type <br> - solid-state output breaking capacity <br> - breaking capacity in AC-15 <br> - breaking capacity in DC-13 <br> - maximum thermal current (Ithe) <br> - sum of maximum thermal current <br> - minimum current (volt-free contact) <br> - minimum voltage (volt-free contact) <br> - short-circuit protection |  |  | $2 \mathrm{~N} / \mathrm{O}$ (terminals 13-14, 23-24), volt-free |  |
|  |  |  | 4 N/O $24 \mathrm{~V} / 20 \mathrm{~mA}$, (Y33-Y34, Y33-Y44, Y33-Y54, Y33-Y64) |  |
|  |  | VA | C300: inrush 1800, maintained 180 |  |
|  |  |  | $24 \mathrm{~V} / 1.5 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=50 \mathrm{~ms}$ |  |
|  |  | A | 5.6 |  |
|  |  | A | 11 |  |
|  |  | mA | 10 |  |
|  |  | V | 17 |  |
|  |  | A | 4 gG or 6 fast-acting fuse cartridge, conforming to EN/IEC 60947-5-1 and DIN VDE 0660part 200 |  |
| "Muting" signalling sensors for incandescent lamp |  |  | Number 1 (terminal H1), maximum power: $6.5 \mathrm{~W} /-\mathrm{-} 24 \mathrm{~V}$, maximum power: $4 \mathrm{~W} /-$-- 24 V |  |
| Response time on input change of state |  | ms | $<25$ |  |
| Electrical durability |  |  | See page 38610/6 |  |
| Display |  |  | 4 LEDs |  |
| Connection | Type |  | Captive screw clamp terminals | Captive screw clamp terminals, separate removable terminal block |
| - 1-wire connection | Without cable ends |  | Solid or flexible cable: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ | Solid or flexible cable: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ |
|  | With cable ends |  | Without bezel, flexible cable: $0.25 \ldots 2.5$ | Without bezel, flexible cable: $0.25 \ldots 2.5$ |
|  | With cable ends |  | With bezel, flexible cable: $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ | With bezel, flexible cable: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ |
| - 2-wire connection | Without cable ends |  | Solid or flexible cable: $0.14 \ldots 0.75 \mathrm{~mm}^{2}$ | Solid cable: $0.2 \ldots 1 \mathrm{~mm}^{2}$, flexible cable: $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ |
|  | With cable ends |  | Without bezel, flexible cable: $0.25 \ldots 1 \mathrm{~mm}^{2}$ | Without bezel, flexible cable: $0.25 \ldots 1 \mathrm{~mm}^{2}$ |
|  | With cable ends |  | Double with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$ | Double with bezel, flexible cable: $0.5 . .1 .5 \mathrm{~mm}^{2}$ |
| Characteristics of photo-electric sensors |  |  |  |  |
| Product certification |  |  | C $¢$, conforming to EN/IEC 61496-1/-2 and EN/IEC 60825-1 |  |
| Ambient air temperature |  | ${ }^{\circ} \mathrm{C}$ | Operation: - $25 \ldots+55$ (infrared transmission sensors), Storage: $-40 \ldots+70$ |  |
| Vibration resistance |  |  | 7 gn ( $\mathrm{f}=10 \ldots 55 \mathrm{~Hz}$ ), conforming to EN/IEC 60068-2-6 |  |
| Shock resistance |  |  | $30 \mathrm{gn}, 3$ axes: 3 times, conforming to EN/IEC 60068-2-27 |  |
| Degree of protection |  |  | IP 67 conforming to EN/IEC 60529 |  |
| Connection | Pre-cabled |  | PVC cable, diameter 5 mm , length 5 m , wire c.s.a.: $4 \times 0.34 \mathrm{~mm} 2(3 \times 0.34 \mathrm{~mm} 2$ for thru-beam transmitter) |  |
|  | Connector |  | M12 male connector, 4-pin (suitable jumper cables and female connectors M12, 4-contact, see our catalogue "Global detection") |  |
| Materials |  |  | Case: nickel-plated brass (infrared transmission sensors). Lenses: PMMA |  |
| Nominal sensing distance |  | m | 8 (infrared transmission sensors) |  |
| Rated supply voltage |  | V | -- 12.. 24 (with protection against reverse polarity) |  |
| Voltage limits |  | V | -- 10... 30 V (including ripple) |  |
| Switching capacity (sealed) |  | mA | $\leq 100 \mathrm{~mA}$ (with overload and short-circuit protection) |  |
| Voltage drop, closed state |  | V | $\leq 1.5$ |  |
| Current consumption, no-load |  | mA | $\leq 35$ |  |
| Maximum switching frequency |  | Hz | 500 |  |
| Delays |  | ms | Response: $\leq 1$; recovery: $\leq 1$ |  |

## Safety detection solutions

Preventa safety modules and single-beam photo-electric sensors
With a test input associated with a built-in "muting" function


XPS CM1144•

| Safety modules |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Type of terminal block connection | Number of safety circuits | Additional outputs | Supply | Reference | Weight <br> kg |
| Safety modules for the monitoring of single-beam photo-electric sensors with a test input associated with a built-in "muting" function | Integrated in module | 2 | 4 | -. 24 V | XPS CM1144 | 0.350 |


| Separate, <br> can be <br> removed from <br> module |  |  | $-=24 \mathrm{~V}$ | XPS CM1144P | 0.350 |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Safety detection solutions

## Preventa safety modules and single-beam photo-electric sensors <br> With a test input associated with a built-in "muting" function



Functional diagrams
Safety detection solutions
Preventa safety modules and single-beam photo-electric sensors
With a test input associated with a built-in "muting" function

Functional diagram of XPS CM module


Functional diagram of the XPS CM module with "muting" function


Key to LEDs


Operation, curves, dimensions, connections

## Safety detection solutions

## Preventa safety modules and single-beam photo-electric sensors <br> With a test input associated with a built-in "muting" function



Safety detection solutions
Preventa safety modules and single-beam photo-electric sensors
With a test input associated with a built-in "muting" function

## ConnectionS

Connection of XPS CM module with 4 pairs of XU2 S single-beam sensors
(Connection of 1 to 4 pairs of XU2 S sensors to XPS CM, see page $3 / 147$ )


XU2 S sensors can be programmed for light switching or dark switching (dark switching with sensors 1 and 3 and light switching with sensors 2 and 4 , for example).
ESC: external start conditions
Y1-Y2: return loop.
STM: for stopping time measurement.
(1) Protection field sensors
(2) Muting sensors

| Principle: <br> page $3 / 140$ | Characteristics: <br> page $3 / 141$ | References: <br> page $3 / 142$ |
| :--- | :--- | :--- |
| $3 / 138$ |  | Schneider |
| SEElectric |  |  |

## Safety detection solutions

Preventa safety modules and single-beam photo-electric sensors
With a test input associated with a built-in "muting" function

## Connections (continued)

Connection of XPS CM module with 1 pair of XU2 S sensors
(dark switching)


Connection of XPS CM module with 3 pairs of XU2 S sensors
(2 for dark switching, 1 for light switching)


Connection of XPS CM module with 2 pairs of XU2 S sensors (dark switching)


Connection of XPS CM module with 4 pairs of XU2 S sensors
(2 for dark switching, 2 for light switching)

Selection guide: Dialogue components ..... 4/2
Emergency stop trip wire switches type XY2 C ..... 4/4
Foot switches, Harmony type XPE. ..... 4/14
■ Metal foot switches, Universal,
Harmony types XPE M/R. ..... $4 / 18$

- Plastic foot switches,Harmony types XPE A/B/G/Y$4 / 22$
Enabling switches for safety circuits ..... $4 / 26$
Two-hand ergonomic control stations with Harmony XB4 control units. ..... $4 / 28$
Emergency Stop pushbuttons Ø 22
- Chromium plated metal bezel , XB4 ..... 4/34
■ Plastic bezel, XB5 ..... 4/38
XAL control stations for emergency Stop pushbuttons Ø 22 ..... 4/42
- Complete stations (screw clamp terminal connections). ..... 4/43
■ Separate components for user assembly ..... 4/44
Beacons and indicator banks $\boldsymbol{\varnothing} 70$ mm Universal, Harmony type XVB ..... 4/46
Complete Beacons
■ For incandescent bulbs or LEDs (BA 15d base fitting) ..... 4/50
- With LED light source ..... 4/51
■ With "flash" discharge tube ..... 4/52
Indicator banks $\boldsymbol{\varnothing} 70 \mathrm{~mm}$ (customer assembly)
■ Illuminated units for incandescent bulbs or LEDs(BA 15d base fitting)4/53
- Illuminated units with integral LED. ..... 4/54
- Illuminated units with integral "flash" discharge tube ..... $4 / 55$
- Audible units, base units, cover, accessories ..... 4/56
Accessories for beacons and indicator banks ..... 4/57
Rotating mirror beacons, type XVR ..... 4/60
Sirens, type XVS ..... $4 / 62$

Trip wire switches for:
- conveyor systems,
- materials handling,
machine tools,
- electrical testing stations
Foot switches for:
- bending machines, dosing machines,
assembly stations, packaging machines,
cutting presses, stamping presses,
- machine tools (numerical control, lathes,
milling machines, grinders, machining centres),
- guillotines, cutters, folders, saws,
- forging machines, rolling machines, cold
metal forming machines

| Enabling grip switch | Ergonomic two-hand <br> control stations for |
| :--- | :--- |
| for: machine tool control <br> - machine tools,  <br> - labellers  <br>   <br>   |  |



Positive operation
conforming to
EN/IEC 60947-5-1
Appendix K
Rated insulation voltage

## Rated impulse withstand voltage conforming to

 EN/IEC 60947-1| Emergency Stop |
| :--- |
| pushbuttons for: |
| - assembly and |
| packaging machines, |
| - paper, cardboard and |
| woodworking machines, |
| - food/beverage |
| processing and chemical |
| industries |

Control stations for:

- assembly and
packaging machines,
- paper, cardboard and
woodworking machines,
- food/beverage
processing, chemical and
automobile industries,
mechanical presses

| Beacons and indicator <br> banks | Rotating mirror beacons <br> for long distance <br> signalling applications | Sirens <br> for long distance <br> signalling <br> applications |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |



Standard single and double blocks with screw clamp terminals:
$\mathrm{Ui}=600 \mathrm{~V}$, degree of pollution 3
Blocks for plug-in connector or Faston connectors:
$\mathrm{Ui}=250 \mathrm{~V}$, degree of pollution 3
Standard blocks for printed circuit board connection:
$\mathrm{Ui}=250 \mathrm{~V}$, degree of pollution 3
conforming to EN/IEC 60947-1

## Ui $=250$ V conforming to EN/IEC 60947-1

## Standard single and double blocks with screw clamp terminals: Uimp $=6 \mathrm{kV}$

Blocks for plug-in connector: Uimp $=4 \mathrm{kV}$
Standard blocks for printed circuit board connection: Uimp $=4 \mathrm{kV}$

| XB4 B | XB5 A | XAL K |
| :--- | :--- | :--- |
| $4 / 35$ | $4 / 39$ | $4 / 43$ |

# Safety dialogue solutions Emergency stop trip wire switches, type XY2 C 

## Presentation

## Emergency stop trip wire switches

Emergency stop trip wire switches are designed to:
■ avert hazards (dangerous phenomena) at the earliest possible moment, or to reduce risks which could cause injury to persons or damage either to machines or work in progress,

- be tripped by a single human action when a normal Emergency stop function is not available,
- trip in the event of the trip wire breaking.

Emergency stop trip wire switches are essential in premises and on machines that are potentially dangerous when in operation. The operator must be able to trigger the stop instruction at any point within their working area.
Application examples: woodworking machines, shears, conveyor systems, transfer machines, printing machines, textile machines, rolling mills, test laboratories, paint shops, surface treatment works.


Typical installation


## Notes regarding installation

- All $\mathrm{XY} 2 \mathrm{CH} / \mathrm{CE} / \mathrm{CB}$ trip wire switches can be fitted with a pilot light to indicate their tripped condition.
- Cable tension adjustment can be performed using:
- a turnbuckle (to be ordered separately, see page 4/11),
$\square$ a tensioner (integrated in certain XY2 CH models, see page 4/11),
$\square$ a tensioner (to be ordered separately, see page 4/11) for mounting on XY2 CE models.
■ This adjustment is simplified by:
$\square$ a cable tension indicator that is available on all models XY 2 CH ,
- the availability of versions with a "cable tension indicator" window by stating its reference on the order form (see page 4/10). Example: reference XY2 CE1A250 becomes XY2 CE1D250.
■ The use of an end spring is strongly advised for conveyor system applications to ensure operation of the
Emergency stop in the event of the cable being pulled towards the switch.
■ It is essential that pulleys be used with trip wires that deviate from a straight run, i.e. angled to form a protected zone.
■ Important: switches XY 2 CB must not be used if the installation requires that the trip wire be angled.
Switches XY2 CH and XY2 CE can be used if the installation requires that the trip wire be angled. In this case, the total sum of the angles through which the trip wire bends must not exceed $180^{\circ}$ (For further information on instructions to be adhered to, please refer to the installation manual).


# Safety dialogue solutions Emergency stop trip wire switches, type XY2 C 

Main features

Trip wire expansion and contraction: d

Tripping force: F1 Tripping deflection: $f$

Adjustment values (with end spring)

The tripping force F1 is the force necessary on the trip wire to cause the switch to trip.
The tripping deflection $f$ is the distance that the trip wire has to be deflected from its taut position to the point at which the switch trips.


For Emergency stop trip wire switches type XY2 CE: the adjustment values depend on the positions of the cam located inside the switch. Adjustment is made by rotating the cam after the switch has been installed. Each notched position of the cam is referenced by the letters $A$ to $F$, and the selected letter is visible through a viewing port.
Temperature range: $<25^{\circ} \mathrm{C}$.

| Type | Posi- <br> tion <br> of <br> cam | Max. length of cable | End spring | Average tripping deflection values f and tripping forces F 1 for a distance of 5 m between cable supports and cable used |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Force F1 (daN) |  |  |  | Deflection $\mathrm{f}(\mathrm{mm})$ for: |  |  |  |
|  |  |  |  | Standard |  | Light |  | Standard force |  | Light force |  |
|  |  |  |  | $\begin{array}{\|l\|} \hline \text { Cable } \\ \varnothing 3.2 \mathrm{~mm} \\ \hline \end{array}$ | Cable $\varnothing 5 \mathrm{~mm}$ | $\begin{array}{\|l\|} \hline \text { Cable } \\ \varnothing 3.2 \mathrm{~mm} \\ \hline \end{array}$ | Cable Ø 5 mm | $\begin{array}{\|l\|} \hline \text { Cable } \\ \varnothing 3.2 \mathrm{~mm} \\ \hline \end{array}$ | Cable Ø 5 mm | $\begin{array}{\|l\|} \hline \text { Cable } \\ \varnothing 3.2 \mathrm{~mm} \\ \hline \end{array}$ | $\begin{aligned} & \text { Cable } \\ & \varnothing 5 \mathrm{~mm} \\ & \hline \end{aligned}$ |
| XY2 CH | - | 15 m | XY2 CZ703 | 2.4 | 3 | - | - | 190 | 230 | - | - |
| XY2 CE | A | 50 m | XY2 CZ702 | 7 | 7 | 4 | 4.4 | 270 | 260 | 240 | 250 |
|  | B |  |  | 8.6 | 8.4 | 4.4 | 4.8 | 300 | 280 | 250 | 270 |
|  | C |  |  | 10.1 | 9.6 | 4.8 | 5.1 | 320 | 300 | 270 | 270 |
|  | D |  |  | 11 | 10.2 | 4.6 | 5.3 | 330 | 320 | 280 | 280 |
|  | E |  |  | 12.5 | 12.3 | 5.8 | 6 | 360 | 340 | 310 | 290 |
|  | F |  |  | 14.4 | 13.3 | 6.4 | 6.6 | 390 | 360 | 330 | 320 |
| XY2 CB | - | 100 m | XY2 CZ702 | 4.5 | - | - | - | 325 | - | - | - |

Trip wire switches $X Y 2 \mathrm{CH}, \mathrm{XY} 2 \mathrm{CE}$ and XY 2 CB meet all the requirements of the harmonised European standard EN/ISO 13850:2006, relating to Emergency stop devices.
All the trip wire switches are $C \in$ marked and supplied with an EC declaration of conformity.

## Standards

| Characteristics: | References: | Dimensions: |
| :--- | :--- | :--- |
| page 4/6 | page 4/7 | page 4/13 |

## Safety dialogue solutions <br> Emergency stop trip wire switches, type XY2 C


(1) Only products XY2 CH without pilot light and XY2 CE without pilot light or with 24, 48 or 130 V pilot light are CCC and UL-CSA approved.

| General: | References: | Dimensions: |
| :--- | :--- | :--- |
| page 4/4 | page 4/7 | page 4/13 |

## Safety dialogue solutions <br> Emergency stop trip wire switches, type XY2 C



XY2 CE1A250

| Latching Emergency stops <br> (integrated turnbuckle, cable and end spring to be ordered separately) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Without pilot light |  |  |  |  |  |  |  |  |
| Length of cable | Colour of enclosure | Reset | $\begin{aligned} & \text { Typ } \\ & 4 \end{aligned}$ |  | of contact | Cable anchor point | Reference | Weight kg |
| $\leqslant 15 \mathrm{~m}$ | Grey RAL 7032 | By booted pushbutton | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH side or LH side | XY2 CH13250 (3) | 0.865 |
|  |  | By mushroom head pushbutton | 1 | 1 |  |  | XY2 CH13350 (3) | 0.900 |
|  |  | By key operated pushbutton <br> (key n ${ }^{\circ}$ 421) (2) | 1 | 1 |  |  | XY2 CH13450 (3) | 0.910 |
|  |  | By flush pushbutton | 2 | - | N/C + N/C slow break | RH side or <br> LH side | XY2 CH13170 (3) | 0.865 |
|  |  | By booted pushbutton | 2 | - |  |  | XY2 CH13270 (3) | 0.865 |
|  |  | By mushroom head pushbutton | 2 | - |  |  | XY2 CH13370 (3) | 0.865 |
|  |  | By key operated pushbutton (key no 421) (2) | 2 | - |  |  | XY2 CH13470 (3) | 0.910 |
|  | Grey <br> RAL 3000 | By booted pushbutton | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH side or LH side | XY2 CH13258 (3) | 0.865 |
|  | (4) |  | 2 | - | N/C + N/C slow break | RH side or LH side | XY2 CH13278 (3) | 0.865 |
| With pilot light (direct supply) |  |  |  |  |  |  |  |  |
| $\leqslant 15 \mathrm{~m}$ | Grey RAL 7032 | $\begin{aligned} & \begin{array}{l} \text { By booted } \\ \text { pushbutton } \end{array} \end{aligned} \quad 24 \mathrm{~V}$ | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ slow break | RH side or LH side | XY2 CH13253 | 0.900 |
|  |  |  | 2 | - | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$ <br> slow break | RH side or LH side | XY2 CH13273 | 0.900 |

Latching Emergency stops
(turnbuckle, cable and end spring to be ordered separately) (1)

## Without pilot light

| $\leqslant 50 \mathrm{~m}$ | Grey RAL 7032 | By booted pushbutton | - | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH side | XY2 CE1A250 (6) | 1.450 | |
|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  |  | LH side | XY2 CE2A250 (6) | 1.450 |
| 2 - N/C + N/C RH side $\quad$ XY2 CE1A270 (6) 1.450 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | LH side | XY2 CE2A270 (6) | 1.450 |
|  |  | By key operated pushbutton (key n ${ }^{\circ}$ 421) (2) |  | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH side | XY2 CE1A450 (6) | 1.465 |
|  |  |  |  | LH side |  |  | XY2 CE2A450 (6) | 1.465 |
|  |  |  |  |  | 2 |  | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$slow break | RH side | XY2 CE1A470 (6) | 1.470 |
|  |  |  |  |  |  | LH side |  | XY2 CE2A470 (6) | 1.470 |
| With pilot light (direct supply) |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \leqslant 50 \mathrm{~m} \\ & (5) \end{aligned}$ | Grey RAL 7032 | By booted pushbutton | $24 \mathrm{~V}, 48 \mathrm{~V}, 130 \mathrm{~V}$ (bulb not included) | 2 | 2 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH side | XY2 CE1A296 | 1.470 |
|  |  |  |  |  |  |  | LH side | XY2 CE2A296 | 1.470 |
|  |  |  | 230 V (bulb not included) | $2$ | 2 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH side | XY2 CE1A297 | 1.470 |
|  |  |  |  |  |  |  | LH side | XY2 CE2A297 | 1.470 |

Other versions See order forms on pages 4/8 and 4/9.
XY2 CE with reset by $\varnothing 40 \mathrm{~mm}$ mushroom head pushbutton or with integral cable tensioner and support.
Please consult your Regional Sales Office.
(1) See separate components, page 4/11.
(2) Ø 30 spring return, mushroom head, key operated pushbutton. Locking and key withdrawal in the rest (unactuated) position.
(3) For ISO M2O threaded cable entry version, add H29 to the end of the reference selected. Example: XY2 CH13250 becomes XY2 CH13250H29
(4) Only available on Emergency stop enclosures type $\mathrm{XY} 2 \mathrm{CH} 1325 \bullet$ and $\mathrm{XY} 2 \mathrm{CH} 1327 \bullet$ for standard, H 29 and TK versions.
(5) Available with window for viewing cable tension indicator, for adjustment whilst the cover is closed (see versions XY2 CE $D \bullet \bullet \bullet$ and $X Y 2$ CE $\bullet \bullet \bullet \bullet$ on the order form, page 4/10.
(6) ATEX version available (products for explosive atmospheres). To order, add EX to the end of the reference.

Example: XY2 CE1A250 becomes XY2 CE1A250EX.

## Safety dialogue solutions <br> Emergency stop trip wire switches, type XY2 C



| Latching Emergency stops (end spring included, turnbuckle and cable to be ordered separately) |  |  |  |  |  |  |  |  |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Without pilot light |  |  |  |  |  |  |  |  |  |
| Length of cable | Colour of enclosure | Reset |  | $\begin{aligned} & \text { Typ } \\ & \end{aligned}$ | pe | of contact | Cable anchor point | Reference | Weight kg |
| $\leqslant 100 \mathrm{~m}$ | Blue | From inside enclosure |  | 11 |  | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | LH side | XY2 CB10 | 18.750 |
|  |  |  |  | $\overline{\mathrm{RH}}$ side | XY2 CB20 |  | 18.750 |
|  |  |  |  | 2 |  | $N / C+N / C$ <br> slow break | LH side | XY2 CB104 | 18.750 |
|  |  |  |  |  |  |  | $\overline{\mathrm{RH}}$ side | XY2 CB204 | 18.750 |
| $\leqslant 2 \times 100 \mathrm{~m}$ | Blue | From inside enclosure |  |  |  | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH and <br> LH sides | XY2 CB30 | 29.250 |
|  |  |  |  | 2 |  | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$ <br> slow break | RH and LH sides | XY2 CB304 | 29.250 |
| With pilot light |  |  |  |  |  |  |  |  |  |
| Length of cable | Colour of enclosure | Reset | Supply voltage | Type |  | of contact | Cable anchor point | Reference | Weight kg |
| - Direct supply |  |  |  |  |  |  |  |  |  |
| $\leqslant 100 \mathrm{~m}$ | Blue | From inside enclosure | 24 V | 11 |  | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$slow break | LH side | XY2 CB11 | 19.550 |
|  |  |  |  |  |  | RH side | XY2 CB21 | 19.550 |
|  |  |  | 48 V | 1 | 1 |  | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | LH side | XY2 CB12 | 19.550 |
|  |  |  |  |  |  | RH side |  | XY2 CB22 | 19.550 |
| $\leqslant 2 \times 100 \mathrm{~m}$ | Blue | From inside enclosure | 24 V | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ slow break | RH and LH sides | XY2 CB31 | 25.600 |
|  |  |  | 48 V | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH and <br> LH sides | XY2 CB32 | 30.050 |
| - Supply via integral transformer (2) |  |  |  |  |  |  |  |  |  |
| $\leqslant 100 \mathrm{~m}$ | Blue | From inside enclosure | $127 \mathrm{~V} / 6 \mathrm{~V}$ | 1 | 1 | N/C + N/O <br> slow break | LH side | XY2 CB13 | 15.600 |
|  |  |  |  |  |  |  | RH side | XY2 CB23 | 15.600 |
|  |  |  | 220 V/6 V | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | LH side | XY2 CB14 | 15.600 |
|  |  |  |  |  |  |  | RH side | XY2 CB24 | 15.600 |
| $\leqslant 2 \times 100 \mathrm{~m}$ | Blue | From inside enclosure | $127 \mathrm{~V} / 6 \mathrm{~V}$ | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ slow break | RH and LH sides | XY2 CB33 | 25.600 |
|  |  |  | $220 \mathrm{~V} / 6 \mathrm{~V}$ | 1 | 1 | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ <br> slow break | RH and <br> LH sides | XY2 CB34 | 25.600 |

[^43]| General: | Characteristics: |  |
| :--- | :--- | :--- |
| page 4/4 | page 4/6 | Dimensions: |

# Order form (specimen suitable <br> for photocopying) 

Complete units, pre-assembled

| Customer |  |  | Schneider Electric Industries SA |  |
| :--- | :--- | :--- | :--- | :--- |
| Company | Order N | Delivery <br> date | Sales office - Subsidiary Co. | Order $\mathrm{N}^{\circ}$ |
|  |  |  |  |  |
|  |  |  |  |  |

How to use this form:

- indicate the number of Emergency stop switches required,
- complete the basic reference.


Order form (specimen suitable
for photocopying)

Safety dialogue solutions Emergency stop trip wire switches, type XY2 C

Complete units, pre-assembled

| Customer | Schneider Electric Industries SA |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Order $\mathrm{N}^{\circ}$ | Delivery <br> Company <br> date | Sales office - Subsidiary Co. | Order $\mathrm{N}^{\circ}$ |
|  |  |  |  |  |
|  |  |  |  |  |

## How to use this form:

- indicate the number of Emergency stop switches required,
- complete the basic reference.

Reference

| Number of identical Emergency stops |  |  | XY2 CE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model |  |  |  |  |  |  |  |  |  |
| Emergency stop (latching) | Anchor point | RH side | force $\quad 1$ |  |  |  |  |  |  |
|  | Anchor poin | LH side, | force 2 |  |  |  |  |  |  |
|  | Anchor poin | RH side | 5 |  |  |  |  |  |  |
|  | Anchor poin | LH side, | e 6 |  |  |  |  |  |  |
| Degree of protection and "cable tension indicator" window |  |  |  |  |  |  |  |  |  |
| IP 65 (standard bellows) without "cable tension indicator" window |  |  |  | A |  |  |  |  |  |
| IP 65 (silicone bellows) without "cable tension indicator" window |  |  |  | C |  |  |  |  |  |
| IP 65 (standard bellows) with "cable tension indicator" window |  |  |  | D |  |  |  |  |  |
| IP 65 (silicone bellows) with "cable tension indicator" window |  |  |  | E |  |  |  |  |  |
| Type of reset |  |  |  |  |  |  |  |  |  |
| Emergency stop (1) Reset by spring return pushbutton | Flush |  |  |  | 1 |  |  |  |  |
|  | Booted |  |  |  | 2 |  |  |  |  |
|  | Mushroom head, Ø 30 |  |  |  | 3 |  |  |  |  |
|  | Key operated mushroom head, $\varnothing 30$ ( $\mathrm{n}^{\circ} 421$ ) |  |  |  | 4 |  |  |  |  |
|  | Key operated mushroom head, $\varnothing 30$ ( $\mathrm{n}^{\circ} 455$ ) |  |  |  | 5 |  |  |  |  |
|  | Key operated mushroom head, $\varnothing 30$ (2) |  |  |  | 9 |  |  |  |  |
| Contact block for Emergency stop function (3) |  |  |  |  |  |  |  |  |  |
| Slow break | 1 N/C + N/O |  |  |  |  | 5 |  |  |  |
|  | $1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$ |  |  |  |  | 7 |  |  |  |
|  | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ (compulsory with pilot light) (4) |  |  |  |  | 9 |  |  |  |
| Pilot light |  |  |  |  |  |  |  |  |  |
| Without pilot light |  |  |  |  |  |  | 0 |  |  |
| With 24-48-130 V direct supply pilot light. Bulb not included (provide for 2 contact blocks) |  |  |  |  |  |  | 6 |  |  |
| With 230 V direct supply, via integral resistor, pilot light. Bulb included (provide for 2 contact blocks) (5) |  |  |  |  |  |  |  |  |  |
| 1/2" NPT tapped cable entries |  |  |  |  |  |  |  | H7 (6) |  |
| Increased protective treatment against corrosion |  |  |  |  |  |  |  |  | TK (7) |
| (1) Opening of N/C contact + mechanical latching in the open position. <br> (2) Other key numbers: |  |  |  |  |  |  |  |  |  |
| 458A | 520 E | 1242A 1243E |  | 1344A |  | 1422A |  | 1431E |  |
| 2123E 21 | 2132E |  |  |  |  |  |  |  |  |

(3) Emergency stop trip wire switches can only be fitted with slow break contact blocks.
(4) The use of a pilot light means selecting a switch fitted with 2 N/C + N/O contacts: XY2 CE $\bullet \bullet 9$.
(5) Replacement bulb: DL1 CE130.
(6) For versions with pilot light, order an H 4 version.
(7) Protective treatment TK is only possible for switches with silicone bellows (XY2 CE•C•••TK, XY2 CE॰E॰॰॰H7TK...).

Safety dialogue solutions
Emergency stop trip wire switches,
type XY2 C


XY2 CZ503


XY2 CZ602


XY2 CZ702


XY2 CZ917

| Separate components |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | For use with | Diameter mm | Length m | Reference | Weight kg |
| Galvanised cables with red sheath | XY2 CH, XY2 CEand XY2 CB | 3.2 | 10.5 | XY2 CZ301 | 0.280 |
|  |  |  | 15.5 | XY2 CZ3015 | 0.410 |
|  |  |  | 25.5 | XY2 CZ302 | 0.690 |
|  |  |  | 50.5 | XY2 CZ305 | 1.360 |
|  |  |  | 100.5 | XY2 CZ310 | 2.700 |
|  | $\overline{\mathrm{XY} 2 \mathrm{CH} \text { and } \mathrm{XY} 2 \mathrm{CE}}$ | 5 | 15.5 | XY2 CZ1015 | 0.850 |
|  |  |  | 25.5 | XY2 CZ102 | 1.400 |
|  |  |  | 50.5 | XY2 CZ105 | 2.750 |
|  |  |  | 100.5 | XY2 CZ110 | 5.500 |
| Description | Type | For use with | Sold in lots of | Unit reference | Weight kg |
| Tensioner | - | XY2 CE only | 1 | XY2 CZ203 | 0.09 |
| Turnbuckles | M6 x 60 + locknut | All models (1) | 1 | XY2 CZ402 | 0.060 |
|  | M8 x 70 + locknut | All models (1) | 1 | XY2 CZ404 | 0.100 |
| Cable grips | Single | Cable $\varnothing 3$ to 5 mm | 10 | XY2 CZ503 | 0.007 |
|  | Double | Cable $\varnothing 3$ to 5 mm | 10 | XY2 CZ513 | 0.016 |
|  | Clamp | Cable Ø 3.2 mm | 10 | XY2 CZ523 | 0.050 |
|  |  | Cable Ø 5 mm | 10 | XY2 CZ524 | 0.080 |
| Cable supports | Fixed | All models | 10 | XY2 CZ601 | 0.030 |
|  | Swivelling | All models | 1 | XY2 CZ602 | 0.130 |
|  | Pulley support | XY2 CH and XY2 CE | 1 | XY2 CZ705 | 0.060 |
| Pulley | Cable $\varnothing 5 \mathrm{~mm}$ max. | XY2 CH and XY2 CE | 1 | XY2 CZ708 | 0.002 |
| Cable end protectors |  | Cable Ø 3.2 mm | 10 | XY2 CZ701 | 0.002 |
|  |  | Cable $\varnothing 5 \mathrm{~mm}$ | 10 | XY2 CZ704 | 0.010 |
| End springs |  | XY 2 CH | 1 | XY2 CZ703 | 0.035 |
|  |  | XY2 CE and XY2 CB | 1 | XY2 CZ702 | 0.080 |



| 1 galvanised cable | XY2 CE | 5 | 25 | XY2 CZ9525 | 1.905 |
| :--- | :--- | :--- | :--- | :--- | :--- |

+4 cable grips XY2 CZ524

+ 1 turnbuckle XY2 CZ404
+1 cable support XY2 CZ601
$\begin{array}{llll}+3 \text { cable end protectors XY2 CZ704 } & 50 & \text { XY2 CZ9550 } & 3.280\end{array}$
+ 1 end spring XY2 CZ702

| Documentation | For use with | Reference | Weight <br> kg |
| :--- | :--- | :--- | ---: |
| Description | XY 2 CH and XY2 CE | XCOM2512 | 0.200 |
| Installation manual |  |  |  |

[^44] there is no need to order a turnbuckle.

| Characteristics: | Dimensions |
| :--- | :--- |
| page $4 / 6$ | page $4 / 13$ |

Safety dialogue solutions
Emergency stop trip wire switches， type XY2 C


XY2 CZしゃゃ・


XY2 CZ902

| Replacement parts |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Type |  |  | Reference | Weight kg |
| Reset pushbutton（blue）， spring return for XY2 CH and XY2 CE | Flush with＂R＂marked on push |  |  | ZA2 BA639 | 0.030 |
|  | Booted |  |  | ZA2 BP6 | 0.025 |
|  | Mushroom head，$\varnothing 30$ |  |  | ZA2 BC64 | 0.045 |
|  | Key operated mushroom head，$\varnothing 30$（key $\mathrm{n}^{\circ}$ 421） |  |  | ZA2 BS06212 | 0.090 |
|  | Key operated mushroom head，$\varnothing 30$（key n ${ }^{\circ}$ 455） |  |  | ZA2 BS062 | 0.090 |
| Keys for reset button | $\mathrm{N}^{\circ} 421$ |  |  | Q99900911 | 0.006 |
|  | $\mathrm{N}^{\circ} 455$ |  |  | Q99900901 | 0.006 |
| Pilot light head assembly | Orange，for XY2 CH and XY2 CE |  |  | ZA2 BV05 | 0.015 |
| Pilot light lens | Orange，for XY2 CH and XY2 CE |  |  | ZB2 BV015 | 0.003 |
| Fixing nut | Black plastic nut for head ZA2 B |  |  | ZA2 BZ901 | 0.002 |
| Fixing nut tightening tool | Black plastic socket wrench for fixing nut ZA2 BZ901 |  |  | ZA2 BZ901 | 0.060 |
| Pilot lights <br> With bulb DL1 AA••• included | Orange，for XY 2 CH | 24 V |  | XY2 CZ0024（1） | 0.035 |
|  |  | 48 V |  | XY2 CZ0048（1） | 0.035 |
|  |  | 130 V |  | XY2 CZ0130（1） | 0.035 |
|  |  | 230 V |  | XY2 CZ0230（1） | 0.035 |
|  | Red，for XY2 CB | 24 V |  | 9001 KP35R9 | 0.134 |
|  |  | 48 V |  | 9001 KP36R9 | 0.134 |
|  |  | 120 V |  | 9001 KP1R9 | 0.210 |
|  |  | 230 V |  | 9001 KP7R9 | 0.210 |
| Description | Type |  | Sold in lots of | Unit reference | Weight kg |
| Incandescent bulbs | Screw base fitting for XY2 CH | 24V－6W | 10 | DL1 AA024 | 0.004 |
|  |  | $48 \mathrm{~V}-6 \mathrm{~W}$ | 10 | DL1 AA048 | 0.004 |
|  |  | 130V－6 W | 10 | DL1 AA127 | 0.004 |
|  |  | $230 \mathrm{~V}-6 \mathrm{~W}$ | 10 | DL1 AA220 | 0.004 |
|  | BA 9s base fitting for XY2 CE and XY2 CB | 24 V－2．6 W | 10 | DL1 CE024 | 0.002 |
|  |  | $48 \mathrm{~V}-2.6 \mathrm{~W}$ | 10 | DL1 CE048 | 0.002 |
|  | BA 9s base fitting for XY2 CE | $130 \mathrm{~V}-2.6 \mathrm{~W}$ | 10 | DL1 CE130 | 0.002 |
|  | BA 9s base fitting for XY2 CB 120 V and 230 | $6 \mathrm{~V}-1.2 \mathrm{~W}$ | 10 | DL1 CB006 | 0.002 |
| Packet of 5 collars | For mounting DL1 AA bulbs in pilot lights XY | d DL1 AA220 | 5 | XY2 CZ908 | 0.018 |
| Dust and damp protecting bellows | For XY2 CE | Polychloroprene | 1 | XY2 CZ901 | 0.017 |
|  |  | Silicone | 1 | XY2 CZ904 | 0.005 |
|  | For XY 2 CH | Polychloroprene | 1 | XY2 CZ902 | 0.017 |
|  |  | Silicone | 1 | XY2 CZ903 | 0.005 |
| Adaptor | For XY2 CB | ISO M20 | 5 | DE9 RP13520 | 0.050 |

（1）Only for use as replacement parts for switches pre－fitted with pilot lights．CCC and UL－CSA approvals no longer apply if a pilot light XY2 CZ••• is mounted on Emergency stops XY2 CH．

| General： | Characteristics： | Dimensions： <br> page 4／4 |
| :--- | :--- | :--- |

## Emergency stop trip wire switches,

 type XY2 C
(1) Maximum extension.
(2) Tapped entries for $n^{\circ} 13$ (Pg 13.5) cable gland. For ISO M20 the reference becomes XY2 CHe e e ॰H29
(3) $121 \mathrm{~mm}: 24 \mathrm{~V}$ and 48 V versions. $131 \mathrm{~mm}: 130 \mathrm{~V}$ and 230 V versions.

XY2 CZ708


XY2 CE•A••๑, XY2 CE•C••»
XY2 CE@A॰ゃゃ + XY2 CZ917 (tensioner + bracket)

(1) 3 plain holes for $n^{\circ} 13$ (Pg 13.5) or ISO M20 cable gland.
(2) Maximum extension.
$\varnothing: 4$ elongated holes $\varnothing 6 \mathrm{~mm}$.
XY2 CB
Without pilot light With pilot light

(1) 2 access points for operating cable
(2) +125 for opening cover.
(3) 1 tapped entry for $n^{\circ} 13$ (Pg 13.5) cable gland. For ISO M20 use adaptor DE9 RP13520.


| General: | Characteristics: | References: |
| :--- | :--- | :--- |
| page 4/5 | page 4/6 | page 4/7 |

## Safety dialogue solutions <br> Foot switches, Harmony type XPE



Foot switches type XPE are an ideal solution for providing start and stop instructions for many types of industrial machines, running in various operating modes: normal (pulsed) start, inching, hold to run.

The range comprises metal case foot switches (heavy duty, high risk) complying to very strict regulations, and plastic case foot switches (light duty, low risk).


Fitted with a protective cover, the foot switches are for applications where, for each issuing of the start instruction, a high level of danger exists (high risk).

Foot switches without a protective cover are suitable for applications where the



Terminology

## Positive opening operation

A switch meets this requirement when all its $\mathrm{N} / \mathrm{C}$ contacts can be switched to the open position with certainty, i.e. there are no flexible links between the moving contacts and the actuator to which the operating force is applied.

All pedal operated foot switches incorporate a snap action N/C + N/O contact block with positive opening operation, and conform fully to standard IEC 60947-5-1 Section 3.

## Snap action contact (quick break)

The displacement speed of the moving contacts is not related to the speed at which the contact actuator is operated. This feature gives consistent electrical performance, even when the contact actuator device is operated at low speeds.

# Safety dialogue solutions <br> Foot switches, Harmony type XPE 

Start instructions Foot switches XPE with protective cover are ideally suited for issuing a safety "Start" instruction for potentially dangerous machines.


All foot switches of the XPE range can be used for issuing a normal stop instruction to a machine.


Never use the protective cover nor the trigger mechanism for this type of application. Access to the stop control must be as unrestricted as possible and without any constraints.

For machine stop instructions, use the N/C contact(s).

Pedal latching Foot switches with pedal latching device are particularly suited for the control of "hold to run" machines device when and also, for adjustment operations.

## depressed

# Safety dialogue solutions <br> Foot switches, Harmony type XPE 

Foot switches
used in conjunct
Ion with two-hand control stations

Foot switches XPE can be mounted directly on the baseplate (without drilling additional fixing holes) of the pedestal XY2 SB90 for two-hand control stations XY2 SB7e.


The baseplate of the two-hand control station pedestal XY2 SB90 is pre-drilled with fixing holes to suit the mounting of either:

- One XPE foot switch, with or without protective cover.
■ Two XPE R foot switches, each with its own protective cover or fitted with a common (double) cover.

The protective cover is very strong and is sufficiently dimensioned to accommodate all types of footwear (large size, safety boots, etc.).


The foot switch is designed such that the operating pedal is close to the ground and at a comfortable angle.

Various accessories improve the working comfort for machine operators and help to avoid discomfort in the base of the spine due to unbalanced positioning of the pelvis:

- Heel rest (metal XPE).
- Hand grip for mounting on protective cover.


## Safety dialogue solutions <br> Metal foot switches, Universal, Harmony types XPE M/R




## Safety dialogue solutions <br> Metal foot switches, Universal, Harmony types XPE M/R



| General: <br> page 4/14 | Characteristics: <br> page 4/18 | Dimensions: <br> page 4/21 |
| :--- | :--- | :--- |
|  | Schneider |  |
| Selectric |  |  |

## Safety dialogue solutions <br> Metal foot switches, Universal, Harmony types XPE M/R



XPE Z902


| Accessories |  |  |  |
| :---: | :---: | :---: | :---: |
| Description | For use with | Unit reference | Weight kg |
| Single protective cover | XPE M | XPE Z901 | 1.200 |
|  | XPE R | XPE Z911 | 1.200 |
| Double protective cover | XPE M | XPE Z921 | 1.200 |
|  | XPE R | XPE Z931 | 1.200 |
| Hand grip for protective cover | XPE Z901 or XPE Z911 | XPE Z913 | 0.450 |
| Heel rest | XPE M | XPE Z902 | 0.240 |
|  | XPE R | XPE Z912 | 0.240 |
| Trigger mechanism | XPE M or XPE R | XPE Z903 | 0.170 |
| Latching device (replacement for foot switches with this feature) | XPE M or XPE R | XPE Z904 | 0.170 |
| Cable clamp | XPE M or XPE R | XPE Z905 | 0.010 |
| Contact blocks Snap action | $\begin{aligned} & 1 \text { step switches: } 1^{\text {st }} \text { or } 2^{\text {nd }} \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O} \\ & 2 \text { step switches: } 1^{\text {st }} \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O} \end{aligned}$ | XE2S P4151 | 0.020 |
|  | 2 step switches: $2^{\text {nd }} \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | XE2S P4151B | 0.020 |
| ISO M20 adaptor (Sold in lots of 5) | XPE M or XPE R | DE9 RA1620 | 0.050 |

[^45]| General: <br> page $4 / 14$ | Characteristics: <br> page 4/18 |
| :--- | :--- |
| $4 / 20$ |  |
| Dimensions: <br> page 4/21 |  |
|  | Schneider |
| $\boldsymbol{Z E l e c t r i c}$ |  |

## Safety dialogue solutions Metal foot switches, Universal, Harmony types XPE M/R

XPE M, XPE R without protective cover





## Single



Double


## XPE Z913


b

|  | a | b |
| :--- | :--- | :--- |
| Single pedal | 152 | 160 |
| Double pedal | 155 | 295 |

(1) 2 tapped entries for $n^{\circ} 16$ (Pg 16) cable gland. For ISO M20, use adaptor DE9 RA1620 (2) $1 \varnothing 6$ plain hole.

## Safety dialogue solutions <br> Plastic foot switches, Harmony types XPE A/B/G/Y



| Connection |  | Screw clamp terminals |
| :--- | :--- | :--- |
|  | Maximum clamping capacity: $1 \times 2.5 \mathrm{~mm}^{2}$ or $2 \times 1.5 \mathrm{~mm}^{2}$ with or without cable end |  |


| General: | References: <br> page 4/23 | Dimensions: <br> page 4/14 |
| :--- | :--- | :--- |



XPE G810


XPE •110


XPE A110


XE2S P4151

| Single pedal foot switches with protective cover |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Contact operation |  | Housing colour | Reference | Weight kg |
| With trigger mechanism requiring positive action to allow pedal operation | 1 step | 1 N/C + N/O | Yellow | XPE Y510 (1) | 0.700 |
|  |  |  | Blue | XPE B510 | 0.700 |
|  |  |  | Grey | XPE G510 | 0.700 |
|  |  | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Yellow | XPE Y511 (1) | 0.700 |
|  |  |  | Blue | XPE B511 | 0.700 |
|  |  |  | Grey | XPE G511 | 0.700 |
|  | 2 step | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Yellow | XPE Y711 (1) | 0.700 |
|  |  |  | Blue | XPE B711 | 0.700 |
|  |  |  | Grey | XPE G711 | 0.700 |
| Without trigger mechanism | 1 step | 1 N/C + N/O | Yellow | XPE Y310 | 0.690 |
|  |  |  | Blue | XPE B310 | 0.690 |
|  |  |  | Grey | XPE G310 | 0.690 |
|  |  | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Yellow | XPE Y311 (1) | 0.690 |
|  |  |  | Blue | XPE B311 | 0.690 |
|  |  |  | Grey | XPE G311 | 0.690 |
|  | 2 step | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Yellow | XPE Y611 (1) | 0.690 |
|  |  |  | Blue | XPE B611 | 0.690 |
|  |  |  | Grey | XPE G611 | 0.690 |


| Foot switches without protective cover |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Contact operation |  | Housing colour | Reference | Weight kg |
| With trigger mechanism requiring positive action to allow pedal operation | 1 step | $1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Grey | XPE G810 | 0.580 |
|  | 2 step | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Grey | XPE G911 | 0.580 |
| Without trigger mechanism | 1 step | $1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Yellow | XPE Y110 (1) | 0.570 |
|  |  |  | Blue | XPE B110 | 0.570 |
|  |  |  | Grey | XPE G110 | 0.570 |
|  |  |  | Black | XPE A110 | 0.275 |
|  |  | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Blue | XPE B111 | 0.570 |
|  |  |  | Grey | XPE G111 | 0.570 |
|  |  |  | Black | XPE A111 | 0.295 |
|  | 2 step | $2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ | Yellow | XPE Y211 (1) | 0.570 |
|  |  |  | Blue | XPE B211 | 0.570 |
|  |  |  | Grey | XPE G211 | 0.570 |


| Accessories for foot switches, with or without protective cover |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | For use with | Sold in lots of | Unit reference | Weight kg |
| $\text { M20 x } 1.5$ | Cable Ø 5... 10 mm | 5 | DE9RA200612 | 0.014 |
|  | Cable $\varnothing 7 \ldots 13 \mathrm{~mm}$ | 5 | DE9RA201014 | 0.014 |
| Contact blocks, snap action | 1 or 2 step switches | 1 | XE2S P4151 | 0.020 |

(1) IP 55, not UL, CSA approved.

| General: | Characteristics: | Dimensions: |
| :--- | :--- | :--- |
| page $4 / 14$ | page $4 / 22$ | page $4 / 24$ |

# Safety dialogue solutions <br> Plastic foot switches, <br> Harmony types XPE B/G/Y 

## XPE B, XPE G, XPE Y <br> With protective cover



(1) $\varnothing 16 \times 4$ counterbored hole.
(2) 4 cover fixing screws: stainless steel. Tightening torque: 1 N.m.

## Without protective cover


(1) 2 plain holes for ISO M20 or $n^{\circ} 13$ (Pg 13.5) cable gland. (2) 4 cover fixing screws: stainless steel. Tightening torque: 1 N.m
(3) Return spring: stainless steel.

## Safety dialogue solutions

Plastic foot switches,
Harmony type XPE A

XPEA

(1) 1 plain hole for ISO M20 or $n^{\circ} 13$ (Pg 13.5) cable gland. (2) 1 plain hole for ISO M20 or $n^{\circ} 9$ (Pg 11) cable gland.

Operating principle, characteristics

## Safety dialogue solutions <br> Enabling switches <br> For safety circuits

Operating principle
Enabling switches, comprising an XY2 AU grip and an XPS VC monitoring module, allow authorised personnel to undertake adjustment, programming or maintenance operations near machine equipment hazardous zones, providing certain conditions are met.

In effect, to gain access, these operations, often performed at reduced speed, must be selected by authorised personnel using selectors, with or without keys. Once selection is made, the enabling switch temporarily assumes control of the hazardous zone's usual protection measures. Important note: the enabling switch alone must not lead to the actuation of any dangerous movements associated with the machine; a secondary, intentional control action is required from the operator. In addition, each person in the hazardous zone must be provided with an enabling switch to ensure their own safety.

| Environment |  |  |
| :---: | :---: | :---: |
| Conforming to standards |  | IEC/EN 60947-1, IEC/EN 60947-5-1, cUL us 508 and CSA C22-2 $\mathrm{n}^{\circ} 14$ |
|  |  | IEC/EN 60204-1 |
| Protective treatment |  | Standard version: "TC" |
| Ambient air temperature | ${ }^{\circ} \mathrm{C}$ | $-10 \ldots+60$ |
|  | ${ }^{\circ} \mathrm{C}$ | -40... +70 |
| Vibration resistance |  | $6 \mathrm{gn}(5 \ldots 55 \mathrm{~Hz})$ conforming to IEC 60068-2-6 |
| Shock resistance |  | 10 gn (11 ms) conforming to IEC 60068-2-27 |
| Electric shock protection |  | Class II conforming to IEC/EN 61140 |
| Degree of protection |  | IP 66 conforming to IEC 60529, IP 65 with a pushbutton, IK 06 conforming to EN 50102 |
| Mechanical durability | Op. cycle | 1 million |
| Enclosure |  | Double insulated enclosure made of PA66 |
| Cable diameter | mm | 7... 13 |
| Contact block characteristics |  |  |
| Rated operational characteristics |  | ~ AC-15: C300 or $\mathrm{Ue}=250 \mathrm{~V}$, le $=1.5 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, $\mathrm{le}=0.75 \mathrm{~A}$ -- DC-13: R300 or $\mathrm{Ue}=250 \mathrm{~V}$, le $=0.1 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, $\mathrm{le}=0.22 \mathrm{~A}$ conforming to IEC 60947-5-1 Appendix A |
| Thermal current (Ithe) | A | 5 |
| Rated insulation voltage ( Ui ) | V | 250, degree of pollution III (II inside) conforming to IEC 60947-1 125, contact 7-8 |
| Rated impulse withstand voltage (Uimp) | kV | 2.5 conforming to EN 60947-1 |
| Positive operation |  | 2 3-position contacts with positive opening operation conforming to IEC 60947-5-1 appendix K |
| Contact operation |  | Slow break |
| Resistance across terminals | $\mathrm{m} \Omega$ | $\leq 50$ |
| Actuation force |  | $\text { 1...2: } 12 \mathrm{~N}$ |
| Terminal referencing |  | Numbered conforming to CENELEC EN 50013 |
| Short-circuit protection |  | 4 A cartridge fuse type gG (gl) |
| Connection | $\mathrm{mm}^{2}$ | Terminal block, $1 \times 0.34 \ldots 1 \times 1.5$ |

References, dimensions, connections

## Safety dialogue solutions

## Enabling switches

For safety circuits

$X Y 2$ AU•


XY2 AZ1

$X Y 2$ AZ2


XY2 AZ3


Separate components and spare parts

| Description | Reference | Weight <br> $\mathbf{k g}$ |
| :--- | :--- | ---: |
| Grip support | XY2 AZ1 | 0.215 |

Cover kit for key actuator XCS Z01 or XCS Z11 XY2 AZ2 0.015 only applicable to XY2 AU1

| Cover | XY2 AZ3 | 0.060 |
| :--- | :--- | :--- |



# Safety dialogue solutions <br> Two-hand ergonomic control stations With Harmony XB4 B control units 



## Presentation

The design of the control station incorporates features to significantly reduce occupational illnesses associated with repetitive movements of the hands, particularly "carpal tunnel syndrome".

The health and comfort of the machine operator is assured by:

- the numerous alternative hand positions for operating the 2 pushbutton actuators,
see diagrams to left,
- a hand rail,
- simple and fast adjustments of control station position.

This two-hand control station protects machine operators against both industrial accidents and illnesses related to their occupation.

It conforms to the following European safety standards:
■ EN 574 (two-hand control),

- EN 999 (approach speeds of parts of the human body and positioning of safety devices).

The control station can be mounted:

- directly on the machine housing,
- on a pedestal, enabling 3 directional adjustment:
$\square$ height,
$\square$ rake,
- skew.

The use of a two-hand control station in conjunction with a safety module type XPS BC or XPS BF provides type IIIC two-hand control conforming to EN 574, i.e. category 4 conforming to EN 954.

The two-hand control station + safety module XPS BC combination has an EC examination of type certificate issued by BERUFSGENOSSENSCHAFT of Germany (1996), $\mathrm{n}^{\circ} 007052001181295$.

The range comprises

- two-hand control stations with or without pre-wired terminal blocks,

■ kits (control station + pedestal), with or without pre-wired terminal blocks.
The products are supplied with an installation manual, which is also available as a separate item

Safety dialogue solutions
Two-hand ergonomic control stations
With Harmony XB4 B control units

## Description

The control station 1 has five cut-outs ( $\varnothing 22 \mathrm{~mm}$ ) 2 as standard. Five additional cutouts are possible 3.

Its pedestal 5 enables the following quick and simple adjustments:

- Control station rake $\left( \pm 30^{\circ}\right)$ using handle 4 .

■ Control station skew $\left( \pm 180^{\circ}\right)$ using handle 6.
■ Control station height ( 835 to 1170 mm ) using handle 6 .
The baseplate 8 can be fitted with safety foot switches XPE R 9, together with their protective covers 7 . See page $4 / 19$.


## Safety dialogue solutions <br> Two-hand ergonomic control stations With Harmony XB4 B control units

## Characteristics

Environment

| Conformity to standards |  |  | EN/IEC 60947-5-1, EN 574 ISO 13851 |
| :---: | :---: | :---: | :---: |
| Colour |  |  | Orange RAL 2008 |
| Protective treatment | Standard version |  | "TC" |
| Ambient air temperature | For operation | ${ }^{\circ} \mathrm{C}$ | $-25 \ldots+70$ |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ |
| Vibration resistance | Conforming to EN/IEC 60068-2-6 |  | $5 \mathrm{gn}(2 \ldots 500 \mathrm{~Hz})$ |
| Shock resistance | Conforming to EN/IEC 60068-2-27 |  | 10 gn (duration 11 ms ) |
| Electric shock protection | Conforming to EN/IEC 61140 |  | Class I |
| Degree of protection | Conforming to EN/IEC 60529 |  | IP 65 |
| Mechanical life | Number of operating cycles |  | 1 million |
| Cable entries |  |  | See dimensions, page 4/33 |


| Rated operational characteristics | $\begin{aligned} & \sim \mathrm{AC}-15 \\ & =\mathrm{DC}-13 \end{aligned}$ |  | A 600 or $\mathrm{Ue}=240 \mathrm{~V}$ and $\mathrm{le}=3 \mathrm{~A}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Q600 or $\mathrm{Ue}=250 \mathrm{~V}$ and le $=0.27$ A conforming to EN/IEC 60947-5-1 AppendixA |  |  |
| Rated insulation voltage | Conforming to EN/EC 60947-1 | v | Ui $=600$, degree of pollution 3 |  |  |
|  | Conforming to UL 508 and CSA C22-2 n 14 | v | $\mathrm{Ui}=600$ |  |  |
| Rated impulse withstand voltage | Conforming to EN/IEC 60947-1 | kV | Uimp $=6$ |  |  |
| Contact operation | Slow break, with positive opening operation |  | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ break before make on each black actuator pushbutton <br> N/C + N/C simultaneous on Emergency stop pushbutton <br> $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ break before make on Lock out pushbutton |  |  |
| Positive operation | Conforming to EN/IEC 60947-5-1 Appendix K |  | $\mathrm{N} / \mathrm{C}$ contact with positive opening operation |  |  |
| Terminal referencing |  |  | Conforming to CENELEC EN 50013 |  |  |
| Short-circuit protection | Conforming to EN/IEC 269 |  | 10 A cartridge fuse type gG (gl) |  |  |
| Connection | Screw clamp terminals | mm ${ }^{2}$ | Minimum clamping capacity: $1 \times 0.22$ or $1 \times 0.22+1 \times 0.34$ Maximum clamping capacity: $1 \times 2.5$ or $2 \times 1.5$ |  |  |
| Electrical durability <br> Conforming to <br> EN/IEC 60947-5-1 Appendix C Operating rate: 3600 operating cycles/hour. <br> Load factor: 0.5 | a.c. supply for 1 million operating cycles utilisation category AC-15 | v | 24 | 120 | 230 |
|  |  | A | 4 | 3 | 2 |
|  | d.c. supply for 1 million operating cycles | V | 24 | 110 |  |
|  | utilisation category DC-13 | A | 0.5 | 0.2 |  |
| Electrical reliability | Failure rate According to EN/IEC 60947-5-4 |  | $\begin{aligned} & \text { At } 17 \mathrm{~V} \text { and } 5 \mathrm{~mA}, \lambda<10^{-8} \\ & \text { At } 5 \mathrm{~V} \text { and } 1 \mathrm{~mA}, \lambda<10^{-6} \end{aligned}$ |  |  |


| Presentation: | Description: | References: |
| :--- | :--- | :--- |
| page 4/28 | page 4/29 | Dimensions: |



XY2 SB7•


XY2 SB7•4

| Two-hand control stations - painted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Mushroom head |  | Reference | Weight kg |
|  | Function and colour | Contacts |  |  |
| 2 control pushbuttons with N/C + N/O break before make contacts and | Emergency stop Red | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$ <br> slow break | XY2 SB71 | 4.000 |
| 1 mushroom head pushbutton | Lock out (Schaltsperre) Yellow | $\begin{aligned} & \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O} \\ & \text { break before make } \end{aligned}$ | XY2 SB75 | 4.000 |


| 2 control |
| :--- | :--- | :--- | :--- | :--- |
| pushbuttons with |
| N/C + N/O break |
| before make | Red | contacts and |
| :--- | :--- | :--- | :--- |


| Kits (control station + pedestal) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Mushroom head |  | Reference | Weight kg |
|  | Function and colour | Contacts |  |  |
| 2 control pushbuttons and 1 mushroom head | Emergency stop Red | $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$ <br> slow break | XY2 SB714 | 17.000 |
| Emergency stop pushbutton + pedestal XY2 SB90 |  |  |  |  |

## Documentation

| Description | For use with | Reference | Weight <br> kg |
| :--- | :--- | :--- | ---: |
| Installation manual | All control stations XY2 SB7•• | XCO M2514 | 0.200 |


| Presentation: | Description: | Characteristics: | Dimensions: |
| :--- | :--- | :--- | :--- |
| page 4/28 | page 4/29 | page 4/30 | page 4/33 |

## Safety dialogue solutions

Two-hand ergonomic control stations With Harmony XB4 B control units


| Separate components and spare parts |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Various accessories |  |  |  |  |
| Description | For use with | Colour | Unit reference | Weight kg |
| Metal pedestal adjustable height | XY2 SBee | Orange | XY2 SB90 | 13.000 |
| Collar for guard rail (welded fixing) | XY2 SB90 | Orange | XY2 SB98 | 0.800 |
| Control station top without control devices | - | Orange | XY2 SB511 | 2.500 |
| Control station base |  | Orange | XY2 SB531 | 1.200 |
| Double protective metal cover | Metal pedestal XY2SB90 and foot switches type XPE R | Orange | XY2 SB96 | 4.370 |
| Replacement handle (sold in lots of 5) | Metal pedestal XY2SB90 | Black | XY2 SB93 | 0.155 |
| Replacement seals | - | - | XY2 SB99 | 0.300 |


| Adaptor (sold in lots of 5) | ISO M25 | - | DE9 RA2125 | 0.010 |
| :---: | :---: | :---: | :---: | :---: |
| Fixing nut (Sold in lots of 5) | Adaptor | - | DE9 EC21 | 0.005 |
| Control units (1) |  |  |  |  |
| Description | Component part | Colour | Reference | Weight kg |
| Pushbutton actuator | $\varnothing 60 \text { mm }$ <br> mushroom head | Black | ZB4 BR216 | 0.095 |


| N/C + N/O body/contact - | ZB4 BZ105 | 0.055 |
| :--- | :--- | :--- | assembly


| Emergency stop <br> pushbutton | $\varnothing 40 \mathrm{~mm}$ | Red | ZB4 BS844 | 0.060 |
| :--- | :--- | :--- | :--- | :--- |
|  | mushroom head |  |  |  |


| N/C + N/C body/contact <br> assembly | ZB4 BZ104 | 0.055 |
| :--- | :--- | :--- | assembly


| Lock out | $\varnothing 40 \mathrm{~mm}$ | Yellow, marked <br> pushbutton | Zushroom head | "Schaltsperre" |
| :--- | :--- | :--- | :--- | :--- |


| N/C + N/O body/contact - | ZB4 BZ105 | 0.055 |
| :--- | :---: | :---: |
| assembly |  |  |

(1) Other XB4 B control and signalling units are suitable for use on the control stations. Please refer to our "Human Machine Interface" catalogue.

| Presentation: | Description: | Characteristics: |
| :--- | :--- | :--- |
| page $4 / 28$ | page $4 / 29$ | page $4 / 30$ |

## Dimensions

Safety dialogue solutions
Two-hand ergonomic control stations
With Harmony XB4 B control units

## Dimensions

Control station XY2 SB7•


Pedestal XY2 SB90


Double protective cover
XY2 SB96


(1) 2 plain holes for $n^{\circ} 13$ (Pg 13.5) or ISO M20 cable gland.
(2) $\varnothing 56 \mathrm{~mm}$ knock-out specifically for mounting on pedestal.
(3) 1 plain hole for $n^{\circ} 21$ (Pg 21) cable gland. For ISO M25, use adaptor DE9 RA2125 and fixing nut DE9 EC21.

## Safety dialogue solutions

Harmony ${ }^{\text {® }}$ XB4, metal
Emergency stop mushroom head pushbuttons
$\varnothing 22$ trigger action
Chromium plated metal bezel

| Environment |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Protective treatment <br> Ambient air temperature around the device | Standard version |  | "TH" |  |  |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ |  |  |
|  | For operation | ${ }^{\circ} \mathrm{C}$ | $-25 . \ldots+70$ unless otherwise stated |  |  |
| Electric shock protection | Conforming to IEC/EN 61140 |  | Class I |  |  |
| Degree of protection | Conforming to IEC 60529 |  | IP 66 unless otherwise stated |  |  |
|  | Conforming to NEMA |  | NEMA 4X and 13, unless otherwise stated |  |  |
| Mechanical shock protection | Conforming to EN 50102 |  | IEC/EN 60947-1, IEC/EN 60947-5-1, IEC/EN 60947-5-4, IEC/EN 60947-5-5, EN/ISO 13850:2006 and IEC/EN 60204-1 (trigger action and mechanical latching) JIS C 4520 UL 508, CSA C22-2 n ${ }^{\circ} 14$ |  |  |
| Conformity to standards |  |  |  |  |  |
| Product certifications | UL Listed, CSA |  | Standard contact with screw clamp terminals: A600; Q600 |  |  |
|  | BV, RINA, LROS, DNV, GL |  | Standard contact with screw clamp terminals |  |  |
| Terminal referencing |  |  | Conforming to EN 50005 and EN 50013 |  |  |
| Contact function and complete unit characteristics |  |  |  |  |  |
| Mechanical characteristics |  |  |  |  |  |
| Contact operation | N/C or N/O |  | Slow break |  |  |
| Positive operation | Conforming to <br> IEC/EN 60947-5-1 Appendix K |  | All functions incorporating a N/C contact are positive opening operation |  |  |
| Operating force |  | N | Emergency stop with N/C + N/O: <br> - Push-Pull: trigger action: 50 <br> - Turn to release (with and without key unlocking): trigger action: 44 |  |  |
|  |  | N | Additional contact (extra to change state) <br> - N/C contact: 2 <br> - N/O contact: 2.3 |  |  |
| Mechanical durability (in millions of operating cycles) | Emergency stop pushbutton |  | 0.3 |  |  |
|  | Standard block only |  | 5 |  |  |
| Vibration resistance | Conforming to IEC 60068-2-6 |  | Frequency: $2 \ldots . .500 \mathrm{~Hz}: 5 \mathrm{gn}$ |  |  |
| Shock resistance | Conforming to IEC 60068-2-27 |  | Half sine wave acceleration 11 ms : 10 gn |  |  |
| Electrical characteristics |  |  |  |  |  |
| Cabling capacity | Conforming to IEC 60947-1 | mm ${ }^{2}$ | Screw clamp terminals; cross head screws (Pozidriv type) Min.: $1 \times 0.22$ without cable end ( $1 \times 0.34$ for linking) Max.: $2 \times 1.5$ with cable end |  |  |
| Contact material | Silver alloy (Ag/Ni) |  | Standard block with screw clamp terminals |  |  |
| Short-circuit protection | Conforming to IEC/EN 60947-5-1 | A | Standard block with screw clamp terminals: 10 ( g G cartridge fuse conforming to IEC 60269-1) |  |  |
| Rated insulation voltage | Conforming to IEC/EN 60947-1 | V | Standard block with screw clamp terminals: Ui $=600$, degree of pollution 3 |  |  |
| Rated impulse withstand voltage | Conforming to IEC/EN 60947-1 | kV | Standard block with screw clamp terminals: Uimp =6 |  |  |
| Rated operational characteristics Conforming to IEC/EN 60947-5-1 | a.c. supply: utilisation category AC-15 |  | Standard block with screw clamp terminals: <br> A600: $\mathrm{Ue}=600 \mathrm{~V}$ and $\mathrm{le}=1.2 \mathrm{~A}$ or $\mathrm{Ue}=240 \mathrm{~V}$ and $\mathrm{le}=3 \mathrm{~A}$ or $\mathrm{Ue}=120 \mathrm{~V}$ and $\mathrm{le}=6 \mathrm{~A}$ |  |  |
|  | d.c. supply: utilisation category DC-13 |  | Standard block with screw clamp terminals: Q600: $\mathrm{Ue}=600 \mathrm{~V}$ and $\mathrm{le}=0.1 \mathrm{~A}$ or $\mathrm{Ue}=250 \mathrm{~V}$ and $\mathrm{le}=0.27 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$ and $\mathrm{le}=0.55 \mathrm{~A}$ |  |  |
| Electrical durability <br> Conforming to <br> IEC/EN 60947-5-1 Appendix C <br> Operating rate: 3600 operating <br> cycles/hour <br> Load factor: 0.5 | a.c. supply for 1 million operating cycles utilisation category AC-15 | V | Standard block with screw clamp terminals: |  |  |
|  |  |  | 24 | 120 | 230 |
|  |  | A | 4 | 3 | 2 |
|  | d.c. supply for 1 million operating cycles utilisation category DC-13 | V | Standard block with screw clamp terminals: |  |  |
|  |  |  | 24 | 110 |  |
|  |  | A | 0.5 | 0.2 |  |
| Electrical reliability | Failure rate (according to IEC/EN 60947-5-4) |  | Standard block in clean environment: <br> - At 17 V and $5 \mathrm{~mA}, \lambda<10^{-8}$ <br> - At 5 V and $1 \mathrm{~mA}, \lambda<10^{-6}$ |  |  |

## Safety dialogue solutions

## Harmony ${ }^{\circledR}$ XB4, metal

Emergency stop mushroom head pushbuttons
$\varnothing 22$ trigger action
Chromium plated metal bezel


XB4 BT845


| Legend holder, $\mathbf{3 0 \times 4 0} \mathbf{~ m m}$ | Reference | Weight <br> $\mathbf{k g}$ |  |
| :--- | :--- | :--- | ---: |
| Description | White marking <br> on red background | ZBY 2330 | 0.002 |
| With $\mathbf{8 \times 2 7} \mathbf{~ m m}$ <br> legend | EMERGENCY STOP | ZBY 2130 | 0.002 |
|  | ARRET D'URGENCE | ZBY 2230 | 0.002 |



| Trigger action <br> Turn to release <br> $\varnothing$ 40 | 1 | 1 | XB4 BS8445 <br> (ZB4 BZ105 <br> + |
| :--- | :--- | :--- | :--- |

Circular legends

| Diameter | Marking, <br> on yellow background | Reference | Weight |
| :--- | :--- | :--- | ---: |
| $\mathbf{m m}$ | EMERGENCY STOP | ZBY 9330 | $\mathbf{0 . 0 0 4}$ |
|  | ARRET D'URGENCE | ZBY 9130 | 0.004 |
|  | NOT-AUS | ZBY 9230 | 0.004 |
| $\mathbf{9 0}$ | EMERGENCY STOP | ZBY 8330 | 0.008 |
|  | ARRET D'URGENCE | ZBY 8130 | 0.008 |
|  | NOT-AUS | ZBY 8230 | 0.008 |


| Characteristics: | Dimensions: |
| :--- | :--- |
| page $4 / 34$ | page $4 / 37$ |

## Safety dialogue solutions

Harmony ${ }^{\circledR}$ XB4, metal
Emergency stop mushroom head pushbuttons
$\varnothing 22$ trigger action
Chromium plated metal bezel


ZB4 BZ102


ZB4 BT84



| Trigger action <br> Turn to release <br> (2) | 30 | Red | ZB4 BS834 | 0.068 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |


|  | Trigger action <br> Key release ( $\mathrm{n}^{\circ} 455$ ) <br> (2) | 30 | Red | ZB4 BS934 |  | 0.094 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 40 | Red | ZB4 BS944 | (1) | 0.098 |
|  |  | 60 | Red | ZB4 BS964 |  | 0.118 |

(1) Other key numbers:

Key $n^{\circ} 421 E$ : add the suffix 12 to the reference.
Key $n^{\circ}$ 458A: add the suffix 10 to the reference.
Key $n^{\circ}$ 520E: add the suffix 14 to the reference.
Key $n^{\circ}$ 3131A: add the suffix 20 to the reference.
Example: the reference for a $\varnothing 40$ red mushroom head for a trigger action latching pushbutton with release by key $n^{\circ}$ 421E becomes: ZB4 BS94412.
(2) Maximum number of contact blocks fitted to associated body: 4.

| Characteristics: | Dimensions: |
| :--- | :--- |
| page 4/34 | page4/37 |

## Safety dialogue solutions

Harmony ${ }^{\text {® }}$ XB4, metal
Emergency stop mushroom head pushbuttons
$\varnothing 22$ trigger action
Chromium plated metal bezel

Emergency stop mushroom head pushbuttons (complete units)


XB4 BS8445


XB4 BS9445


Common face view

e: support panel thickness 1 to 6 mm .
Heads for latching mushroom head pushbuttons
Push-pull
ZB4 BT84



Bodies for pushbuttons, screw clamp terminal connections ZB4 BZ10•, BZ141


ZB4 BS944, BS964


Panel cut-out and mounting centres


## Safety dialogue solutions

## Harmony ${ }^{\circledR}$ XB5, plastic

Emergency stop mushroom head pushbuttons
$\varnothing 22$ trigger action
Plastic bezel


## Safety dialogue solutions

## Harmony ${ }^{\circledR}$ XB5, plastic

Emergency stop mushroom head pushbuttons
$\varnothing 22$ trigger action
Plastic bezel


XB5 AS8445



| Trigger action | 1 | 1 | XB5 AS8445 <br> (ZB5 AZ105 <br> Turn to release <br> $\varnothing 40$ | 0.072 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Legend holder, $\mathbf{3 0 \times 4 0} \mathbf{~ m m}$ | Reference | Weight <br> $\mathbf{k g}$ |  |
| :--- | :--- | :--- | ---: |
| Description | White marking <br> on red background | ZBY 2330 | 0.002 |
| With $\mathbf{8 \times 2 7} \mathbf{~ m m}$ <br> legend | EMERGENCY STOP | ZBY 2130 | 0.002 |
|  | ARRET D'URGENCE | ZBY 2230 | 0.002 |

## Circular legends

| Diameter | Marking, <br> on yellow background | Reference | Weight |
| :--- | :--- | :--- | ---: |
| $\mathbf{m m}$ | EMERGENCY STOP | ZBY 9330 | $\mathbf{k g}$ |
|  | ARRET D'URGENCE | ZBY 9130 | 0.004 |
|  | NOT-AUS | ZBY 9230 | 0.004 |
| $\mathbf{9 0}$ | EMERGENCY STOP | ZBY 8330 | 0.008 |
|  | ARRET D'URGENCE | ZBY 8130 | 0.008 |
|  | NOT-AUS | ZBY 8230 | 0.008 |
|  |  |  |  |

## Safety dialogue solutions

## Harmony ${ }^{\circledR}$ XB5, plastic

Emergency stop mushroom head pushbuttons<br>$\varnothing 22$ trigger action<br>Plastic bezel



4


ZB5 AT84



| Trigger action <br> Turn to release <br> (2) | 30 | Red | ZB5 AS834 | 0.042 |
| :--- | :--- | :--- | :--- | :--- |
|  | 40 | Red | ZB5 AS844 | 0.046 |


|  | Trigger action <br> Key release $\left(n^{\circ} 455\right)$ <br> (2) | 30 | Red | ZB5 AS934 | 0.068 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 40 | Red | ZB5 AS944 | (1) |


| Trigger action | Tey <br> Key release $\left(n^{\circ} 4 A 185\right)$ <br> (2) | 40 | Red | ZB5 AS944D | 0.071 |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Safety dialogue solutions

Harmony ${ }^{\circledR}$ XB5, plastic
Emergency stop mushroom head pushbuttons
$\varnothing 22$ trigger action
Plastic bezel

e: support panel thickness 1 to 6 mm .
Heads for latching mushroom head pushbuttons
Push-Pull
ZB5 AT84


ZB5 AS944D


Bodies for pushbuttons, screw clamp terminal connections ZB5 AZ10•, AZ141


Panel cut-out and mounting centres


## Safety dialogue solutions <br> XAL control stations for $\varnothing 22$ trigger action Emergency stop mushroom head pushbuttons

| Environment |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Protective treatment Ambient air temperature around the device | Standard version |  | "TH" |  |  |
|  | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ |  |  |
|  | For operation | ${ }^{\circ} \mathrm{C}$ | $-25 \ldots+70$ unless otherwise stated |  |  |
| Electric shock protection | Conforming to IEC/EN 61140 |  | Class II |  |  |
| Degree of protection | Conforming to IEC 60529 |  | IP 66 |  |  |
|  | Conforming to NEMA |  | NEMA 4X and 13 |  |  |
| Mechanical shock protection | Conforming to EN 50102 |  | IK 03 |  |  |
| Conformity to standards |  |  | IEC/EN 60947-1, IEC/EN 60947-5-1, IEC/EN 60947-5-4, IEC/EN 60947-5-5, EN/ISO 13850:2006 and IEC/EN 60204-1 (trigger action and mechanical latching) JIS C 4520 UL 508, CSA C22-2 n ${ }^{\circ} 14$ |  |  |
| Product certifications | UL Listed, CSA |  | Standard contact with screw clamp terminals: A600; Q600 |  |  |
| Terminal referencing |  |  | Conforming to EN 50005 and EN 50013 |  |  |
| Material and colours |  |  | Polycarbonate, yellow RAL 1012 lid and light grey RAL 7035 base |  |  |
| Cable entries |  |  | Knock-out entries for ${ }^{\circ} 13$ (CM12, Pg 13.5) cable gland and tapped ISO 20 |  |  |
| Contact function characteristics |  |  |  |  |  |
| Mechanical characteristics |  |  |  |  |  |
| Contact operation | $\mathrm{N} / \mathrm{C}$ or $\mathrm{N} / \mathrm{O}$ |  | Slow break |  |  |
| Positive operation | Conforming to IEC/EN 60947-5-1 Appendix K |  | All functions incorporating a N/C contact are positive opening operation |  |  |
| Operating force |  | N | Emergency stop with N/C + N/O: <br> - Push-Pull: trigger action: 50 <br> - Turn to release (with and without key unlocking): trigger action: 44 |  |  |
|  |  | N | Additional contact (extra to change state) <br> - N/C contact: 2 <br> - N/O contact: 2.3 |  |  |
| Mechanical durability (in millions of operating cycles) |  |  | 0.1 |  |  |
| Vibration resistance | Conforming to IEC 60068-2-6 |  | Frequency: $2 \ldots . .500 \mathrm{~Hz}: 5 \mathrm{gn}$ |  |  |
| Shock resistance | Conforming to IEC 60068-2-27 |  | Half sine wave acceleration 11 ms : 10 gn |  |  |
| Electrical characteristics |  |  |  |  |  |
| Cabling capacity | Conforming to IEC 60947-1 | mm ${ }^{2}$ | Screw clamp terminals; cross head screws (Pozidriv type) <br> Min.: $1 \times 0.22$ without cable end ( $1 \times 0.34$ for linking) <br> Max.: $2 \times 1.5$ with cable end |  |  |
| Contact material | Silver alloy (Ag/Ni) |  | Standard block with screw clamp terminals |  |  |
| Short-circuit protection | Conforming to IEC/EN 60947-5-1 | A | Standard block with screw clamp terminals: 10 ( g G cartridge fuse conforming to IEC 269-1) |  |  |
| Rated insulation voltage | Conforming to IEC/EN 60947-1 | V | Standard block with screw clamp terminals: Ui=600, degree of pollution 3 |  |  |
| Rated impulse withstand voltage | Conforming to IEC/EN 60947-1 | kV | Standard block with screw clamp terminals: Uimp = 6 |  |  |
| Rated operational characteristics Conforming to IEC/EN 60947-5-1 | a.c. supply: utilisation category AC-15 |  | A600: $\mathrm{Ue}=600 \mathrm{~V}$ and $\mathrm{le}=1.2 \mathrm{~A}$ or $\mathrm{Ue}=240 \mathrm{~V}$ and $\mathrm{le}=3 \mathrm{~A}$ or $\mathrm{Ue}=120 \mathrm{~V}$ and $\mathrm{le}=6 \mathrm{~A}$ |  |  |
|  | d.c. supply: utilisation category DC-13 |  | Q600: $\mathrm{Ue}=600 \mathrm{~V}$ and $\mathrm{le}=0.1 \mathrm{~A}$ or $\mathrm{Ue}=250 \mathrm{~V}$ and $\mathrm{le}=0.27 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$ and $\mathrm{le}=0.55 \mathrm{~A}$ |  |  |
| Electrical durability <br> Conforming to <br> IEC/EN 60947-5-1 Appendix C <br> Operating rate: 3600 operating cycles/hour Load factor: 0.5 | a.c. supply for 1 million operating cycles utilisation category AC-15 | V | Standard block with screw clamp terminals: |  |  |
|  |  |  | 24 | 120 | 230 |
|  |  | A | 4 | 3 | 2 |
|  | d.c. supply for 1 million operating cycles utilisation category DC-13 | V | Standard block with screw clamp terminals: |  |  |
|  |  |  | 24 | 110 |  |
|  |  | A | 0.4 | 0.15 |  |
| Electrical reliability | Failure rate (according to IEC/ <br> EN 60947-5-4) |  | Standard block in clean environment: <br> - At 17 V and $5 \mathrm{~mA}, \lambda<10^{-8}$ <br> - At 5 V and $1 \mathrm{~mA}, \lambda<10^{-6}$ |  |  |

## Safety dialogue solutions

XAL control stations for $\varnothing 22$ trigger action Emergency stop mushroom head pushbuttons
Complete stations (screw clamp terminal connections)


| Emergency stop function <br> (yellow lid "RAL 1012", light grey base "RAL 7035") | Type of contact | Reference | Weight |  |
| :--- | :--- | :--- | :--- | :--- |
| Description | Type |  |  |  |



|  | 1 | 2 | XAL K178G | 0.194 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| ```1mushroom head Trigger action pushbutton Ø 40 mm, red Key release ( }\mp@subsup{n}{}{\circ}455\mathrm{ )``` | - | 2 | XAL K188F | 0.188 |
|  | 1 | 1 | XAL K188E | 0.188 |
|  | 1 | 2 | XAL K188G | 0.188 |

Safety dialogue solutions
XAL control stations for $\varnothing 22$ trigger action Emergency stop mushroom head pushbuttons Separate components for user assembly


ZB5 AS844


ZBY 2130

| Empty enclosures | Number of <br> cut-outs | Reference |
| :--- | :--- | :--- | | Weight |
| ---: |
| Description |



| Standard contact blocks <br> (2) | N/O contact | 5 | ZEN L1111 | 0.015 |
| :--- | :--- | :--- | :--- | :--- |
|  | N/C contact | 5 | ZEN L1121 | 0.015 |



Legend holder

| Description | White marking on red <br> background | Reference | Weight <br> kg |
| :--- | :--- | :--- | ---: |
| Legend holder <br> $\mathbf{3 0 \times 4 0} \mathbf{~ m m}$ <br> with <br> $8 \times 27 \mathrm{~mm}$ legend | EMERGENCY STOP | ZBY 2130 | 0.002 |
|  | ARRET D'URGENCE | ZBY 2113 | 0.002 |
|  | NOT-AUS | ZBY 2230 | 0.002 |

(1) Volt-free commoning/earth terminal included.
(2) A maximum of 3 electrical blocks can be fitted per associated head.
(3) Other key numbers:

Key $n^{\circ}$ 421E: add the suffix 12 to the reference.
Key $n^{\circ}$ 458A: add the suffix 10 to the reference.
Key $n^{\circ} 520 \mathrm{E}$ : add the suffix 14 to the reference.
Key $n^{\circ}$ 3131A: add the suffix 20 to the reference.
Example: the reference for a $\varnothing 40$ red mushroom head for a trigger action latching pushbutton with release by key $n^{\circ}$ 421E becomes: ZB5 AS94412.

| Characteristics: | Dimensions: |
| :--- | :--- |
| page $4 / 42$ | page $4 / 45$ |

Single-way control stations XAL K


Safety dialogue solutions
Beacons and indicator banks $\varnothing 70 \mathrm{~mm}$ Harmony type XVB Universal


## Safety dialogue solutions

## Beacons and indicator banks $\varnothing 70 \mathrm{~mm}$ Harmony type XVB Universal

Beacons and indicator banks type XVB are visual or audible signalling units used for indicating, throughout $360^{\circ}$ and at a distance, the various states or operation sequences of a machine or installation. Examples: start, stop machine, no material, call technical staff, fault signalling, etc.

## Complete product XVB L

Ready assembled 1 with a single illuminated signalling unit:
$\square$ steady light (with incandescent bulb or LED),
$\square$ flashing light (with incandescent bulb or LED),

- or "flash" (with discharge tube).

The XVB L beacon comprises:

- A base unit with a removable terminal block and bottom or side cable entry.
- One coloured illuminated unit (green, red, orange, blue, clear or yellow).

Indicator bank

## Accessories

## Customer assembled product XVB C

Variable composition assembly of 1 to 5 illuminated or audible units which are supplied as separate items (assembly by user). Maximum configuration: 5 units or 4 units +1 "flash" unit.

The indicator bank XVB C comprises:

- A base unit with a removable terminal block and bottom or side cable entry 2.
- 1 to 5 coloured illuminated units (green, red, orange, blue, clear or yellow):
- with integral LED 3 ,
$\square$ with integral LED and diffuser 4 (1),
$\square$ for incandescent bulbs or base mounted LEDs 5 .
- 1 or 2 audible units 6 .
- A maximum of 1 "flash" discharge unit ( 5 Joule or 10 Joule) 7 , for mounting on top of the bank.
- A top cover 8 (except when using a "flash" discharge tube).
- The illuminated or audible units stack vertically and are easily locked and unlocked using an integral clamping ring. Electrical connections between each unit are made automatically.
- Alight diffuser, pre-fitted in illuminated units XVB C2B•D with a base mounted LED, distributes the light evenly over the lens surface. When using the indicator banks in bright ambient light conditions, remove the diffuser to improve contrast. - Connection on the AS-Interface cabling system is possible by ordering a dedicated base unit. Please refer to our "Industrial communication in machines and installations" catalogue.


## For beacons XVB L and indicator banks XVB C

- Fixing base comprising a support tube glued into a plastic fixing plate, for a height beneath the base unit of 80,380 or 780 mm 9 .
- Fixing plate for mounting on vertical support 10 .
- Support tube concealment cover, height 100,400 or 800 mm 11.
- Coloured markers 12 (2).
- Legend holder with legend 13 (2).
- Legends that attach to locking ring of each signalling unit for identification 14.
- Adaptor and 13P cable gland 15.
- Base mounted LED 16 or incandescent bulb 17.
- Diffuser 18 (1).


## Installation

## Mounting

■ Base unit fixed directly onto panel using 2 screws.

- Fixed using a fixing base comprising an aluminium support tube glued into a plastic fixing plate.


## Cabling

By means of removable terminal block incorporated in base unit (simplified wiring). The screw and captive cable clamp terminals are protected to prevent any accidental contact with live parts.
(1) The diffuser can only be used with LED illuminated units. Not compatible with units fitted with an incandescent bulb or "flash" discharge tube.
(2) These enable the position of the various units (illuminated or audible) to be identified in the event of dismantling the bank.

| Characteristics: | References: | Dimensions: |
| :--- | :--- | :--- |
| page $4 / 48$ | page 4/50 | page 4/58 |

Safety dialogue solutions
Beacons and indicator banks $\varnothing 70 \mathrm{~mm}$ Harmony type XVB Universal

| Environment characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Product certifications | Standard version |  | CSA C22-2 $\mathrm{n}^{\circ} 14, \mathrm{UL} 508, \mathrm{CCC}, \mathrm{GOST}$ |
| Conformity to standards |  |  | EN/IEC 60947-5-1 |
| Protective treatment | Standard version |  | "TC" |
| Ambient air temperature | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ |
|  | For operation (1) | ${ }^{\circ} \mathrm{C}$ | Illuminated units with steady light signalling: <br> $-25 \ldots+70$, with 7 W incandescent bulb <br> $-25 \ldots+50$, with LED |
|  |  | ${ }^{\circ} \mathrm{C}$ | Illuminated units with flashing light signalling: <br> $-25 \ldots+50$, with 7 W incandescent bulb <br> $-25 \ldots+50$, with LED |
|  |  | ${ }^{\circ} \mathrm{C}$ | Illuminated units with "flash" discharge tube: $-25 \ldots+50$ |
|  |  | ${ }^{\circ} \mathrm{C}$ | Audible units: <br> $-25 \ldots+50$, with buzzer |
| Electric shock protection Conforming to IEC 61140 | Mounted on support tube |  | Class I |
|  | Mounted on base unit |  | Class II |
| Degree of protection | Conforming to IEC 60529 |  | IP 65 (mounted on fixing base XVB Z0•) <br> IP 66 (mounted directly on base unit) |
|  | Conforming to UL 508 |  | Type 4X NEMA "Indoor" |
| Material | Illuminated units |  | Polycarbonate |
|  | Base unit and cover |  | Glass-reinforced polyamide and polycarbonate |
|  | Support tube |  | Painted aluminium |
|  | Fixing plate for use on vertical support |  | Zamak |
|  | Fixing plate for use on horizontal support |  | Polyamide 66 |
|  | Support tube concealment cover |  | ABS |

(1) Warning: illuminated units with incandescent bulbs must not be combined with LED
illuminated units, due to the risk of overheating.
Also, when different units (e.g. steady, flashing...) are combined, the maximum temperature is limited to that of the weaker unit.

## Characteristics (continued)

## Safety dialogue solutions

Beacons and indicator banks $\varnothing 70 \mathrm{~mm}$ Harmony type XVB Universal

| Electrical characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Rated insulation voltage (Ui) | Conforming to IEC 60947-1 | V | 250 |
| Voltage limits | Conforming to IEC 60947-5-1 | V | 0.85 to 1.10 Un (Un: nominal voltage) |
| Consumption | LED units | mA | Steady light signalling: $\begin{aligned} & \sim 24 \mathrm{~V}:<47 \\ & \sim 120 \mathrm{~V}:<17 \\ & \sim 230 \mathrm{~V}:<17 \end{aligned}$ |
|  |  | mA | Flashing light signalling: $\begin{aligned} & \approx 24 \mathrm{~V}:<47 \\ & \sim 120 \mathrm{~V}:<17 \\ & \sim 230 \mathrm{~V}:<17 \end{aligned}$ |
|  | Units with discharge tube (1) | mA | Flashing light signalling: <br> ~ 24 V: 5 J unit: < 550; 10 J unit: < 1300 <br> -- 24 V : 5 J unit: < 350; 10 J unit: < 850 <br> ~ 48 V : 10 J unit: < 650 <br> -- 48 V : 10 J unit: < 400 <br> ~ 120 V: 5 J unit: < 140; 10 J unit: < 290 <br> ~ 230 V: 5 J unit: < 105; 10 J unit: < 280 |
|  | Audible units | mA | $\begin{aligned} & \approx 12 \ldots 48 \mathrm{~V}:<15 \\ & \sim 120 \ldots 230 \mathrm{~V}:<25 \end{aligned}$ |
| Rated impulse withstand voltage | Conforming to IEC 60947-1 | kV | U imp $=4$ |
| Light source | Illuminated units with steady or flashing light signalling |  | LEDs: degree of pollution 2 <br> Bulbs with BA 15d base fitting, maximum power 7 W |
| Illuminating power | Units with discharge tube | cds | 13 (integral high intensity tube) with clear lens unit: 5 J tube 26 (integral high intensity tube) with clear lens unit: 10 J tube |
| Audible unit | Continuous or intermittent tone | dB | 90 at 1 m |
|  | Fundamental frequency | kHz | 2.8 |
| Terminal referencing |  |  | 1 terminal referenced " $C$ " common to all 5 units |
|  |  |  | 1 or 5 terminals referenced 1 to 5 , depending on number of units |
| Connection | Maximum clamping capacity on protected, ready-to-tighten, screw and captive cable clamp terminals | mm ${ }^{2}$ | $1 \times 1.5$ with cable end |
| Frequency of illuminated units | Illuminated units with flashing light signalling | Hz | 1 |
|  | Illuminated units with discharge tube | Hz | 1 |
| (1) Warning: illuminated units with a "flash" discharge tube are not suitable for steady light signalling due to the heat generated. |  |  |  |

## Safety dialogue solutions

Illuminated beacons $\varnothing 70 \mathrm{~mm}$
Harmony type XVB L Universal
Complete beacons for incandescent bulbs or LEDs (BA 15d base fitting)


| Beacons with steady light signalling |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Light source, to be ordered separately (1) | Colour | Reference | Weight kg |
| Complete unit comprising: | Incandescent bulb 7 W max. | Green | XVB L33 | 0.260 |
| - 1 illuminated unit | 250 V max. | Red | XVB L34 | 0.260 |
| or tube fixing) |  | Orange | XVB L35 | 0.260 |
|  |  | Blue | XVB L36 | 0.260 |
|  |  | Clear | XVB L37 | 0.260 |
|  |  | Yellow | XVB L38 | 0.260 |



XVB L4B•
Beacons with integral flashing light signalling

| Description | Light source, to be ordered separately (1) | Colour | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: |
| Complete unit comprising: <br> - 1 illuminated unit - 1 base unit (direct or tube fixing) | $\begin{aligned} & \text { Incandescent bulb } \\ & 7 \mathrm{~W} \text { max. } \\ & \sim 24 \mathrm{~V} . \\ & =-24 \ldots 48 \mathrm{~V} \end{aligned}$ | Green | XVB L4B3 | 0.280 |
|  |  | Red | XVB L4B4 | 0.280 |
|  |  | Orange | XVB L4B5 | 0.280 |
|  |  | Blue | XVB L4B6 | 0.280 |
|  |  | Clear | XVB L4B7 | 0.280 |
|  |  | Yellow | XVB L4B8 | 0.280 |
|  | Incandescent bulb 7 W max. <br> ~ 48 ... 230 V | Green | XVB L4M3 | 0.280 |
|  |  | Red | XVB L4M4 | 0.280 |
|  |  | Orange | XVB L4M5 | 0.280 |
|  |  | Blue | XVB L4M6 | 0.280 |
|  |  | Clear | XVB L4M7 | 0.280 |
|  |  | Yellow | XVB L4M8 | 0.280 |

(1) Incandescent bulbs and LEDs, see page 4/57.

## Safety dialogue solutions

## Illuminated beacons $\varnothing 70 \mathrm{~mm}$

Harmony type XVB L Universal
Complete beacons with LED light source


XVB LOB•


XVB L1B•

| Beacons with steady light signalling |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Light source | Colour | Reference | Weight kg |
| Complete unit comprising: <br> - 1 illuminated unit <br> - 1 base unit (direct or tube fixing) | LED, included $\approx 24 \mathrm{~V}$ | Green | XVB LOB3 | 0.270 |
|  |  | Red | XVB LOB4 | 0.270 |
|  |  | Orange | XVB LOB5 | 0.270 |
|  |  | Blue | XVB LOB6 | 0.270 |
|  |  | Clear | XVB LOB7 | 0.270 |
|  |  | Yellow | XVB LOB8 | 0.270 |
|  | LED, included ~ 120 V | Green | XVB L0G3 | 0.270 |
|  |  | Red | XVB LOG4 | 0.270 |
|  |  | Orange | XVB LOG5 | 0.270 |
|  |  | Blue | XVB LOG6 | 0.270 |
|  |  | Clear | XVB L0G7 | 0.270 |
|  |  | Yellow | XVB L0G8 | 0.270 |
|  | $\begin{aligned} & \text { LED, included } \\ & \sim 230 \mathrm{~V} \end{aligned}$ | Green | XVB LOM3 | 0.270 |
|  |  | Red | XVB LOM4 | 0.270 |
|  |  | Orange | XVB LOM5 | 0.270 |
|  |  | Blue | XVB LOM6 | 0.270 |
|  |  | Clear | XVB LOM7 | 0.270 |
|  |  | Yellow | XVB LOM8 | 0.270 |


| Beacons with integral flashing light signalling |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Light source | Colour | Reference | Weight kg |
| Complete unit comprising: <br> - 1 illuminated unit - 1 base unit (direct or tube fixing) | LED, included $\approx 24 \mathrm{~V}$ | Green | XVB L1B3 | 0.280 |
|  |  | Red | XVB L1B4 | 0.280 |
|  |  | Orange | XVB L1B5 | 0.280 |
|  |  | Blue | XVB L1B6 | 0.280 |
|  |  | Clear | XVB L1B7 | 0.280 |
|  |  | Yellow | XVB L1B8 | 0.280 |
|  | LED, included $\sim 120 \mathrm{~V}$ | Green | XVB L1G3 | 0.280 |
|  |  | Red | XVB L1G4 | 0.280 |
|  |  | Orange | XVB L1G5 | 0.280 |
|  |  | Blue | XVB L1G6 | 0.280 |
|  |  | Clear | XVB L1G7 | 0.280 |
|  |  | Yellow | XVB L1G8 | 0.280 |
|  | $\begin{aligned} & \text { LED, included } \\ & \sim 230 \mathrm{~V} \end{aligned}$ | Green | XVB L1M3 | 0.280 |
|  |  | Red | XVB L1M4 | 0.280 |
|  |  | Orange | XVB L1M5 | 0.280 |
|  |  | Blue | XVB L1M6 | 0.280 |
|  |  | Clear | XVB L1M7 | 0.280 |
|  |  | Yellow | XVB L1M8 | 0.280 |

## Safety dialogue solutions

Illuminated beacons $\varnothing 70 \mathrm{~mm}$
Harmony type XVB L Universal
Complete beacons with "flash" discharge tube


XVB L6B•


XVBL8B•

| Description | Light source | Colour | Reference | $\begin{array}{r} \text { Weight } \\ \mathrm{kg} \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| Complete unit comprising: <br> - 1 illuminated unit <br> - 1 base unit (direct or tube fixing) | Integral "flash" discharge tube $\sim 24 \mathrm{~V}$ | Green | XVB L6B3 | 0.440 |
|  |  | Red | XVB L6B4 | 0.440 |
|  |  | Orange | XVB L6B5 | 0.440 |
|  |  | Blue | XVB L6B6 | 0.440 |
|  |  | Clear | XVB L6B7 | 0.440 |
|  |  | Yellow | XVB L6B8 | 0.440 |
|  | Integral "flash" discharge tube ~ 120 V | Green | XVB L6G3 | 0.425 |
|  |  | Red | XVB L6G4 | 0.425 |
|  |  | Orange | XVB L6G5 | 0.425 |
|  |  | Blue | XVB L6G6 | 0.425 |
|  |  | Clear | XVB L6G7 | 0.425 |
|  |  | Yellow | XVB L6G8 | 0.425 |
|  | $\begin{aligned} & \text { Integral "flash" } \\ & \text { discharge tube } \\ & \sim 230 \mathrm{~V} \end{aligned}$ | Green | XVB L6M3 | 0.435 |
|  |  | Red | XVB L6M4 | 0.435 |
|  |  | Orange | XVB L6M5 | 0.435 |
|  |  | Blue | XVB L6M6 | 0.435 |
|  |  | Clear | XVB L6M7 | 0.435 |
|  |  | Yellow | XVB L6M8 | 0.435 |


| Beacons with 10 Joule "flash" discharge tube |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Light source | Colour | Reference | Weight kg |
| Complete unit comprising: <br> - 1 illuminated unit <br> - 1 base unit (direct or tube fixing) | Integral "flash" discharge tube $\sim 24 \mathrm{~V}$ | Green | XVB L8B3 | 0.450 |
|  |  | Red | XVB L8B4 | 0.450 |
|  |  | Orange | XVB L8B5 | 0.450 |
|  |  | Blue | XVB L8B6 | 0.450 |
|  |  | Clear | XVB L8B7 | 0.450 |
|  |  | Yellow | XVB L8B8 | 0.450 |
|  | Integral "flash" discharge tube ~ 120 V | Green | XVB L8G3 | 0.460 |
|  |  | Red | XVB L8G4 | 0.460 |
|  |  | Orange | XVB L8G5 | 0.460 |
|  |  | Blue | XVB L8G6 | 0.460 |
|  |  | Clear | XVB L8G7 | 0.460 |
|  |  | Yellow | XVB L8G8 | 0.460 |
|  | Integral "flash" discharge tube $\sim 230 \mathrm{~V}$ | Green | XVB L8M3 | 0.460 |
|  |  | Red | XVB L8M4 | 0.460 |
|  |  | Orange | XVB L8M5 | 0.460 |
|  |  | Blue | XVB L8M6 | 0.460 |
|  |  | Clear | XVB L8M7 | 0.460 |
|  |  | Yellow | XVB L8M8 | 0.460 |

## Safety dialogue solutions

## Indicator banks Ø 70 mm

Harmony type XVB C Universal (customer assembly, up to 5 units) Illuminated units for incandescent bulbs or LEDs (BA 15d base fitting)


XVB C3•


XVB C4••

| Illuminated units with steady light signalling |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Light source, to be ordered separately (1) | Colour | Reference | Weight kg |
| Illuminated units | Incandescent bulb 7 W max. 250 V max. or LED | Green | XVB C33 | 0.140 |
|  |  | Red | XVB C34 | 0.140 |
|  |  | Orange | XVB C35 | 0.140 |
|  |  | Blue | XVB C36 | 0.140 |
|  |  | Clear | XVB C37 | 0.140 |
|  |  | Yellow | XVB C38 | 0.140 |

Illuminated units with integral flashing light signalling

| Description | Light source, to be ordered separately (1) | Colour | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: |
| Illuminated units | Incandescent bulb <br> 7 W max. <br> ~ 24 V <br> -- $24 . . .48 \mathrm{~V}$ <br> or LED | Green | XVB C4B3 | 0.160 |
|  |  | Red | XVB C4B4 | 0.160 |
|  |  | Orange | XVB C4B5 | 0.160 |
|  |  | Blue | XVB C4B6 | 0.160 |
|  |  | Clear | XVB C4B7 | 0.160 |
|  |  | Yellow | XVB C4B8 | 0.160 |
|  | Incandescent bulb 7 W max. <br> ~ 48 ... 230 V <br> or LED | Green | XVB C4M3 | 0.160 |
|  |  | Red | XVB C4M4 | 0.160 |
|  |  | Orange | XVB C4M5 | 0.160 |
|  |  | Blue | XVB C4M6 | 0.160 |
|  |  | Clear | XVB C4M7 | 0.160 |
|  |  | Yellow | XVB C4M8 | 0.160 |

(1) Incandescent bulbs and LEDs, see page 4/57.

## References

For use with base unit XVB C•*: see page 4/56

## Safety dialogue solutions

## Indicator banks $\varnothing 70$ mm

Harmony type XVB C Universal (customer assembly, up to 5 units) Illuminated units with integral LED

|  | Illuminated units with steady light signalling |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description | Voltage | Colour | Reference | Weight kg |
|  | Illuminated units | $\sim 24 \mathrm{~V}$ | Green | XVB C2B3 (1) | 0.150 |
|  | with integral LED |  | Red | XVB C2B4 (1) | 0.150 |
|  |  |  | Orange | XVB C2B5 (1) | 0.150 |
|  | dected |  | Blue | XVB C2B6 (1) | 0.150 |
|  |  |  | Clear | XVB C2B7 (1) | 0.150 |
|  |  |  | Yellow | XVB C2B8 (1) | 0.150 |
|  |  | $\sim 120 \mathrm{~V}$ | Green | XVB C2G3 | 0.150 |
|  |  |  | Red | XVB C2G4 | 0.150 |
| XVB C2•• |  |  | Orange | XVB C2G5 | 0.150 |
|  |  |  | Blue | XVB C2G6 | 0.150 |
|  |  |  | Clear | XVB C2G7 | 0.150 |
|  |  |  | Yellow | XVB C2G8 | 0.150 |
|  |  | $\sim 230 \mathrm{~V}$ | Green | XVB C2M3 | 0.150 |
|  |  |  | Red | XVB C2M4 | 0.150 |
|  |  |  | Orange | XVB C2M5 | 0.150 |
|  |  |  | Blue | XVB C2M6 | 0.150 |
|  |  |  | Clear | XVB C2M7 | 0.150 |



XVB C5••

| Illuminated units with integral flashing light signalling |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Voltage | Colour | Reference | Weight kg |
| Illuminated units with integral LED | $\sim 24 \mathrm{~V}$ | Green | XVB C5B3 | 0.170 |
|  |  | Red | XVB C5B4 | 0.170 |
|  |  | Orange | XVB C5B5 | 0.170 |
|  |  | Blue | XVB C5B6 | 0.170 |
|  |  | Clear | XVB C5B7 | 0.170 |
|  |  | Yellow | XVB C5B8 | 0.170 |
|  | $\sim 120 \mathrm{~V}$ | Green | XVB C5G3 | 0.170 |
|  |  | Red | XVB C5G4 | 0.170 |
|  |  | Orange | XVB C5G5 | 0.170 |
|  |  | Blue | XVB C5G6 | 0.170 |
|  |  | Clear | XVB C5G7 | 0.170 |
|  |  | Yellow | XVB C5G8 | 0.170 |
|  | $\sim 230 \mathrm{~V}$ | Green | XVB C5M3 | 0.170 |
|  |  | Red | XVB C5M4 | 0.170 |
|  |  | Orange | XVB C5M5 | 0.170 |
|  |  | Blue | XVB C5M6 | 0.170 |
|  |  | Clear | XVB C5M7 | 0.170 |
|  |  | Yellow | XVB C5M8 | 0.170 |

(1) To order an illuminated unit with integral LED pre-fitted with light diffuserXVB Z18, add the letter " $D$ " to the end of the reference. Example: XVB C2B3D.

## Safety dialogue solutions

## Indicator banks Ø 70 mm

Harmony type XVB C Universal (customer assembly, up to 5 units) Illuminated units with integral "flash" discharge tube


XVB C6••


XVB C8••

| Illuminated units with 5 Joule "flash" discharge tube |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Light source | Colour | Reference | Weight kg |
| Illuminated units | Integral "flash" discharge tube $\approx 24 \mathrm{~V}$ | Green | XVB C6B3 | 0.295 |
|  |  | Red | XVB C6B4 | 0.295 |
|  |  | Orange | XVB C6B5 | 0.295 |
|  |  | Blue | XVB C6B6 | 0.295 |
|  |  | Clear | XVB C6B7 | 0.295 |
|  |  | Yellow | XVB C6B8 | 0.295 |
|  | Integral "flash" discharge tube ~ 120 V | Green | XVB C6G3 | 0.280 |
|  |  | Red | XVB C6G4 | 0.280 |
|  |  | Orange | XVB C6G5 | 0.280 |
|  |  | Blue | XVB C6G6 | 0.280 |
|  |  | Clear | XVB C6G7 | 0.280 |
|  |  | Yellow | XVB C6G8 | 0.280 |
|  | Integral "flash" discharge tube $\sim 230 \mathrm{~V}$ | Green | XVB C6M3 | 0.290 |
|  |  | Red | XVB C6M4 | 0.290 |
|  |  | Orange | XVB C6M5 | 0.290 |
|  |  | Blue | XVB C6M6 | 0.290 |
|  |  | Clear | XVB C6M7 | 0.290 |
|  |  | Yellow | XVB C6M8 | 0.290 |


| Illuminated units with 10 Joule "flash" discharge tube |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Light source | Colour | Reference | Weight kg |
| Illuminated units | Integral "flash" discharge tube$\approx 24 \mathrm{~V}$ | Green | XVB C8B3 | 0.305 |
|  |  | Red | XVB C8B4 | 0.305 |
|  |  | Orange | XVB C8B5 | 0.305 |
|  |  | Blue | XVB C8B6 | 0.305 |
|  |  | Clear | XVB C8B7 | 0.305 |
|  |  | Yellow | XVB C8B8 | 0.305 |
|  | Integral "flash" discharge tube $\sim 48 \mathrm{~V}$ | Orange | XVB C8E5 | 0.315 |
|  | Integral "flash" discharge tube ~ 120 V | Green | XVB C8G3 | 0.315 |
|  |  | Red | XVB C8G4 | 0.315 |
|  |  | Orange | XVB C8G5 | 0.315 |
|  |  | Blue | XVB C8G6 | 0.315 |
|  |  | Clear | XVB C8G7 | 0.315 |
|  |  | Yellow | XVB C8G8 | 0.315 |
|  | Integral "flash" discharge tube $\sim 230 \mathrm{~V}$ | Green | XVB C8M3 | 0.315 |
|  |  | Red | XVB C8M4 | 0.315 |
|  |  | Orange | XVB C8M5 | 0.315 |
|  |  | Blue | XVB C8M6 | 0.315 |
|  |  | Clear | XVB C8M7 | 0.315 |
|  |  | Yellow | XVB C8M8 | 0.315 |

## Safety dialogue solutions

## Indicator banks $\varnothing 70 \mathrm{~mm}$

Harmony type XVB C Universal (customer assembly, up to 5 units) Audible units, base units, cover, accessories


| General: <br> page 4/46 | Characteristics: <br> page 4/48 | Dimensions: <br> page 4/58 |
| :--- | :--- | :--- |

## Safety dialogue solutions

## Beacons and indicator banks $\varnothing 70 \mathrm{~mm}$ <br> Harmony type XVB Universal <br> Accessories



Safety dialogue solutions
Beacons and indicator banks $\varnothing 70 \mathrm{~mm}$
Universal, Harmony type XVB

## Dimensions

Illuminated beacons XVB Leゃ๑
For BA 15d bulb or LED
With "flash" discharge tube unit


Indicator banks XVB Ceoe
Without "flash" discharge tube unit
$1+3=$ Base unit + cover XVB C21
2 Illuminated or audible signalling unit XVB C•e॰



| Number of illuminated or <br> audible signalling units <br> (no "flash") | b |
| :--- | :--- |
| 1 | 138 |
| 2 | 201 |
| 3 | 264 |
| 4 | 327 |
| 5 | 390 |

Panel cut-out for direct fixing
On base unit XVB C21, XVB C07, XVB C21A or XVB C21B



With "flash" discharge tube unit


1 Base unit XVB C07
2 Illuminated or audible signalling unit XVB C•••
3 "Flash" unit XVB Ceeゃ

| Number of illuminated or <br> audible signalling units <br> other than "flash" tube | b |
| :--- | :--- |
| 1 | 295 |
| 2 | 358 |
| 3 | 421 |
| 4 | 484 |

## Safety dialogue solutions

## Beacons and indicator banks $\varnothing 70 \mathrm{~mm}$ Universal, Harmony type XVB

## Dimensions

With fixing bases comprising XVB Z0• (aluminium support tube glued into black plastic fixing plate)


Horizontal support panel cut-out for mounting on fixing plate


With fixing plate XVB C12 for use on vertical support
Direct mounting on base unit
Mounting using fixing base XVB ZO• (aluminium support tube glued into black plastic fixing plate)

## Vertical support panel drillings for

 mounting fixing plate XVB C12

Fixing base comprising XVB ZO• (Ø 25 mm support tube 1 glued into plastic fixing plate 2) mounted on fixing plate XVB C12 for vertical support 3

| XVB | b |
| :--- | :--- |
| Z02/Z02A | 80 |
| Z03/Z03A | 380 |
| Z04/Z04A | 780 |

Z04/Z04A 780

Installation

Connections
XVB L
XVB C



## Adjustment of audible signal for buzzers type XVB C9•

By means of 4 microswitches located in the base of the buzzer:
$\square 2$ switches marked 1 and 2 for selecting continuous or intermittent mode (Hz).
$\square 2$ switches marked 3 and 4 for selecting the power ( dB ) of the audible signal.



General, characteristics, dimensions

## Safety dialogue solutions

Rotating mirror beacons, type XVR

## General

These rotating beacons are designed for long distance signalling applications.

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Conformity to standards |  |  | IEC/EN 60947-1, IEC/EN 60947-5-1, UL 508, CSA C22-2-14 |
| Protective treatment | Standard version |  | "TC" |
| Ambient air temperature | For storage | ${ }^{\circ} \mathrm{C}$ | -40... 70 |
|  | For operation | ${ }^{\circ} \mathrm{C}$ | -20... +50 |
| Electric shock protection | Conforming to IEC/EN 61140 and NF C 20-030 |  | Class I |
| Degree of protection | Conforming to IEC 60529 and NF C 20-010 |  | IP 65 |
|  | Conforming to UL 508 and CSA 22 |  | Type 4X Nema "INDOOR" |
| Material | Base unit |  | Glass-reinforced polyamide 6 |
|  | Domed lens unit |  | Polycarbonate |
| Rated insulation voltage (Ui) | Conforming to IEC/EN 60947-1 | V | 250 |
| Consumption | Halogen bulbs | mA | $\sim 24 \mathrm{~V}$ : $<3100$ |
|  | Incandescent bulbs | mA | $\sim 24 \mathrm{~V}:<1050$ |
|  |  |  | $\sim 120 \mathrm{~V}:<210$ |
|  |  |  | $\sim 230 \mathrm{~V}$ : <110 |
| Rated impulse withstand voltage | Conforming to IEC/EN 60947-1 | kV | U imp $=4$ |
| Light source | Halogen bulbs |  | Bulbs with H1 base fitting: maximum power 70 W |
|  | Incandescent bulbs |  | Bulbs with BA 15d base fitting: maximum power 25 W |
| Service life of motor |  | H | > 2000 |
| Mounting position |  |  | Horizontal |
| Flash frequency |  | Hz | 3 |
| Connection | Maximum clamping capacity | $\mathrm{mm}^{2}$ | $1 \times 1.5 \mathrm{~mm}^{2}$ |
| Cable entry |  |  | For ISO M20 1.5 cable gland (included) |
| Dimensions |  |  |  |



[^46]

XVR 1••••

| Rotating mirror beacons |  |  |  |  |
| :--- | :--- | :--- | :--- | ---: |
| Light source |  |  |  |  |
| Supply <br> voltage | Colour | Reference | Weight <br> kg |  |
| Halogen bulb <br> included <br> 70 W | $\sim 24 \mathrm{~V}$ | Green | XVR 1B93 | 1.165 |


| Accessories and spare parts |  |  |  |
| :--- | :--- | :--- | :--- |
| Description | Characteristics | Unit reference | Weight <br> kg |
| Domed lens unit | Green | XVR 0153 | 0.335 |
|  | Red | XVR 0154 | 0.335 |
|  | Orange | XVR 0155 | 0.335 |
|  | Ylue | XVR 0156 | 0.335 |
| Yellow | XVR 0158 | 0.335 |  |
| Protective grill for domed lens unit | - | XVR 016 |  |
| (1) | XVR 012 | - |  |
| Fixing plate for use on vertical support | - | XVR 013 | - |
| Fixing plate for support tube <br> (1/2 NPT) | - | DL1 BRBH | - |
| Halogen bulbs <br> H1 base fitting, 70 W | 24 V | DL1 BRB | 0.100 |
| Incandescent bulbs <br> BA 15d base fitting, 25 W <br> (sold in lots of 10) | 24 V | DL1 BRG | 0.100 |
|  | 120 V | DL1 BRM | 0.100 |

$\overline{(1)}$ This protective grill is only suitable for use with the XVR $1 \bullet \bullet$ rotating mirror beacon, without cable gland fitted.

General, characteristics

## Safety dialogue solutions <br> Sirens, type XVS

## General

These sirens are designed for long distance signalling applications.

| Characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Conformity to standards |  |  | IEC/EN 60947-1, IEC/EN 60947-5-1 |
| Protective treatment | Standard version |  | "TC" |
| Ambient air temperature | For storage | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ |
|  | For operation | ${ }^{\circ} \mathrm{C}$ | $-40 . . .+50$ |
| Electric shock protection | Conforming to IEC/EN 61140 and NF C 20-030 | kV | $\sim 120 \mathrm{~V}$ and $\sim 230 \mathrm{~V}$ : class II |
|  |  | kV | 二 24 V : class III |
| Degree of protection | Conforming to IEC 60529 and NF C 20-010 |  | IP 40 |
| Material | Body |  | Glass-reinforced polyamide 6 |
|  | Cone |  | Butadiene-styrene acrylic |
| Rated insulation voltage (Ui) | Conforming to IEC/EN 60947-1 | V | 250 |
| Consumption |  | mA | $\sim 24: 440$ |
|  |  | mA | ~ 120: 110 |
|  |  | mA | $\sim 230: 55$ |
| Frequency | 1-tone | Hz | $1000 \pm 10 \%$ |
|  | 2-tone | Hz | 700 and $800 \pm 15 \%$ |
| Rated impulse withstand voltage | Conforming to IEC/EN 60947-1 | kV | $\sim 120 \mathrm{~V}$ and $\sim 230 \mathrm{~V}: \mathrm{U} \mathrm{imp}=4$ |
|  |  | kV | $\sim 24 \mathrm{~V}: \mathrm{U} \mathrm{imp}=1.5$ |
| Mounting position |  |  | All positions |
| Connection | Maximum clamping capacity | $\mathrm{mm}^{2}$ | $1 \times 1.5$ with cable end |

References, dimensions

Safety dialogue solutions
Sirens, type XVS

| References |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sirens |  |  |  |  |
|  | Description | Supply voltage | Number of tones | Reference | Weight kg |
|  | Sirens 106 db | $\sim 24 \mathrm{~V}$ | 1 | XVS B1 | 0.860 |
|  |  |  | 2 | XVS B2 | 0.860 |
|  |  | $\sim 120 \mathrm{~V}$ | 1 | XVS G1 | 0.860 |
|  |  |  | 2 | XVS G2 | 0.860 |
| XVS Be |  |  |  |  |  |
|  |  | $\sim 230 \mathrm{~V}$ | 1 | XVS M1 | 0.860 |
|  |  |  | 2 | XVS M2 | 0.860 |

Dimensions

(1) Cable gland $n^{\circ} 7$ (DIN Pg 7), included.


Panel cut-out


## Safety control and protection solutions

Mini-VARIO and VARIO switch disconnectorsSelection guide: Mini-VARIO and VARIO switch disconnectors$5 / 2$
Mini-VARIO switch disconnectors
For standard applications

- Complete units ..... 5/8
- For customer assembly ..... 5/9
For high performance applications
■ Complete units ..... 5/10
Mini-VARIO and VARIO switch disconnectors
■ Operators, handles and front plates for customer assembly ..... 5/13
■ Accessories. ..... 5/14
VARIO enclosed switch disconnectors
■ Pre-assembled ..... 5/16
- Assembled by the user ..... 5/17
- Add-on modules ..... 5/18
Direct starters for safety applications
Selection guide: Direct starters for safety applications ..... 5/26
Thermal-magnetic motor circuit breakers
TeSys GV2 ME ..... 5/28
Enclosed thermal-magnetic motor circuit breakers TeSys GV2 ME and accessories, assembled by customer. ..... 5/30
Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE
Non reversing starters
■ LG7 K, with pushbutton control of isolation ..... 5/34
- LG1 K, with rotary operator for control of isolation ..... 5/35
- LJ7 K, with integral transformer ..... 5/40
Reversing starters
■ LG8 K, with pushbutton control of isolation ..... 5/36
- Variants ..... 5/37
■ LJ8 K, with integral transformer ..... 5/41
Contactors
Selection guide: Contactors ..... 5/44

Selection guide

Safety control and protection solutions
Mini-VARIO and VARIO switch disconnectors


## Application

Presentation
Assembly
Thermal current
Operational current AC-23 at 400 V
Number of poles

## Number of auxiliary contacts

Reversible terminal blocks
Mounting
Operator


> Mini-Vario and Vario rotary switch disconnectors from 12 to 175 A are suitable for on-load making and breaking of resistive or mixed resistive and inductive circuits where frequent operation is required. They can also be used for direct switching of motors in utilisation categories AC-3 and DC-3 specific to motors.
> Vario switch disconnectors are suitable for isolator applications with fully visible breaking (since the handle cannot indicate the "open" position unless all the contacts are actually open and separated by the appropriate isolating distance) and it is possible to padlock the handles in the open position.


## Standard applications

| Bare switches |  | Enclosed switches |  |
| :---: | :---: | :---: | :---: |
| Pre-assembled | For customer assembly | Pre-assembled | For customer assembly |
| 12 and 20 A |  | 10...32 A | 10 and 16 A |
| 8.1 and 11 A |  | 8.1..29 A | 8.1..11 A |
| 3 | 3... 5 | 3 | 3... 5 |
| - | 1 or 2 | - | 1 or 2 |

## Yes

| On door | At back of <br> enclosure | On door or at <br> back of enclosure | - |
| :--- | :--- | :--- | :--- |
| Direct | Offset with <br> door interlock <br> mechanism | Direct or offset <br> with door <br> interlock <br> mechanism | Direct |


| VCDN 12 <br> VCDN 20 | VCCDN 12 <br> VCCDN 20 | VN 12 <br> VN 20 | VCFN 12GE to VCFN 40GE | VN 12, <br> VN 20 + <br> VCFX GE1 |
| :---: | :---: | :---: | :---: | :---: |
| 5/8 |  | 5/9 | 5/16 | 5/17 to 5/19 |

Mini-Vario and Vario rotary switch disconnectors from 12 to 175 A are suitable for on-load making and breaking of resistive or mixed resistive and inductive circuits where frequent operation is required.
They can also be used for direct switching of motors in utilisation categories AC-3 and DC-3 specific to motors.
Vario switch disconnectors are suitable for isolator applications with fully visible breaking (since the handle cannot indicate the "open" position unless all the contacts are actually open and separated by the appropriate isolating distance) and it is possible to padlock the handles in the open position.


High performance applications

| Bare switches |  |  |  | Enclosed switches |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pre-assembled |  |  | For customer assembly | Pre-assembled | For customer assembly |
| 12...175A |  |  |  | 10...140 A | 10...63 A |
| 8.1...83 A |  |  |  |  | 8.1.. 41 A |
| 3 |  |  | 3... 6 (up to 80 A ) <br> 3 (for 125 and 175A ratings) | 3 | 3... 6 |
| - |  |  | 1 or 2 | - | 2 |
| Yes |  |  |  |  |  |
| On door | At back of enclosure | In enclosure or modular distribution boards | On door, at back of enclosure, in enclosure or modular distribution boards | - |  |
| Direct | Indirect with door interlock mechanism | Direct | Direct or indirect with door interlock mechanism | Direct |  |


| VCo 02 to VCo 6 | $\begin{aligned} & \text { VCC॰ } 02 \\ & \text { to } \\ & \text { VCCo } 6 \end{aligned}$ | VVE 0 to VVE 4 | $\begin{aligned} & \text { V02 } \\ & \text { to } \\ & \text { V6 } \end{aligned}$ | $\begin{aligned} & \text { VCF 02GE } \\ & \text { to } \\ & \text { VCF 6GE } \end{aligned}$ | $\begin{aligned} & \text { V02 to V4 } \\ & \text { + VCFX GE1 } \\ & \text { to } \\ & \text { VCFX GDXE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5/10 |  |  | 5/11 to 5/15 | 5/16 | 5/17 |

Safety control and protection solutions
Mini-VARIO and VARIO switch disconnectors

| Characteristics |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Environment |  |  |  |  |  |  |  |  |  |  |  |
| Switch type (bare type) |  |  |  | VN 12 VZN 12 | $\begin{array}{\|l} \text { V02 } \\ \text { VZ } 02 \end{array}$ | VN 20 VZN 20 | $\begin{array}{\|l} \text { V01 } \\ \text { VZ } 01 \end{array}$ | $\left\lvert\, \begin{aligned} & \text { V0 } \\ & \text { VZ } 0 \end{aligned}\right.$ | VVD 0 VVE 0 | $\left\lvert\, \begin{aligned} & \text { V1 } \\ & \text { VZ } 1 \end{aligned}\right.$ | VVD 1 VVE 1 |
| Conforming to standards |  |  |  | IEC 60947-3 |  |  |  |  |  |  |  |
| Product certifications |  |  |  | UL, CSA, GL |  |  |  |  |  |  |  |
| Protective treatment |  |  |  | "TC" |  |  |  |  |  |  |  |
| Degree of protection with protection shroud |  |  |  | IP 20 conforming to IEC 60529 |  |  |  |  |  |  |  |
| Ambient air temperature |  |  | ${ }^{\circ} \mathrm{C}$ | $-20 \ldots+50$ |  |  |  |  |  |  |  |
| Flame resistance |  |  | ${ }^{\circ} \mathrm{C}$ | 960 conforming to IEC 60695-2-1 |  |  |  |  |  |  |  |
| Shock resistance <br> $1 / 2$ sine wave $=11 \mathrm{~ms}$ conforming to IEC60068-2-27 |  |  | gn | 15 | 30 | 15 | 30 |  |  |  |  |
| Vibration resistance $10 . . .150 \mathrm{~Hz}$ conforming to IEC 60068-2-6 |  |  | gn | 5 | 1 |  |  |  |  |  |  |
| Electrical characteristics, a.c. operation |  |  |  |  |  |  |  |  |  |  |  |
| Switch type (bare type) |  |  |  | VN 12 VZN 12 | $\left\lvert\, \begin{array}{l\|l\|} \text { V02 } \\ \text { VZ } 02 \end{array}\right.$ | $\begin{array}{\|l\|} \text { VN } 20 \\ \text { VZN } 20 \end{array}$ | $\begin{aligned} & \text { V01 } \\ & \text { VZ } 01 \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { V0 } \\ & \text { VZ } 0 \end{aligned}\right.$ | VVD 0 VVE 0 | $\left\lvert\, \begin{aligned} & \text { V1 } \\ & \text { VZ } 1 \end{aligned}\right.$ | VVD 1 VVE 1 |
| Rated operational voltage (Ue) |  |  | V | 690 |  |  |  |  |  |  |  |
| Rated impulse withstand voltage (Uimp) |  |  | kV | 6 | 8 | 6 | 8 |  |  |  |  |
| Conventional thermal currents in free air (Ith) and rated uninterrupted (Iu) |  |  | A | 12 |  | 20 |  | 25 |  | 32 |  |
| Conventional thermal current in enclosure (Ithe) |  |  | A | 10 |  | 16 |  | 20 |  | 25 |  |
| Rated operational power and current | AC-21A/22A | 230... 690 V | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | AC-23A | 230 V | A/kW | 10.6/3 |  | 14/4 |  | 19.7/5.5 |  |  |  |
|  |  | 240 V | A/kW | 10.6/3 |  | 14/4 |  | 19.9/5.5 |  | 18.9/5.5 |  |
|  |  | 400 V | A/kW | 8.1/4 |  | 11/5.5 |  | 14.5/7.5 |  | 21.8/11 |  |
|  |  | 415 V | A/kW | 8.1/4 |  | 11/5.5 |  | 14/7.5 |  | 21/11 |  |
|  |  | 500 V | A/kW | 8.9/5.5 |  | 11.9/7.5 |  | 16.7/11 |  |  |  |
|  |  | 690 V | A/kW | 8.6/7.5 |  | 12.3/11 |  | 17.5/15 |  |  |  |
| Rated operational power | AC-3 | 230/240 V | kW | 1.5 |  | 3 |  | 4 |  |  |  |
|  |  | $400 / 415 \mathrm{~V}$ | kW | 3 |  | 4 |  | 5.5 |  | 7.5 |  |
|  |  | 500 V | kW | 4 |  | 5.5 |  | 7.5 |  |  |  |
|  |  | 690 V | kW | 4 | 5.5 |  | 7.5 | 11 |  |  |  |
| Intermittent duty class |  |  |  | 30 |  |  |  |  |  |  |  |
| Characteristics in normal operating conditions | Rated making capacity AC-21A/22A/23A (I rms) |  | $\begin{aligned} & \text { A/ } \\ & 400 \mathrm{~V} \end{aligned}$ | 120 |  | 200 |  | 250 |  | 320 |  |
|  | Rated breaking capacity AC-21A/22A/23A (I rms) |  | $\begin{aligned} & \text { A/ } \\ & 400 \mathrm{~V} \end{aligned}$ | 120 |  | 200 |  |  |  | 250 |  |
| Short-circuit characteristics | Permissible rms short time rating (Icw) |  | A/ $400 \mathrm{~V} / 1 \mathrm{~s}$ | 140 | 300 | 140 | 300 |  |  | 384 |  |
|  | Rated making capacity under short-circuit conditions (Icm) I peak |  | $\begin{aligned} & \text { kA/ } \\ & 400 \mathrm{~V} \end{aligned}$ | 0.5 | 1 | 0.5 | 1 |  |  |  |  |
|  | Rated conditional short-circuit current (I rms) with $\mathrm{aM} / \mathrm{gG}$ fuses |  | $\begin{aligned} & \text { kA/ } \\ & 400 \mathrm{~V} \end{aligned}$ | 6 | 10 | 6 | 10 |  |  |  |  |
|  |  |  | A | 12 |  | 20 |  | 25 |  | 35 |  |


| Environment |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { V2 } \\ & \text { VZ } 2 \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { VVD } 2 \\ \text { VVE } 2 \end{gathered}\right.$ | $\left\lvert\, \begin{aligned} & \text { V3 } \\ & \text { VZ } 3 \end{aligned}\right.$ | VVD 3 VVE 3 | $\left\lvert\, \begin{aligned} & \text { V4 } \\ & \text { VZ } 4 \end{aligned}\right.$ | VVD 4 VVE 4 | v5 | V6 | $\left\lvert\, \begin{aligned} & \text { VZ7 } \\ & \text { VZ2 } 0 \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \text { VZN } 05 \\ & \text { VZN } 06 \end{aligned}\right.$ |
| IEC 60947-3 |  |  |  |  |  |  |  | IEC 60947-5 |  |
| UL, CSA, GL |  |  |  |  |  |  |  |  |  |
| "TC" |  |  |  |  |  |  |  |  |  |
| IP 20 conforming to IEC 60529 |  |  |  |  |  |  |  |  |  |
| -20... 50 |  |  |  |  |  |  |  |  |  |
| 960 conforming to IEC 60695-2-1 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  | - |  |
| 1 |  |  |  |  |  |  |  | - |  |
| $\begin{aligned} & \text { V2 } \\ & \text { VZ } 2 \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { VVD } 2 \\ \text { VVE } 2 \end{gathered}\right.$ | $\left\lvert\, \begin{aligned} & \text { V3 } \\ & \text { VZ } 3 \end{aligned}\right.$ | VVD 3 VVE 3 | $\left\lvert\, \begin{aligned} & \text { V4 } \\ & \text { VZ } 4 \end{aligned}\right.$ | VVD 4 VVE 4 | v5 | V6 | $\left\lvert\, \begin{aligned} & \text { VZ7 } \\ & \text { VZ2 } \end{aligned}\right.$ | $\begin{array}{\|l} \text { VZN } 05 \\ \text { VZN } 06 \end{array}$ |
| 690 |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  | 6 |
| 40 |  | 63 |  | 80 |  | $125$ | 175 | 12 | 6 |
| 32 |  | 50 |  | 63 |  | $100$ | 140 | 10 | 4 |
| 40 |  | 63 |  | 80 |  | 125 | 160 | le/AC-15 |  |
| 25.8/7.5 |  | 50.3/15 |  | 61.2/18.5 |  | 71.9/22 | 96.6/30 | 6 A |  |
| 24.8/7.5 |  | 48.2/15 |  | 58.5/18.5 |  | 68/22 | 92.7/30 | 6A |  |
| 29/15 |  | 41.5/22 |  | 57/30 |  | 68.5/37 | 83/45 | 4A |  |
| 28/15 |  | 40/22 |  | 55/30 |  | 66/37 | 80/45 | 4A |  |
| 28.5/18.5 |  | 44/30 |  | 54/37 |  | 64.5/45 | 79/55 | 2A |  |
| 17.5/15 |  | 25/22 |  | 33/30 |  | 42/37 | 49/45 | 1A |  |
| 5.5 |  | 11 |  | 15 |  | 22 | 30 | - |  |
| 11 |  | 18.5 |  | 22 |  | 30 | 37 | - |  |
| 15 |  | 22 |  | 30 |  | 37 | 45 | - |  |
| 11 |  | 18.5 |  |  |  | $30 \quad 37$ |  | - |  |
| 30 |  |  |  |  |  |  |  | - |  |
| 400 |  | 630 |  | 800 |  | 1250 | 1750 | - |  |
| 320 |  | 500 |  | 640 |  | 1000 | 1400 | - |  |
| 480 |  | 756 |  | 960 |  | 1500 | 2100 | - |  |
| 1 |  | 2.1 |  |  |  | 2.8 |  | - |  |
| 10 |  |  |  |  |  |  |  | 1 |  |
| 50 |  | 63 |  | 80 |  | 125 | 200 | 16 | 1.6 |

Safety control and protection solutions
Mini-VARIO and VARIO switch disconnectors

| Characteristics |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical characteristics, d.c. operation |  |  |  |  |  |  |  |  |  |  |  |
| Switch type (bare type) |  |  |  | VN 12 VZN 12 | $\begin{array}{\|l} \text { V02 } \\ \text { VZ } 02 \end{array}$ | VN 20 VZN 20 | $\begin{array}{\|l} \text { V01 } \\ \text { VZ } 01 \end{array}$ | $\begin{array}{\|l\|} \text { V0 } \\ \text { VZ } 0 \end{array}$ | VVD 0 VVE 0 | $\begin{aligned} & \text { V1 } \\ & \text { VZ } 1 \end{aligned}$ | VVD 1 VVE 1 |
| Rated operational current DC-1 (L/R = 1ms) | 24 V | 1 contact | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 2 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 48 V | 1 contact | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 2 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 60 V | 1 contact | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 2 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 110 V | 1 contact | A | 1.5 |  | 2 |  | 9 |  | 10 |  |
|  |  | 2 contacts | A | 8 |  | 10 |  | 12 |  | 16 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 220 V | 1 contact | A | 1.5 |  | 2 |  | 2.5 |  | 3 |  |
|  |  | 2 contacts | A | 7 |  | 8 |  | 10 |  | 12 |  |
|  |  | 3 contacts | A | 10 |  | 14 |  | 16 |  | 20 |  |
|  | 250 V | 1 contact | A | 0.6 |  | 0.7 |  | 0.8 |  | 1 |  |
|  |  | 2 contacts | A | 3 |  | 4 |  | 6 |  | 8 |  |
|  |  | 3 contacts | A | 8 |  | 10 |  | 12 |  | 16 |  |
| Rated operational current DC-2 to DC-5 ( $\mathrm{L} / \mathrm{R}=1 \mathrm{~ms}$ ) | 24 V | 1 contact | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 2 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 48 V | 1 contact | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 2 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 60 V | 1 contact | A | 10 |  | 14 |  | 16 |  | 20 |  |
|  |  | 2 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 110 V | 1 contact | A | 1.5 |  | 2 |  | 2.5 |  | 3 |  |
|  |  | 2 contacts | A | 3 |  | 4 |  | 5 |  | 6 |  |
|  |  | 3 contacts | A | 12 |  | 20 |  | 25 |  | 32 |  |
|  | 220 V | 1 contact | A | 0.4 |  | 0.5 |  | 0.5 |  | 0.8 |  |
|  |  | 2 contacts | A | 1.4 |  | 1.5 |  | 1.5 |  | 2 |  |
|  |  | 3 contacts | A | 1 |  | 2 |  | 3 |  | 4 |  |
|  | 250 V | 1 contact | A | 0.3 |  | 0.4 |  | 0.5 |  | 0.8 |  |
|  |  | 2 contacts | A | 0.4 |  | 0.6 |  | 0.8 |  | 1 |  |
|  |  | 3 contacts | A | 1.2 |  | 2.4 |  | 1.6 |  | 2 |  |
| Other characteristics |  |  |  |  |  |  |  |  |  |  |  |
| Switch type (bare type) |  |  |  | VN 12 VZN 12 0.05 | V02 VZ 02 | VN 20 VZN 20 | $\begin{array}{\|l\|l\|} \hline \text { V01 } \\ \text { VZ } 01 \end{array}$ | $\left\lvert\, \begin{aligned} & \text { V0 } \\ & \text { VZ } 0 \end{aligned}\right.$ | VVD 0 VVE 0 | $\begin{aligned} & \text { V1 } \\ & \text { VZ } 1 \end{aligned}$ | VVD 1 VVE 1 |
| Mechanical durability (millions of operating cycles) |  |  |  |  | 0.1 | 0.05 | 0.1 |  |  |  |  |
| Electrical durability (millions of operating | in cat. cycles) |  |  | 0.05 | 0.1 | 0.05 | 0.1 |  |  |  |  |
| Electrical durability (operating cycles) | in cat. |  |  | 30000 |  |  |  |  |  |  |  |
| Suitable for isolation |  |  |  | Yes |  |  |  |  |  |  |  |
| Cabling | Flexibl | end | mm ${ }^{2}$ | 4 | 6 | 4 | 6 |  |  |  |  |
|  | Solid |  | mm ${ }^{2}$ | 4 | 10 | 4 | 10 |  |  |  |  |
| Tightening torque |  |  | N.m | 0.7 | 2.1 | 0.7 | 2.1 |  |  |  |  |


| $\begin{aligned} & \text { V2 } \\ & \text { VZ } 2 \end{aligned}$ | VVD 2 VVE 2 | $\left\lvert\, \begin{aligned} & \text { V3 } \\ & \text { VZ } 3 \end{aligned}\right.$ | VVD 3 VVE 3 | $\begin{aligned} & \text { V4 } \\ & \text { VZ } 4 \end{aligned}$ | VVD 4 VVE 4 | V5 | V6 | $\begin{aligned} & \text { VZ7 } \\ & \text { VZ2 } 0 \end{aligned}$ | $\left\lvert\, \begin{array}{l\|l\|} \text { VZN } 05 \\ \text { VZN } 06 \end{array}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 |  | 63 |  | 80 |  | 125 | 175 | 8 (le/DC-11) |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | 8 (le/DC-11) |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 35 |  | 40 |  | 50 |  | 60 | 70 | 4 (le/DC-11) |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 12 |  | 20 |  | 25 |  | 30 | 12 | 2 (le/DC-11) |  |
| 20 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 4 |  | 6 |  | 8 |  | 12 | 15 | 1 (le/DC-11) |  |
| 14 |  | 25 |  | 30 |  | 40 | 50 | - |  |
| 25 |  | 30 |  | 40 |  | 80 | 100 | - |  |
| 2 |  | 4 |  | 5 |  | 3 | 10 | 0.8 (le/DC-11) |  |
| 12 |  | 20 |  | 25 |  | 30 | 40 | - |  |
| 20 |  | 30 |  | 40 |  | 50 | 61 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 25 |  | 40 |  | 50 |  | 60 | 70 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 40 |  | 63 |  | 80 |  | 125 | 175 | - |  |
| 5 |  | 6 |  | 8 |  | 10 | 12 | - |  |
| 8 |  | 10 |  | 20 |  | 22 | 24 | - |  |
| 40 |  | 50 |  | 63 |  | 70 | 80 | - |  |
| 1 |  | 1.5 |  | 2 |  | 2.2 | 2.4 | - |  |
| 3 |  | 4 |  | 6 |  | 7 | 8 | - |  |
| 7 |  | 10 |  | 15 |  | 16 | 13 | - |  |
| 1 |  | 1.2 |  | 1.5 |  | 1.6 | 1.8 | - |  |
| 2 |  | 3 |  | 6 |  | 7 | 8 | - |  |
| 6 |  | 8 |  | 10 |  | 12 | 14 | - |  |
| $\begin{aligned} & \text { V2 } \\ & \text { VZ } 2 \end{aligned}$ | VVD 2 VVE 2 | $\left\lvert\, \begin{aligned} & \text { V3 } \\ & \text { VZ } 3 \end{aligned}\right.$ | VVD 3 VVE 3 | $\left\lvert\, \begin{aligned} & \text { V4 } \\ & \text { VZ } 4 \end{aligned}\right.$ | VVD 4 VVE 4 | V5 | V6 | $\begin{array}{\|l} \text { VZ7 } \\ \text { VZ2 } \end{array}$ | VZN 05 VZN 06 |
| 0.1 |  | 0.03 |  |  |  |  |  | 0.1 | 0.05 |
| 0.1 |  | 0.03 |  |  |  |  |  | 0.1 (AC-15) | 0.05 |
| 30000 |  |  |  |  |  |  |  | 30000 (DC-11) |  |
| Yes |  |  |  |  |  |  |  | - |  |
| 6 |  | 16 |  |  |  | 70 |  | $2 \times 0.75 \ldots 1.5$ |  |
| 10 |  | 25 |  |  |  | 95 |  | $2 \times 1 \ldots 2.5$ |  |
| 2.1 |  | 4 |  |  |  | 22.6 |  | 0.7 |  |

## Safety control and protection solutions <br> Mini-VARIO switch disconnectors <br> for standard applications <br> Complete units



VCDN 20


VCCDN 20

## Safety control and protection solutions <br> Mini-VARIO switch disconnectors for standard applications <br> For customer assembly



$\left.$| Switch bodies |  |  | Reference |
| :--- | :--- | :--- | ---: | | Weight |
| ---: |
| kg | \right\rvert\, | Description | Rating |  |
| :--- | :--- | :--- |
| 3-pole switch disconnectors | 12 | VN 12 |


| Add-on modules |  |  |  |
| :---: | :---: | :---: | :---: |
| Description | Rating A | Reference | Weight kg |
| Main pole modules | 12 | VZN 12 | 0.020 |
|  | 20 | VZN 20 | 0.020 |
| Neutral pole module with early make and late break contacts | 12 and 20 | VZN 11 | 0.020 |
| Earthing module | 12 and 20 | VZN 14 | 0.016 |
| Auxiliary contact block modules | 1 N/O late make contact | VZN 05 | 0.020 |
|  | $1 \mathrm{~N} / \mathrm{C}$ early break contact | VZN 06 | 0.020 |
| Input terminal protection shrouds | For add-on pole modules or auxiliary contact block modules (single-pole shroud) | VZN 26 | 0.004 |
|  | For switch bodies (3-pole shroud) | VZN 08 | 0.007 |

Maximum number of add-on modules that can be fitted on a switch body


## Safety control and protection solutions

## VARIO switch disconnectors

for high performance applications
Complete units



3-pole rotary switch disconnectors, 12 to 175 A

- Marking on operator ــ ــ
- Padlockable operating handle (padlocks not supplied).

Degree of protection IP 65.

| Main and Emergency stop switch disconnectors |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| For door mounting |  |  |  |  |  |
| Handle | Front plate mm | Fixing | Rating A | Reference | Weight kg |
| Red, padlockable with up to 3 padlocks (Ø 4 to Ø 8) | $\begin{aligned} & \text { Yellow } \\ & 60 \times 60 \end{aligned}$ | $\varnothing 22.5$ | 12 | VCD 02 | 0.215 |
|  |  |  | 20 | VCD 01 | 0.215 |
|  |  |  | 25 | VCD 0 | 0.215 |
|  |  |  | 32 | VCD 1 | 0.215 |
|  |  |  | 40 | VCD 2 | 0.215 |
|  |  | 4 screws | 12 | VCF 02 | 0.250 |
|  |  |  | 20 | VCF 01 | 0.250 |
|  |  |  | 25 | VCF 0 | 0.250 |
|  |  |  | 32 | VCF 1 | 0.250 |
|  |  |  | 40 | VCF 2 | 0.250 |
|  |  |  | 63 | VCF 3 | 0.560 |
|  |  |  | 80 | VCF 4 | 0.560 |
| Red, long, padlockable with up to 3 padlocks ( $\varnothing 4$ to Ø 8) | Yellow | 4 screws | 125 | VCF 5 | 1.200 |
|  | $90 \times 90$ |  | 175 | VCF 6 | 1.200 |


| For mounting at back of an enclosure (1) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Handle | Front plate mm | Fixing | Rating A | Reference | Weight kg |
| Red, padlockable with up to 3 padlocks (Ø 4 to Ø 8) | $\begin{aligned} & \text { Yellow } \\ & 60 \times 60 \end{aligned}$ | $\varnothing 22.5$ | 12 | VCCD 02 | 0.392 |
|  |  |  | 20 | VCCD 01 | 0.392 |
|  |  |  | 25 | VCCD 0 | 0.392 |
|  |  |  | 32 | VCCD 1 | 0.392 |
|  |  |  | 40 | VCCD 2 | 0.392 |
|  |  | 4 screws | 12 | VCCF 02 | 0.527 |
|  |  |  | 20 | VCCF 01 | 0.527 |
|  |  |  | 25 | VCCF 0 | 0.527 |
|  |  |  | 32 | VCCF 1 | 0.527 |
|  |  |  | 40 | VCCF 2 | 0.527 |
|  |  |  | 63 | VCCF 3 | 0.440 |
|  |  |  | 80 | VCCF 4 | 0.680 |
| Red, long, padlockable with up to 3 padlocks (Ø 4 to Ø 8) | Yellow | 4 screws | 125 | VCCF 5 | 1.320 |
|  | $90 \times 90$ |  | 175 | VCCF 6 | 1.320 |


| Handle | Front plate mm | Fixing | $\begin{aligned} & \text { Rating } \\ & \text { A } \end{aligned}$ | Reference | Weight kg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Red, padlockable with 1 padlock ( $\varnothing 4$ to $\varnothing 6$ ) | $\begin{aligned} & \text { Yellow } \\ & 45 \times 45 \end{aligned}$ |  | 25 | VVE 0 | 0.250 |
|  |  |  | 32 | VVE 1 | 0.250 |
|  |  |  | 40 | VVE 2 | 0.250 |
|  |  |  | 63 | VVE 3 | 0.530 |
|  |  |  | 80 | VVE 4 | 0.530 |

[^47]| Characteristics: <br> page $5 / 4$ | Dimensions : <br> page $5 / 22$ |
| :--- | :--- |

# Safety control and protection solutions 

## VARIO switch disconnectors

for high performance applications
Complete units


| Switch bodies |  |  |  |
| :---: | :---: | :---: | :---: |
| Description | Rating A | Reference | Weight kg |
| 3-pole switch disconnectors <br> (1) | 12 | V02 | 0.200 |
|  | 20 | V01 | 0.200 |
|  | 25 | V0 | 0.200 |
|  | 32 | V1 | 0.200 |
|  | 40 | V2 | 0.200 |
|  | 63 | V3 | 0.500 |
|  | 80 | V4 | 0.500 |
|  | 125 | V5 | 0.900 |
|  | 175 | V6 | 0.900 |
| Add-on modules |  |  |  |
| Description | Rating A | Reference | Weight kg |
| Main pole modules | 12 | VZ 02 | 0.050 |
|  | 20 | VZ 01 | 0.050 |
|  | 25 | VZ 0 | 0.050 |
|  | 32 | VZ 1 | 0.050 |
|  | 40 | VZ 2 | 0.050 |
|  | 63 | VZ 3 | 0.100 |
|  | 80 | VZ 4 | 0.100 |
| Neutral pole modules with early make and late break contacts (1) | 12 to 40 | VZ 11 | 0.050 |
|  | 63 to 80 | VZ 12 | 0.100 |
|  | 125 and 175 | VZ 13 | 0.250 |
| Earthing modules | 12 to 40 | VZ 14 | 0.050 |
|  | 63 and 80 | VZ 15 | 0.100 |
|  | 125 and 175 | VZ 16 | 0.250 |
| Auxiliary contact block modules |  |  |  |
| Auxiliary contact block modules with 2 auxil. contacts | N/O + N/C (2) | VZ 7 | 0.050 |
|  | $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$ | VZ 20 | 0.050 |

Maximum no. of add-on modules that can be fitted on a switch body 1 add-on module on each side of the switch body


2 add-on modules on each side of the switch body

| VZ 0• | + | VZ 0• | + | V0 |  | VZ 0• | + | VZ 7 | or | VZ 20 | or | VZ 11 | or | VZ 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VZ 0 | + | VZ 0 | + | vo |  | VZ 0 |  | VZ 7 | or | VZ 20 | or | VZ 11 | or | VZ 14 |
| VZ 1 | + | VZ 1 | + | V1 |  | VZ 1 |  | VZ 7 | or | VZ 20 | or | VZ 11 | or | VZ 14 |
| VZ 2 | + | VZ 2 | + | V2 |  | VZ 2 |  | VZ 7 | or | VZ 20 | or | VZ 11 | or | VZ 14 |
| VZ 3 | + | VZ 3 | + | V3 | + | VZ 3 |  | VZ 7 | or | VZ 20 | or | VZ 12 | or | VZ 15 |
| VZ 4 | + | VZ 4 | + | V4 | + | VZ 4 |  | VZ 7 | or | VZ 20 | or | VZ 12 | or | VZ 15 |

Note : The add-on modules mounted next to the switch body are main poles. Maximum of 3 main pole modules per switch body.
(1) Protection shrouds are available if required: see page $5 / 14$.
(2) Late make N/O, early break N/C contacts

| Characteristics: | Dimensions: | Schemes : |
| :--- | :--- | :--- |
| page $5 / 4$ | page $5 / 22$ | page $5 / 23$ |

Safety control and protection solutions
Mini-VARIO and VARIO switch disconnectors


# Safety control and protection solutions <br> Mini-VARIO and VARIO switch disconnectors Operators, handles and front plates (for customer assembly) 

$\square$ Padlockable operating handle (padlocks not supplied).

- Degree of protection IP 65.

■ Marking on operator

Handles and front plates for main and Emergency stop switch disconnectors

| For switch body | Operator |  |  | Reference | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Handle | Front plate |  |  |  |
|  |  | Dimensions | Fixing |  |  |
|  |  | mm |  |  | kg |
| VN 12, VN 20 V02...V2 | Red, padlockable with up to | $\begin{aligned} & \text { Yellow } \\ & 45 \times 45 \end{aligned}$ | $\varnothing 22.5$ | KCC 1YZ | 0.050 |
|  | 1 padlock <br> ( $\varnothing 4$ to $\varnothing 6$ ) |  | 4 screws | KCE 1YZ | 0.040 |
|  | Red, padlockable with up to | Yellow $60 \times 60$ | $\varnothing 22.5$ | KCD 1PZ | 0.082 |
|  | 3 padlocks ( $\varnothing 4$ to $\varnothing 8$ ) |  | 4 screws | KCF 1PZ | 0.075 |
| V3 and V4 | Red, padlockable with up to 3 padlocks ( $\varnothing 4$ to $\varnothing 8$ ) | $\begin{aligned} & \text { Yellow } \\ & 60 \times 60 \end{aligned}$ | 4 screws | KCF 2PZ | 0.070 |
| V5 and V6 | Red, long, padlockable with up to 3 padlocks ( $\varnothing 4$ to Ø 8) | $\begin{aligned} & \text { Yellow } \\ & 90 \times 90 \end{aligned}$ | 4 screws | KCF 3PZ (1) | 0.160 |

(1) For door mounting of 63 and 80 A switch disconnectors, adapter plate KZ 106 must be ordered separately (see page 5/14).

## Safety control and protection solutions <br> Mini-VARIO and VARIO switch disconnectors <br> Accessories



| Characteristics: <br> page $5 / 4$ | Dimensions: <br> pages $5 / 20$ to $5 / 23$ | Schemes: <br> pages $5 / 21$ and $5 / 23$ |
| :--- | :--- | :--- |

# Safety control and protection solutions <br> Mini-VARIO and VARIO switch disconnectors <br> Accessories 



KZ 67


| Accessories for operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | For use on | Front plate dimensions | Sold in lots of | Unit reference | Weight |
|  |  | mm |  |  | kg |
| Legend holder with silver coloured blank legend plate | Front plate | $45 \times 45$ | 5 | KZ 13 | 0,060 |
|  |  | $60 \times 60$ | 5 | KZ 15 | 0,065 |
|  |  | $90 \times 90$ | 5 | KZ 103 | 0,070 |
| Legend holders without legend plate | Front plate | $45 \times 45$ | 20 | KZ 14 | 0,060 |
|  |  | $60 \times 60$ | 10 | KZ 16 | 0,065 |
|  |  | $90 \times 90$ | 5 | KZ 101 | 0,070 |
| Silver coloured blank legend plates for engraving by customer | KZ 14 | - | 20 | KZ 76 | 0,020 |
|  | KZ 16 | - | 10 | KZ 77 | 0,010 |
|  | KZ 101 | - | 5 | KZ 100 | 0,005 |
| Seals | VN 12, VN 20 | $45 \times 45$ | 5 | KZ 65 | 0,037 |
|  | V02...V2 | $60 \times 60$ | 5 | KZ 66 | 0,033 |
|  | V3 and V4 | $60 \times 60$ | 5 | KZ 62 | 0,033 |
|  | V3...V6 | $90 \times 90$ | 5 | KZ 67 | 0,064 |
| Tightening tool | For operators with Ø 22.5 fixing | - | 5 | Z01 | 0,050 |

# Safety control and protection solutions <br> VARIO enclosed switch disconnectors <br> (pre-assembled) 



VCF OGE

5


VCF 3GE


3-pole main and Emergency stop switch disconnectors (1)

| Operator |  | Ithe | Power AC- <br> 23 <br> at 400 V | Incorporated switch body | Possible attachments (2) | Reference | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Handle | Front plate Dimensions |  |  |  |  |  |  |
|  | mm | A | kW |  |  |  | kg |
| Red, padlockable with 1 padlock | $\begin{aligned} & \text { Yellow } \\ & 60 \times 60 \end{aligned}$ | 10 | 4 | VN 12 | 2 | VCFN 12GE <br> (2) | 0.422 |
| ( $\varnothing 8$ shank) |  | 16 | 5.5 | VN 20 | 2 | VCFN 20GE (2) | 0.422 |
| or up to 3 padiocks |  | 20 | 7.5 | Vo | 0 | VCFN 25GE | 0.512 |
|  |  | 25 | 11 | V1 | 0 | VCFN 32GE | 0.512 |
|  |  | 32 | 15 | V2 | 0 | VCFN 40GE | 0.512 |

(1) Switch disconnector characteristics, see pages $5 / 4$ to $5 / 6$.
(2) For enclosures VCF and VCFN, see page 5/18

## Enclosed switch disconnectors for high performance applications

■ Marking on operator 1 .
■ 3-pole rotary switch disconnectors from 10 to 140 A

- Padlockable operating handle (padlock not included).
- IP 65 degree of protection enclosures, sealable and lockable.

■ Cover lockable in position "I" (ON) up to 63 A rating.

| 3-pole main and Emergency stop switch disconnectors (1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operator |  | Ithe | Power AC-23 at 400 V | Incorporated switch body | Possible attachments(2) | Reference | Weight |
| Handle | Front plate Dimensions |  |  |  |  |  |  |
|  | mm | A | kW |  |  |  | kg |
| Red, padlockable with up to 3 padlocks ( $\varnothing 4$ to $\varnothing 8$ shank) | Yellow$60 \times 60$ | 10 | 4 | V02 | 2 | VCF 02GE | 0.500 |
|  |  | 16 | 5.5 | V01 | 2 | VCF 01GE | 0.500 |
|  |  | 20 | 7.5 | V0 | 2 | VCF 0GE | 0.500 |
|  |  | 25 | 11 | V1 | 2 | VCF 1GE | 0.500 |
|  |  | 32 | 15 | V2 | 2 | VCF 2GE | 0.500 |
|  |  | 50 | 22 | V3 | 3 | VCF 3GE | 0.930 |
|  |  | 63 | 30 | V4 | 3 | VCF 4GE | 0.930 |
| Red, long padlockable with up to 3 padlocks | Yellow | 100 | 37 | V5 | 1 | VCF 5GE | 2.190 |
|  | $90 \times 90$ | 140 | 45 | V6 | 1 | VCF 6GE | 2.190 | ( $\varnothing 4$ to $\varnothing 8$ shanks)

## Enclosed switch disconnectors for standard applications

■ 3-pole rotary switch disconnectors from 10 to 32 A
■ Degree of protection IP 55.

VCFN 12GE

# Safety control and protection solutions 

VARIO enclosed switch disconnectors
(assembled by the user)


Safety control and protection solutions
VARIO enclosed switch disconnectors
Add-on modules

References

vzo



VZ 15

|  |  | Add-on modules for enclosure VCF |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Description | Rating | Reference | Weight |
|  |  | Main pole modules (mounted in enclosure) | A |  | kg |
|  |  |  | 10 | VZ 02 | 0.050 |
|  |  |  | 16 | VZ 01 | 0.050 |
|  |  |  | 20 | VZ 0 | 0.050 |
|  |  |  | 25 | VZ 1 | 0.050 |
|  |  |  | 32 | VZ 2 | 0.050 |
|  |  |  | 50 | VZ 3 | 0.100 |
|  |  |  | 63 | VZ 4 | 0.100 |
| VZ 0 | VZ 11 | Neutral pole modules with early make and late break contacts | 10 to 32 | VZ 11 | 0.050 |
|  |  |  | 50 and 63 | VZ 12 | 0.100 |
|  |  |  | 100 and 140 | VZ 13 | 0.250 |
|  |  | Earthing modules | 10 to 32 | VZ 14 | 0.050 |
|  |  |  | 50 and 63 | VZ 15 | 0.100 |
|  |  |  | 100 and 140 | VZ 16 | 0.250 |
|  |  | Auxiliary contact block modules with 2 auxiliary contacts | N/O + N/C (1) | VZ 7 | 0.050 |
|  |  |  | $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$ | VZ 20 | 0.050 |
| VZ 15 | VZ 20 | Maximum number of add-on modules that can be fitted on a switch body |  |  |  |
|  |  |  |  |  |  |
|  |  | 1 add-on module on each side of the switch body |  |  |  |


| VZ 7 or VZ 20 | V0• | + | VZ 7 or VZ 20 |
| :---: | :---: | :---: | :---: |
| or |  |  | or |
| VZ 11 or VZ 12 | vo |  | VZ 11 or VZ 12 |
| or |  |  | or |
| VZ 14 or VZ 15 | to | $+$ | VZ 14 or VZ 15 |
| or |  |  | or |
| VZ 0¢/VZ 0 to VZ 4 | V4 |  | VZ 0•/VZ 0 to VZ |

2 add-on modules on each side of the switch body


Note : The add-on modules mounted next to the switch body are main pole modules. Maximum of 3 main pole modules per switch body.

## Safety control and protection solutions <br> Mini-VARIO enclosed switch disconnectors Add-on modules

|  | Add-on modules for enclosures VCFN 12GE and 20 GE |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Description | Rating | Reference | Weight |
| (ex | A |  |  | kg |
|  | Main pole modules | 10 | VZN 12 | 0.020 |
|  |  | 16 | VZN 20 | 0.020 |
|  | Neutral pole module with early make and late break contacts | 10 and 16 | VZN 11 | 0.020 |
|  | Earthing module | 10 and 16 | VZN 14 | 0.016 |
|  | Auxiliary contact block modules | 1 late make N/O contact | VZN 05 | 0.020 |
|  |  | 1 early break N/C contact | VZN 06 | 0.020 |
|  | Maximum number of add-on modules that can be fitted on a switch body |  |  |  |
| VZN 14 | VZN 12 or VZN 20 | + | VZN 12 or VZN 20 |  |
|  |  | VN 12 | or |  |
|  |  | VZN 11 |  |  |
|  | or | or | or |  |
|  |  | VN 20 | VZN 05 or VZN 06 |  |
|  |  |  | or |  |
| VZN 05 | VZN 05 or VZN 06 |  | VZN 14 |  |

Dimensions, mounting

Safety control and protection solutions
Mini-VARIO switch disconnectors, 12 and 20 A

## Dimensions

## Switch disconnectors

Switch bodies VN 12, VN 20


## Mounting

Switch disconnector mounted on enclosure door

## VN 12, VN 20

Single hole fixing


VN 12, VN 20
4 screw fixing
$45 \times 45$ front plate
$60 \times 60$ front plate


Mounting (continued), schemes

## Safety control and protection solutions <br> Mini-VARIO switch disconnectors, 12 and 20 A

## Mounting (continued) <br> Switch disconnector mounted at back of enclosure with shaft extension VZN 17 or VZN 30 (clip-on mounting on 乌rail)

VN 12, VN 20
Single hole fixing
4 screw fixing


|  | Shaft extension | Distance (e) <br> enclosure back/door |
| :--- | :--- | :--- |
| $\mathbf{m m}$ |  |  |
| VN 12, VN 20 | VZN 17 | $300 \ldots 330$ |
|  | VZN 30 | $400 \ldots 430$ |


| Schemes |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Switch body | Main pole module VZN 12, VZN 20 | Neutral pole module VZN 11 | Auxiliary |  |
| VN 12, VN 20 |  |  | VZN 05 | VZN 06 |


$\zeta$


Dimensions, mounting

Safety control and protection solutions
VARIO switch disconnectors, 12 to 175 A

## Dimensions

## Switch disconnectors

Switch bodies V0e, V0 to V2


Add-on modules VZ 02 to VZ 4 and VZ 11 to VZ 16


|  | a | b | c |
| :--- | :--- | :--- | :--- |
| VZ 02 and VZ 01, <br> VZ 0 to VZ 2, VZ 11, VZ 14 | 16 | 74 | 35 |
| $\mathbf{V Z ~ 3 , ~ V Z ~ 4 , ~ V Z ~ 1 2 , ~ V Z ~ 1 5 ~}$ | 20 | 83 | 46 |
| $\mathbf{V Z ~ 1 3 , ~ V Z ~ 1 6 ~}$ | 30 | 125 | 63 |

Mounting
Switch disconnector mounted on enclosure door


Add-on modules VZ 7, VZ 20


## Switch bodies V3 to V6



|  | a | b | c | G | H | $\varnothing$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{V 3 , ~ V 4 ~}$ | 60 | 83 | 65 | 48 | 48 | 5.5 |
| $\mathbf{V 5}$, V6 | 90 | 125 | 90 | 68 | 68 | 5.5 |
| Add-on modules $\mathbf{~ V Z ~ 7 , ~} \mathbf{~ V Z ~ 2 0 ~}$ |  |  |  |  |  |  |


| 4 screw fixing | 4 screw fixing |
| :--- | :--- | $45 \times 45$ front plate $60 \times 60$ front plate | V0e, V0 to V2 | V0e, V0 to V4 |
| :--- | :--- |



V5 and V6. 4 screw fixing
$90 \times 90$ front plate



Mounting (continued), schemes

## Safety control and protection solutions

VARIO switch disconnectors, 12 to 175 A

Mounting (continued)
Switch disconnector mounted at back of enclosure

4 screw fixing
V0•, V0 to V2 with shaft
extension VZ 17 or VZ 30
(clip-on mounting on Ч rail
possible for V0॰ to V2)

Single hole fixing
V3 to V4 with shaft extension
VZ 18 or VZ 31

## V5 and V6 with shaft extension

VZ 18 or VZ 31



|  | Shaft extension | Distance (e) <br> enc.back/door | Ø | G |
| :--- | :--- | :--- | :--- | :--- |
| V02 and V01 | VZ 17 | $300 \ldots 330$ | $2 \times 4.2$ | 15 |
| V0 to V2 | VZ 30 | $400 \ldots 430$ | $2 \times 4.2$ | 15 |
| V3 and V4 | VZ 18 | $300 \ldots 320$ | $2 \times 5$ | 20 |
|  | VZ 31 | $400 \ldots 420$ | $2 \times 5$ | 20 |


|  | Shaft <br> extension | Distance (e) enc. <br> back/door |
| :--- | :--- | :--- |
| V5 and V6 | VZ 18 | $300 \ldots 350$ |

Switch disconnectors for modular distribution boards
VV• 0 to VV• 2


VV• 3 to VV• 4


Schemes
Switch body
V02 and V01 V0 to V6


Main pole module VZ 02 and VZ 01 VZ 0 to VZ 4


## Neutral pole module VZ 11 to VZ 13

Auxiliary contact blocks
VZ 7


VZ 20


```
Dimensions
```



Cable glands: $2 \times 16$ P top and bottom
VCF 02GE to 4GE, VCFX GE1 to GE4


|  | a | b | c | c1 | H |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VCF 02GE to VCF 2GE, VCFX GE1 (1) | 90 | 146 | 85 | 131 | 130 |
| VCF 3GE and VCF 4GE (2) | 150 | 170 | 106 | 152 | 164 |
| VCFX GE2 and VCFX GE4 (2) | 150 | 170 | 106 | 152 | 164 |

(1) Cable glands: $2 \times 16$ Ptop and bottom
(2) Cable glands: $2 \times 16 / 21 / 29$ P top and bottom

VCF 5GE and 6GE


| References: | Schemes: |
| :--- | :--- |
| page $5 / 16$ | page $5 / 25$ |

Dimensions (continued) schemes

## Safety control and protection solutions

VARIO enclosed switch disconnectors (assembled by the user)

Dimensions (continued)
Empty enclosures
VCFX GDXE


## Schemes

Switch disconnectors

Enclosed switch disconnectors or switch bodies

Main pole module


Neutral pole module


## Auxiliary contact blocks

| VZ 7 | VZ 20 | VZN 05 | VZN 06 |
| :---: | :---: | :---: | :---: |
|  |  |  |  |


| $\underset{\sim}{m}$ | $\stackrel{-}{\sim}$ |
| :---: | :---: |
| $\underset{\sim}{J}$ | $\approx$ |

$\underset{\sim}{\sim}\left|\begin{array}{c}m \\ \sim\end{array}\right|$
$\stackrel{m}{7}$
$\stackrel{+}{7}$
-
$N$
$N$

Safety control and protection solutions
Direct starters for safety applications


Industrial and service industries
Use in a machine subject to the enforcement of Machinery Directive 98/37/CE and Work equipment directive 89/655/CEE.




Standardised powers of 3-phase motors in AC-3 supplied with $400 / 415 \mathrm{~V}$


Pages

| For customer assembly | Pre-assembled |
| :--- | :--- |

1 direction of movement
$0.06 \ldots 11 \mathrm{~kW}$

Thermal-magnetic motor circuit-breaker + voltage minimum circuit-breaker

| GV2 ME + |
| :--- | :--- | :--- |
| GV AX + |
| GV2 MC + |
| GV2 K |$\quad$ LG7 K | LG1 K |
| :--- |
|  |
| $5 / 28$ to $5 / 31$ |



2 directions of movement

| $0.06 \ldots 4 \mathrm{~kW}$ | $0.06 \ldots 5.5 \mathrm{~kW}$ | $0.06 \ldots 4 \mathrm{~kW}$ |
| :--- | :--- | :--- | :--- |
| Thermal-magnetic motor circuit-breaker + switch + <br> control transformer | Thermal-magnetic motor circuit-breaker + reversing <br> switch | Thermal-magnetic motor circuit-breaker + reversing <br> switch + control transformer |
| LJ7 K | LG8 K | LJ8 K |
| $5 / 40$ | $5 / 36$ | $5 / 41$ |

## Safety control and protection solutions

## Thermal-magnetic motor circuit breakers TeSys GV2 ME

| GV2 ME: pushbutton control |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stan <br> 50/6 | ard $p$ Hz in | er rating tegory | $\text { s of } 3-1$ C-3 | hase |  |  |  |  | Setting range of thermal | Magnetic tripping | Reference | Weight |
| 400/ |  |  | 500 V |  |  | 690 V |  |  | thermal <br> trips (2) | current |  |  |
| P | Icu | Ics (1) | P | Icu | Ics (1) | P | Icu | Ics (1) |  |  |  |  |
| kW | kA |  | kW | kA |  | kW | kA |  | A | A |  | kg |
| - | - | - | - | - | - | - | - | - | 0.1..0.16 | 1.5 | GV2 ME01 | 0.260 |
| 0.06 | * | $\star$ | - | - | - | - | - | - | 0.16...0.25 | 2.4 | GV2 ME02 | 0.260 |
| 0.09 | * | $\star$ | - | - | - | - | - | - | 0.25...0.40 | 5 | GV2 ME03 | 0.260 |
| 0.12 | * | $\star$ | - | - | - | 0.37 | * | $\star$ | 0.40...0.63 | 8 | GV2 ME04 | 0.260 |
| 0.18 | * | $\star$ | - | - | - | - | - | - | 0.40...0.63 | 8 | GV2 ME04 | 0.260 |
| 0.25 | * | $\star$ | - | - | - | 0.55 | $\star$ | $\star$ | 0.63... 1 | 13 | GV2 ME05 | 0.260 |
| 0.37 | * | $\star$ | 0.37 | $\star$ | $\star$ | - | - | - | 1..1.6 | 22.5 | GV2 ME06 | 0.260 |
| 0.55 | * | * | 0.55 | $\star$ | $\star$ | 0.75 | $\star$ | $\star$ | 1...1.6 | 22.5 | GV2 ME06 | 0.260 |
| - | - | - | 0.75 | $\star$ | $\star$ | 1.1 | $\star$ | $\star$ | 1...1.6 | 22.5 | GV2 ME06 | 0.260 |
| 0.75 | * | $\star$ | 1.1 | $\star$ | $\star$ | 1.5 | 3 | 75 | 1.6...2.5 | 33.5 | GV2 ME07 | 0.260 |
| 1.1 | $\star$ | $\star$ | 1.5 | $\star$ | $\star$ | 2.2 | 3 | 75 | 2.5... 4 | 51 | GV2 ME08 | 0.260 |
| 1.5 | $\star$ | $\star$ | 2.2 | $\star$ | $\star$ | 3 | 3 | 75 | 2.5... 4 | 51 | GV2 ME08 | 0.260 |
| 2.2 | * | $\star$ | 3 | 50 | 100 | 4 | 3 | 75 | 4...6.3 | 78 | GV2 ME10 | 0.260 |
| 3 | * | * | 4 | 10 | 100 | 5.5 | 3 | 75 | 6... 10 | 138 | GV2 ME14 | 0.260 |
| 4 | $\star$ | $\star$ | 5.5 | 10 | 100 | 7.5 | 3 | 75 | 6... 10 | 138 | GV2 ME14 | 0.260 |
| 5.5 | 15 | 50 | 7.5 | 6 | 75 | 9 | 3 | 75 | 9... 14 | 170 | GV2 ME16 | 0.260 |
| - | - | - | - | - | - | 11 | 3 | 75 | 9... 14 | 170 | GV2 ME16 | 0.260 |
| 7.5 | 15 | 50 | 9 | 6 | 75 | 15 | 3 | 75 | 13... 18 | 223 | GV2 ME20 | 0.260 |
| 9 | 15 | 40 | 11 | 4 | 75 | 18.5 | 3 | 75 | 17... 23 | 327 | GV2 ME21 | 0.260 |
| 11 | 15 | 40 | 15 | 4 | 75 | - | - | - | 20... 25 | 327 | GV2 ME22 (3) | 0.260 |
| 15 | 10 | 50 | 18.5 | 4 | 75 | 22 | 3 | 75 | 24... 32 | 416 | GV2 ME32 | 0.260 |

## Thermal-magnetic motor circuit breakers GV2 ME with built-in auxiliary contact block

With instantaneous auxiliary contact block:

- GV AE1, add suffix AE1TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AE1TQ.
- GV AE11, add suffix AE11TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AE11TQ.
- GV AN11, add suffix AN11TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AN11TQ. These motor circuit breakers with built-in contact block are sold in lots of 20 parts in a single pack.
(1) As a \% of Icu.
(2) To use GV2 ME in enclosures, please consult your Regional Sales Office.
(3) For the maximum rating which can be installed in GV2 MC or MP enclosures, please consult your Regional Sales Office.
$\star>100 \mathrm{kA}$.


# Safety control and protection solutions 

## Thermal-magnetic motor circuit breakers TeSys GV2 ME - Accessories

| Contact blocks |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Mounting | Max. number | Contact types |  | Sold in lots of. | Unit reference | Weight kg |
| Instantaneous auxiliary contacts | Front | 1 | N/O or N/C (1) |  | 10 | GV AE1 | 0.015 |
|  |  |  | N/O+N/C |  | 10 | GV AE11 | 0.020 |
|  |  |  | $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$ |  | 10 | GV AE20 | 0.020 |
|  | $\begin{aligned} & \hline \text { Side } \\ & \text { LH } \end{aligned}$ | 2 | $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$ |  | 1 | GV AN11 | 0.050 |
|  |  |  | $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$ |  | 1 | GV AN20 | 0.050 |
| Fault signalling contact + instantaneous auxiliary contact | $\begin{aligned} & \text { Side (2) } \\ & \text { LH } \end{aligned}$ | 1 | N/O (fault) | $+\mathrm{N} / \mathrm{O}$ | 1 | GV AD1010 | 0.055 |
|  |  |  |  | $+\mathrm{N} / \mathrm{C}$ | 1 | GV AD1001 | 0.055 |
|  |  |  | $\begin{aligned} & \overline{\mathrm{N} / \mathrm{C}} \\ & \text { (fault) } \end{aligned}$ | $+\mathrm{N} / \mathrm{O}$ | 1 | GV AD0110 | 0.055 |
|  |  |  |  | $+\mathrm{N} / \mathrm{C}$ | 1 | GV AD0101 | 0.055 |
| Short-circuit signalling contact | Side <br> LH | 1 | C/O comm |  | 1 | GV AM11 | 0.045 |


| Electric trips |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Undervoltage or shunt trip (3) |  |  |  |  |
| Mounting | Voltage |  | Reference | Weight kg |
| Side <br> (1 block on RH side of breaker) | 24 V | 50 Hz | GV A•025 | 0.105 |
|  |  | 60 Hz | GV A॰026 | 0.105 |
|  | 48 V | 50 Hz | GV A॰055 | 0.105 |
|  |  | 60 Hz | GV A॰056 | 0.105 |
|  | 100 V | 50 Hz | GV A॰107 | 0.105 |
|  | 100...110 V | 60 Hz | GV A॰107 | 0.105 |
|  | $110 . .115 \mathrm{~V}$ | 50 Hz | GV A॰115 | 0.105 |
|  |  | 60 Hz | GV A॰116 | 0.105 |
|  | 120.. 127 V | 50 Hz | GV A125 | 0.105 |
|  | 127 V | 60 Hz | GV A•115 | 0.105 |
|  | 200 V | 50 Hz | GV A॰207 | 0.105 |
|  | 200 V... 220 V | 60 Hz | GV A॰207 | 0.105 |
|  | 220 V... 240 V | 50 Hz | GV A॰225 | 0.105 |
|  |  | 60 Hz | GV A॰226 | 0.105 |
|  | 380 V... 400 V | 50 Hz | GV Ae385 | 0.105 |
|  |  | 60 Hz | GV Ae386 | 0.105 |
|  | $415 \mathrm{~V} . . .440 \mathrm{~V}$ | 50 Hz | GV A॰415 | 0.105 |
|  | 415 V | 60 Hz | GV A॰416 | 0.105 |
|  | 440 V | 60 Hz | GV A॰385 | 0.105 |
|  | 480 V | 60 Hz | GV A॰415 | 0.105 |
|  | 500 V | 50 Hz | GV A•505 | 0.105 |
|  | 600 V | 60 Hz | GV A॰505 | 0.105 |


| INRS voltage minimum (only installed on GV2 ME) Safety device for dangerous machines conforming |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Side <br> ( 1 block on RH side of breaker GV2 ME) | $110 . .115 \mathrm{~V}$ | 50 Hz | GV AX115 | 0.110 |
|  |  | 60 Hz | GV AX116 | 0.110 |
|  | 127 V | 60 Hz | GV AX115 | 0.110 |
|  | $220 . .240 \mathrm{~V}$ | 50 Hz | GV AX225 | 0.110 |
|  |  | 60 Hz | GV AX226 | 0.110 |
|  | $380 . . .400 \mathrm{~V}$ | 50 Hz | GV AX385 | 0.110 |
|  |  | 60 Hz | GV AX386 | 0.110 |
|  | $415 . .440 \mathrm{~V}$ | 50 Hz | GV AX415 | 0.110 |
|  | 440 V | 60 Hz | GV AX385 | 0.110 |
|  | (1) Choice of N/C or N/O contact operation depending on which way round the reversible block is mounted. <br> (2) The GV AD is always mounted next to the circuit breaker <br> (3) To order an undervoltage trip: replace the dot in the reference with a $\mathbf{U}$, example: GV2 AU025. To order a shunt trip: replace the dot in the reference with an S, example: GV2 AS025. |  |  |  |

Safety control and protection solutions
Enclosed thermal-magnetic motor circuit breakers
TeSys GV2 ME and accessories, assembled by customer


# Safety control and protection solutions 

## Enclosed thermal-magnetic motor circuit breakers <br> TeSys GV2 ME and accessories, assembled by customer

## Thermal-magnetic motor circuit breakers GV2 ME

Motor-circuit breakers and accessories: see pages $5 / 28$ and $5 / 29$. The starter consisting of an enclosed motor circuit-breaker GV2 ME conforms to IEC 60947-4-1.

| GV2 | ME01 | ME02 | ME03 | ME04 | ME05 | ME06 | ME07 | ME08 | ME10 | ME14 | ME16 | ME20 | ME21 | ME22 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ithe enclosed (A) | 0.16 | 0.25 | 0.4 | 0.63 | 1 | 1.6 | 2.5 | 4 | 6.3 | 9 | 13 | 17 | 21 | 23 |
| Enclosures for thermal-magnetic motor circuit breakers GV2 ME |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Type |  | Degree of protection |  |  |  | Possible attachments on side of GV2 ME |  |  |  |  | Reference |  |  | Weight kg |
|  |  |  |  |  |  | Left |  | Right |  |  |  |  |  |  |
| Surface mounting |  | IP 41 |  |  |  | 1 |  | 1 |  |  | GV2 MC01 |  |  | 0.290 |
| conductor. Sealable cover |  | IP 55 |  |  |  | 1 |  |  | 1 |  | GV2 MC02 |  |  | 0.300 |
|  |  |  |  |  |  |  |  |  |  | r GV2 M | MCK04 |  | 0.420 |  |
|  |  | IP 55 for temperature $<+5^{\circ} \mathrm{C}$ |  |  |  |  | C 1 |  | 1 |  | GV2 MC03 |  |  |  | 0.300 |
| Flush mounting with |  | IP 41 (front face) |  |  |  | 1 |  |  | 1 | GV2 MP01 |  |  |  | 0.115 |
|  |  | IP 41 (reduced flush mounting) |  |  |  | ) - |  |  | 1 | GV2 MP03 |  |  |  | 0.115 |
|  |  | IP 55 (front face) |  |  |  | 1 |  | 1 |  | GV2 MP02 |  |  |  | 0.130 |
|  |  | IP 55 (reduced flush mounting) |  |  |  | g) - |  |  |  |  | GV2 | MP04 |  | 0.130 |


| Front plate |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Description | Sold in lots of | Unit <br> reference | Weight <br> kg |  |
| For direct control, | IP 55 | 1 | GV2 CP21 | 0.800 |

through a panel
of a chassis-mounted GV2 ME

| Accessories common to all enclosures (to be ordered separately) |  |  |  |
| :--- | :--- | :--- | :--- |
| Padlocking device (2) | 1 to 3 padlocks | 1 | GV2 V01 |

adlo
is only possible in "O" position)

| Mushroom head "Stop" <br> pushbutton $\varnothing \mathbf{~ 4 0 ~ m m , ~ r e d ~}$ | Spring return (2) | 1 | GV2 K011 | 0.052 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Latching (2) | Key release | 1 | GV2 K021 | 0.160 |


|  | IP 55 | key $\mathrm{n}^{\circ} 455$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Turn to release | 1 | GV2 K031 | 0.115 |
|  |  |  | 1 | GV2 K04 (3) | 0.120 |
| Sealing kit | For enclosures and front plate | IP 55 | 10 | GV2 E01 | 0.012 |
|  |  | $\begin{aligned} & \text { IP } 55 \\ & \text { for } \theta<+5^{\circ} \mathrm{C} \end{aligned}$ | 10 | GV2 E02 | 0.012 |
| Neutral terminal |  |  | 100 | AB1 VV635UBL | 0.015 |
| Partition |  |  | 50 | AB1 AC6BL | 0.003 |
| Description | Voltage V | Colour | Sold in lots of | Unit reference | Weight kg |
| Neon indicator light | 110 | Green | 10 | GV2 SN13 | 0.019 |
|  |  | Red | 10 | GV2 SN14 | 0.019 |
|  |  | Orange | 10 | GV2 SN15 | 0.019 |
|  |  | Clear | 10 | GV2 SN17 | 0.019 |
|  | 220/240 | Green | 10 | GV2 SN23 | 0.019 |
|  |  | Red | 10 | GV2 SN24 | 0.019 |
|  |  | Orange | 10 | GV2 SN25 | 0.019 |
|  |  | Clear | 10 | GV2 SN27 | 0.019 |
|  | 380/440 | Green | 10 | GV2 SN33 | 0.019 |
|  |  | Red | 10 | GV2 SN34 | 0.019 |
|  |  | Orange | 10 | GV2 SN35 | 0.019 |
|  |  | Clear | 10 | GV2 SN37 | 0.019 |

(1) The GV2 MCK04 enclosure has a GV2 K04 mushroom head Stop pushbutton fitted as standard.
(2) Supplied with IP 55 sealing kit. For use with GV2 M•01.
(3) Padlockable in "Off" position using $\emptyset 4$ to 8 mm shank padlocks.

Dimensions, mounting

## Safety control and protection solutions

TeSys enclosed starters
Enclosed thermal-magnetic motor circuit-breakers GV2 ME

Dimensions
Surface mounting enclosure GV2 MCO•

(1) 4 knock-outs for 16 mm plastic cable gland or 16 mm conduit.

Surface mounting enclosure GV2 MCK04

(1) $2 \times 65,3 \times 6.3$

(1) 4 knock-outs for 16 mm plastic cable gland or 16 mm conduit.

## Mounting <br> Flush mounting enclosures GV2 MP0• (panel cut-out)

 GV2 MP0•GV2 MP01, MP02
GV2 MP03, MP04
Front plate GV2 CP21


| GV2 | a |
| :--- | :--- |
| MP01, MP02 | - |
| MP03, MP04 | 86 |

# Safety control and protection solutions <br> TeSys enclosed starters <br> Enclosed thermal-magnetic motor circuit-breakers GV2 ME 

## Schemes

 GV2 ME••

Instantaneous auxiliary contacts


Instantaneous auxiliary contacts and fault signalling contacts

| GV AD0110 | GV AD0101 | GV AD1010 | GV AD1001 |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Instantaneous auxiliary contacts |  |  | Short-circuit signalling contacts |
| GV AN11 | GV AN20 |  | GV AM11 |
|  |  |  |  |


| Voltage trips |  |  |
| :---: | :---: | :---: |
| GV AU-*॰ | GV ASe•e | GV AX* |
| $\stackrel{\bar{\square}}{\underline{U}<}$ | $\bar{\square}$ |  |
| O | O |  |

Wiring diagram for undervoltage trip used on potentially dangerous machines, conforming to INRS


# Safety control and protection solutions 

## Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE ${ }_{(1)}$



LG7 D12 with padlocking facility fitted as standard

| Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3 |  |  | Circuit-breaker <br> Setting range of thermal trips | Dust \& damp protected starter <br> Basic reference, to be completed by adding the voltage code (2) (3) | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\begin{aligned} & 2201 \\ & 230 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & 400 / \\ & 415 \mathrm{~V} \end{aligned}$ | 440 V |  |  |  |
| kW | kW | kW | A |  | kg |
| - | 0.06 | 0.06 | 0.16...0.25 | LG7 K06••02 | 1.300 |
| 0.06 | 0.09 | 0.12 | 0.25...0.40 | LG7 K06••03 | 1.300 |
| - | 0.18 | 0.18 | 0.40...0.63 | LG7 K06••04 | 1.300 |
| 0.12 | 0.25 | 0.37 | 0.63... 1 | LG7 K06••05 | 1.300 |
| 0.25 | 0.55 | 0.55 | 1..1.6 | LG7 K06••06 | 1.300 |
| 0.37 | 0.75 | 1.1 | 1.6...2.5 | LG7 K06••07 | 1.300 |
| 0.75 | 1.5 | 1.5 | 2.5... 4 | LG7 K06••08 | 1.300 |
| 1.1 | 2.2 | 3 | 4...6.3 | LG7 K06••10 | 1.300 |
| 1.5 | 4 | 4 | 6... 10 | LG7 K09••14 | 1.450 |
| 3 | 5.5 | 5.5 | 9... 14 | LG7 D12••16 | 1.600 |
| 4 | 7.5 | 9 | 13... 18 | LG7 D18・セ20 | 1.630 |
| 4 | 9 | 9 | 17... 23 | LG7 D18••21 | 1.630 |

## Specifications

Functions performed by the starter:

- isolation,
- locking of isolation fitted as standard as from LG7 K09
- lockable Emergency Stop (1/4 turn) (3),
- short-circuit protection,
- overload protection
- pushbutton control: 1 white Start button "I" and 1 black Stop button "O",

■ degree of protection of enclosure: IP 657, double insulated.
Switching back on of power supply after tripping must be by a deliberate action.
A GV2 SNee indicator light may be added (to be assembled by customer), please consult your Regional Sales Office.
For supply voltages between 380 and 415 V (codes Q7, V7 or N7) the control circuit is pre-wired between phases. For other supply voltages, the control circuit must be wired by the customer.

## Variants (pre-assembled)

See page 5/37.
(1) Compliance with a harmonised European standard assumes conformity with the corresponding directive, provided that installation, building in and/or assembly of the starter is carried out correctly by the machine manufacturer.
Harmonised European standards: EN 60947 and EN 60439.
Conformity to international standards: IEC 60947 and IEC 60439.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

| LG7 K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Volts ~ $50 / 60 \mathrm{~Hz}$ | 12 | 24 | 36 | 42 | 48 | 110 | 127 | $\begin{aligned} & 220 / \\ & 230 \end{aligned}$ | 230 | $\begin{aligned} & 230 / \\ & 240 \end{aligned}$ | $\begin{aligned} & 380 / \\ & 400 \end{aligned}$ | 400 | $\begin{aligned} & 400 / \\ & 415 \end{aligned}$ | 440 | 500 | $660 /$ |
| Code | J7 | B7 | C7 | D7 | E7 | F7 | FC7 | M7 | P7 | U7 | Q7 | V7 | N7 | R7 | S7 | Y7 |


(3) LG7 K06: the mushroom head type Emergency Stop acts mechanically on the circuit-breaker.

LG7 K09, D12, D18: the Emergency Stop function is performed by an undervoltage trip, acting on the circuit-breaker. This circuit-breaker is always supplied pre-wired for use on $380 / 415 \mathrm{~V} 50 \mathrm{~Hz}$. For a 60 Hz supply, please consult your Regional Sales Office.
Other versions Starters for voltages other than those indicated above.

[^48]
# Safety control and protection solutions 

## Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive $98 / 37 /$ CE ${ }_{(1)}$



| Non-reversing starters (with rotary operator for control of isolation) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Enclosure cannot be opened when energised in position "l". |  |  |  |  |  |
| Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3 |  |  | Circuit-breaker <br> Setting range of thermal trips | Dust \& damp protected starter <br> Basic reference, to be completed by adding the voltage code (2) | Weight |
|  |  |  |  |  |  |
| $\begin{aligned} & 2201 \\ & 230 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & 400 / \\ & 415 \mathrm{~V} \end{aligned}$ | 440 V |  |  |  |
| kW | kW | kW | A |  | kg |
| - | 0.06 | 0.06 | 0.16...0.25 | LG1 K065••02 | 0.970 |
| 0.06 | 0.09 | 0.12 | 0.25...0.40 | LG1 K065••03 | 0.970 |
| - | 0.18 | 0.18 | 0.40...0.63 | LG1 K065••04 | 0.970 |
| 0.12 | 0.25 | 0.25 | 0.63... 1 | LG1 K065••05 | 0.970 |
| 0.25 | 0.55 | 0.55 | 1..1.6 | LG1 K065•006 | 0.970 |
| 0.37 | 0.75 | 1.1 | 1.6...2.5 | LG1 K065••07 | 0.970 |
| 0.75 | 1.5 | 1.5 | 2.5... 4 | LG1 K065••08 | 0.970 |
| 1.1 | 2.2 | 3 | 4...6.3 | LG1 K065••10 | 0.970 |
| 1.5 | 4 | 4 | 6... 10 | LG1 K095••14 | 1.120 |
| 3 | 5.5 | 5.5 | 9... 14 | LG1 D122••16 | 1.270 |
| 4 | 7.5 | 9 | 13... 18 | LG1 D182••20 | 1.290 |
| 4 | 9 | 9 | 17... 23 | LG1 D182••21 | 1.290 |

Functions performed by the starter:

- isolation,
- locking of isolation,
- lockable Emergency Stop (red/yellow switch disconnector),
- short-circuit protection,
- overload protection,

■ pushbutton control: 1 white Start button "I" and 1 black Stop button "O",

- degree of protection of enclosure: IP 657, double insulated.

Switching back on of power supply after tripping must be by a deliberate action.
A GV2 SN•• indicator light may be added (to be assembled by customer), please consult your Regional Sales Office.
For supply voltages between 380 and 415 V (codes Q7, V7 or N7) the control circuit is pre-wired between phases.
For other supply voltages, the control circuit must be wired by the customer.

## Variants (pre-assembled)

| (1) Compliance with a harmonised European standard assumes conformity with the corresponding directive, provided that installation, building in and/or assembly of the starter is carried out correctly by the machine manufacturer. <br> Harmonised European standards: EN 60947 and EN 60439. <br> Conformity to international standards: IEC 60947 and IEC 60439. <br> (2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office): |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LG1 K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Volts ~ } 1 \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ | 12 | 24 |  | 36 | 42 | 48 |  | 110 | 127 | $\begin{aligned} & 220 / \\ & 230 \end{aligned}$ | $230$ | $\begin{aligned} & 230 / \\ & 240 \end{aligned}$ | $\begin{aligned} & 380 / \\ & 400 \end{aligned}$ | 400 | $\begin{aligned} & 400 / \\ & 415 \end{aligned}$ | 440 | 500 | $\begin{aligned} & 660 / \\ & 690 \end{aligned}$ |
| Code J | J7 | B7 |  | C7 | D7 | E7 |  | F7 | FC7 | M7 | P7 | U7 | Q7 | V7 | N7 | R7 | S7 | Y7 |
| LG1 D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Volts ~ } 2 \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ | 24 |  | 42 |  | 48 |  | 110 |  | $\begin{aligned} & 220 / \\ & 230 \end{aligned}$ |  | 230 | 240 |  | $\begin{aligned} & 380 / \\ & 400 \end{aligned}$ | 400 |  |  | 440 |
| Code B7 | B7 |  | D7 |  | E7 |  | F7 |  | M7 |  | P7 | U7 |  | Q7 | V7 |  |  | R7 |

Other versions Starters for voltages other than those indicated above.
Please consult your Regional Sales Office.

## See page 5/37.

Compliance with a harmonised European standard assumes conformity with the corresponding directive, provided that installation, building in and/or assembly of the starter is carried out correctly by the machine manufacturer.
Harmonised European standards: EN 60947 and EN 60439.
Conformity to international standards: IEC 60947 and IEC 60439.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

# Safety control and protection solutions 

## Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive $98 / 37 / \mathrm{CE}_{\text {(1) }}$



LG8 K09 with padlocking facility fitted as standard

| Reversing starters (with pushbutton control of isolation) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3 |  |  | Circuit-breaker <br> Setting range of thermal trips | Dust \& damp protected starter <br> Basic reference, to be completed by adding the voltage code $\text { (2) }(3)$ | Weight |
| $\begin{aligned} & 2201 \\ & 230 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & 400 / \\ & 415 \mathrm{~V} \end{aligned}$ | 440 V |  |  |  |
| kW | kW | kW | A |  | kg |
| - | 0.06 | 0.06 | 0.16...0.25 | LG8 K06••02 | 1.640 |
| 0.06 | 0.09 | 0.12 | 0.25...0.40 | LG8 K06••03 | 1.640 |
| - | 0.18 | 0.18 | 0.40...0.63 | LG8 K06••04 | 1.640 |
| 0.12 | 0.25 | 0.25 | 0.63... 1 | LG8 K06••05 | 1.640 |
| 0.25 | 0.55 | 0.55 | 1...1.6 | LG8 K06••06 | 1.640 |
| 0.37 | 0.75 | 1.1 | 1.6...2.5 | LG8 K06••07 | 1.640 |
| 0.75 | 1.5 | 1.5 | 2.5... 4 | LG8 K06••08 | 1.640 |
| 1.1 | 2.2 | 3 | 4...6.3 | LG8 K06••10 | 1.640 |
| 1.5 | 4 | 4 | 6... 10 | LG8 K09••14 | 1.640 |
| 3 | 5.5 | 5.5 | 9... 14 | LG8 K12-016 | 1.640 |

## Specifications of reversing starters

Functions performed by the starter:

- isolation,
- locking of isolation fitted as standard as from LG8 K09,

■ Emergency stop (3),

- short-circuit protection,
- overload protection,
- control by selector switch "1-2", position non maintained,
- degree of protection of enclosure: IP 657, double insulated.

Switching back on of power supply after tripping must be by a deliberate action.
A GV2 SNee indicator light may be added (to be assembled by customer), please consult your Regional Sales Office.
For supply voltages between 380 and 415 V (codes Q7, V7 or N7) the control circuit is pre-wired between phases. For other supply voltages, the control circuit must be wired by the customer.

## Variants (pre-assembled)

See page 5/37.
(1) Compliance with a harmonised European standard assumes conformity with the corresponding directive, provided that
installation, building in and/or assembly of the starter is carried out correctly by the machine manufacturer.
Harmonised European standards: EN 60947 and EN 60439.
Conformity to international standards: IEC 60947 and IEC 60439.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

| Volts ~ $50 / 60 \mathrm{~Hz}$ | 12 | 24 | 36 | 42 | 48 | 110 | 127 | $\begin{aligned} & 220 / \\ & 230 \end{aligned}$ | 230 | $\begin{aligned} & 230 / \\ & 240 \end{aligned}$ | $\begin{aligned} & 380 / \\ & 400 \end{aligned}$ | 400 | $\begin{aligned} & 400 / \\ & 415 \end{aligned}$ | 440 | 500 | $\begin{aligned} & 660 / \\ & 690 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Code | J7 | B7 | C7 | D7 | E7 | F7 | FC7 | M7 | P7 | U7 | Q7 | V7 | N7 | R7 | S7 | Y7 |

(3) LG8 K06: the mushroom head type Emergency Stop acts mechanically on the circuit-breaker.

LG8 K09: the Emergency Stop function is performed by an undervoltage trip, acting on the circuit-breaker. This circuit-breaker is always supplied pre-wired for use on $380 / 415 \mathrm{~V} 50 \mathrm{~Hz}$. For a 60 Hz supply, please consult your Regional Sales Office.

| Other versions | Starters for higher power ratings. <br> Please consult your Regional Sales Office. |
| :--- | :--- |


| Dimensions: | Schemes: |
| :--- | :--- |
| page $5 / 38$ | page $5 / 39$ |

# Safety control and protection solutions <br> > <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Enclosed D.O.L. starters for motor control</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">for use on a machine subject to the application</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">of Machinery Directive $98 / 37 / C E_{(1)}$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Enclosed D.O.L. starters for motor control |
| :--- |
| for use on a machine subject to the application |
| of Machinery Directive $98 / 37 / C E_{(1)}$ |</table-markdown></div> <br> <br> Enclosed D.O.L. starters for motor control <br> <br> Enclosed D.O.L. starters for motor control for use on a machine subject to the application for use on a machine subject to the application of Machinery Directive 98/37/CE (1) 

 of Machinery Directive 98/37/CE (1)}

| Variants | Application | Suffix to be added to <br> the starter reference (2) |
| :--- | :--- | :--- |
| Description <br> With Emergency Stop <br> No control pushbuttons | LG1, LG7, LG8 | A04 |
| With Emergency Stop <br> 2 pushbuttons with arrows " 1 " and " $\downarrow$ " <br> (lathing) <br> 1 Stop button " $\mathbf{O}$ " | LG8 K06 | A10 |
| Without Emergency Stop <br> 2 pushbuttons with arrows " 1 " and " $\downarrow$ " <br> (non latching) <br> Without Emergency Stop | LG8 | A14 |
| With Emergency Stop, mushroom head | LG1 | A37 |


| Without Emergency Stop <br> (when the Emergency Stop is on the machine) | LG7, LG8 | A39 |
| :--- | :--- | :---: |
| With padlocking facility <br> (fitted as standard as from LG1 K09 or LG7 K09) | LG1 K06, LG7 K06 | A29 |
| 1 neutral terminal <br> Fitted as standard on starters ordered <br> for use on 240 V (U7) supply | LG1, LG7, LG8 | A59 |
| Short-circuit signalling block | LG7 | A12 |
| Vacuum valve for compressor | LG7 D | A40 |
| Without circuit-breaker | LG1, LG7, LG8 | (3) |



[^49]Safety control and protection solutions
Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE

(1) Emergency Stop for starters $<3 \mathrm{~kW}$
(2) Emergency Stop for starters $\geqslant 3 \mathrm{~kW}$
(3) Only for LG7

| Knock-outs or blanking plugs for cable glands |  |  |
| :--- | :--- | :--- |
| Type of enclosure At top At bottom <br> LG1 K and LG1 D $2 \times 13 \mathrm{P}$ and $2 \times 16 \mathrm{P}$ $2 \times 13 \mathrm{P}$ and $2 \times 16 \mathrm{P}$ <br> LG7 K and LG7 D $2 \times 13 \mathrm{P}$ and $2 \times 16 \mathrm{P}$ $2 \times 13 \mathrm{P}$ and $2 \times 16 \mathrm{P}$ <br> LG8 K $2 \times 13 \mathrm{P}$ and $2 \times 16 \mathrm{P}$ $2 \times 13 \mathrm{P}$ and $2 \times 16 \mathrm{P}$ |  |  |

## Safety control and protection solutions

Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE


# Safety control and protection solutions 

## Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE



Non-reversing starters with integral transformer
Compliance with a harmonised European standard assumes conformity with the corresponding directive, provided that installation, building in and/or assembly of the starter is carried out correctly by the machine manufacturer. Harmonised European standards: EN 60947 and EN 60439.
Conformity to international standards: IEC 60947 and IEC 60439.

| Starters pre-wired for operation on a 3-phase 380 to $\mathbf{4 0 0}$ V 50 Hz supply (with pushbutton control of isolator function) |  |  |  |
| :---: | :---: | :---: | :---: |
| Standard power ratings of 3-phase motors 50 Hz in category AC-3 | Circuit-breaker | Dust and damp protected starter | Weight |
| 380/400 V | Setting range of thermal trips | Reference (1) |  |
| kW | A |  | kg |
| 0.06 | 0.16...0.25 | LJ7 K06Q702 | 2.270 |
| 0.09 | 0.25...0.40 | LJ7 K06Q703 | 2.270 |
| 0.18 | 0.40...0.63 | LJ7 K06Q704 | 2.270 |
| 0.25 | 0.63... 1 | LJ7 K06Q705 | 2.270 |
| 0.55 | 1..1.6 | LJ7 K06Q706 | 2.270 |
| 0.75 | 1.6...2.5 | LJ7 K06Q707 | 2.270 |
| 1.5 | 2.5... 4 | LJ7 K06Q708 | 2.270 |
| 2.2 | 4...6.3 | LJ7 K06Q710 | 2.270 |
| 4 | 6... 10 | LJ7 K09Q714 | 2.270 |

## Specifications

Functions performed by the starter:

- isolation,
- locking of isolation fitted as standard on LJ7 K09,
- lockable Emergency Stop (1/4 turn) (2),
- short-circuit protection,
- overload protection,
- pushbutton control: 1 white Start button "I" and 1 black Stop button "O",
- terminal allowing connection of a volt-free contact, if required, in the control circuit,
- degree of protection of enclosure: IP 657, double insulated.

Switching back on of power supply after tripping must be by a deliberate action.
A GV2 SN•e indicator light may be added (to be assembled by customer), please consult your Regional Sales Office.
Integral transformer: 400/24 V, 25 VA.

| Variants (3) |  |  |
| :---: | :---: | :---: |
| Description | For use on | Suffix to be added to the starter reference |
| With Emergency Stop No control pushbuttons | LJ7 | A04 |
| Without Emergency Stop (when the Emergency Stop is o | LJ7 | A39 |
| With padlocking facility (fitted as standard on LJ7 K09) | LJ7 K06 | A29 |
| Without circuit-breaker | LJ7 | (5) |

[^50]
# Safety control and protection solutions 

## Enclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE



## Reversing starters with integral transformer

Compliance with a harmonised European standard assumes conformity with the corresponding directive, provided that installation, building in and/or assembly of the starter is carried out correctly by the machine manufacturer. Harmonised European standards: EN 60947 and EN 60439.
Conformity to international standards: IEC 60947 and IEC 60439.
Starters pre-wired for operation on a 3-phase 380 to 400 V 50 Hz supply (with pushbutton control of isolator function)

| Standard power ratings of 3-phase motors 50 Hz in category AC-3 | Circuit-breaker | Dust and damp protected starter | Weight |
| :---: | :---: | :---: | :---: |
| 380/400 V | Setting range of thermal trips | Reference (1) |  |
| kW | A |  | kg |
| 0.06 | 0.16...0.25 | LJ8 K06Q702 | 2.650 |
| 0.09 | 0.25...0.40 | LJ8 K06Q703 | 2.650 |
| 0.18 | 0.40...0.63 | LJ8 K06Q704 | 2.650 |
| 0.25 | 0.63... 1 | LJ8 K06Q705 | 2.650 |
| 0.55 | 1...1.6 | LJ8 K06Q706 | 2.650 |
| 0.75 | 1.6...2.5 | LJ8 K06Q707 | 2.650 |
| 1.5 | 2.5... 4 | LJ8 K06Q708 | 2.650 |
| 2.2 | 4...6.3 | LJ8 K06Q710 | 2.650 |
| 4 | 6... 10 | LJ8 K09Q714 | 2.650 |

## Specifications

Functions performed by the starter:

- isolation,
- locking of isolation fitted as standard on LJ8 K09,
- lockable Emergency Stop (1/4 turn) (2),
- short-circuit protection,
- overload protection,

■ pushbutton control: 1 white Start button "l" and 1 black Stop button "O",

- terminal allowing connection of a volt-free contact, if required, in the control circuit,
- degree of protection of enclosure: IP 657, double insulated.

Switching back on of power supply after tripping must be by a deliberate action.
A GV2 SNe७ indicator light may be added (to be assembled by customer), please consult your Regional Sales Office.
Integral transformer: 400/24 V, 25 VA .
\(\left.$$
\begin{array}{lll}\text { Variants (3) } & \begin{array}{l}\text { For } \\
\text { use on }\end{array} & \text { LJ8 }\end{array}
$$ \begin{array}{l}Suffix to be added to <br>

the starter reference (4)\end{array}\right]\) A04 | Description | LJ8 | A39 |
| :--- | :--- | :--- |
| With Emergency Stop <br> No control pushbuttons | LJ8 K06 | A29 |
| Without Emergency Stop <br> (when the Emergency Stop is on the | LJ8 | (5) |
| With padlocking facility <br> (fitted as standard on LJ8 K09) |  |  |
| Without circuit-breaker |  |  |

[^51]

LJ7 K09, LJ8 K09


Cut-outs or blanking plugs for cable glands at the top and at the bottom $2 \times 13 \mathrm{P}$ and $2 \times 16 \mathrm{P}$.

## Safety control and protection

 solutionsEnclosed D.O.L. starters for motor control for use on a machine subject to the application of Machinery Directive 98/37/CE

Schemes
Non-reversing starters LJ7 K06

LJ7 K09


## Reversing starters

LJ8 K06


LJ8 K09


Selection guide
Safety control and protection solutions
TeSys contactors


| Rated operational current | $\mathrm{AC}-3$ |
| :--- | :--- |
|  | $\overline{\mathrm{AC}-1}$ |


| Rated operational voltage |
| :--- |
| Number of poles |

Contactor type references
Pages

Consult our catalogue "Motor starters solutions - Control and protection components"

Introduction - European legislation ..... 6/2
Industrial accidents. ..... $6 / 3$
European legislation and the standards ..... 6/4
Standards to be applied ..... 6/6
Assessment of machinery related risk ..... 6/8
Standard to be applied according to the design selected for the machine control system ..... 6/10
Standard EN/ISO 13849-1
Machinery safety - Safety-related parts of control systems (SRP/CS). ..... 6/12
Standard EN/IEC 62061
Machinery safety - Safety-related electrical control systems (SRECS) ..... 6/16
Certification and C $\in$ marking. ..... 6/20


Safety and process reliability

## Introduction

Safety has become a key issue for businesses.
Social developments in association with technological progress have had a profound impact on legislation and on regulations for the use of building electrical automation equipment.

## Social issues

The safety-conscious nature of our western societies has led the legislature to increase the number of requirements and establish stricter rules, while the high cost of accidents has prompted companies to make efforts in the same direction.

## Technological issues

Increasing levels of automation have led to new restrictions. In some case it is difficult, if not dangerous, to stop a machine suddenly and it is necessary to perform a safe shut down sequence before allowing personnel to enter into a production cell.

■ The increasingly widespread use of electronics and software has required a different approach to the solutions adopted; empirical rules are no longer enough. Selection includes a reliability calculation to determine the behaviour of the system.

In this context, the specification and design phase are crucial. Studies show that more than $2 / 3$ rds of incidents are due to bad design and inadequate specifications. At this stage it is therefore necessary to estimate potential risks and select the most appropriate solutions to reduce their consequences. Standards are available to assist and guide the designer.
Manufacturers of components and solutions help their customers by offering complete, ready-to-use functions which, when combined in accordance with the regulations, satisfy the customer's needs and meet legislative requirements.

In this chapter, we will present a simplified process. To make a choice, the customer will then be able to refer to the safety functions chapter and to the safety products chapters.

## European legislation

European legislation requires that preventive action be taken to preserve and protect the quality of the environment and human health. To achieve these objectives, European Directives have been prepared which must be applied by plant operators and by manufacturers of equipment and machines. It also assigns responsibility for possible accidents.

- Notwithstanding the constraints, machine safety has the following positive repercussions:
- prevention of industrial accidents,
- protection of workers and personnel by means of suitable safety measures that
take into account the machine's application and the local environment.
- This makes it possible to reduce direct and indirect related costs:
- by reducing physical harm,
- by reducing insurance premiums,
- by reducing production losses and possible delay penalties,
- by limiting damages and costs for maintenance.
- Safe operation involves two principles: safety and reliability of the process:
- safety is the ability of a device to keep the risk incurred by persons within acceptable limits,
- reliability of operation is the ability of a system or device to perform its function at any moment in time and for a specified duration.
- Safety must be taken into account right from the beginning of the design stage and kept in place throughout all stages of a machine's life cycle: transport, installation, commissioning, maintenance, dismantling.


## Industrial accidents

An industrial accident occurs through work or in the workplace and causes minor to serious injury to a person using a machine, feeding it or carrying out special work on it (fitter, operator, maintenance personnel, etc.).

## Causes of accidents in the workplace

## Consequences

## Conclusion

## Types of potential hazard

$\square$ Human-related factors (designers, users):

- poor grasp of machine design,
- over-familiarity with danger through habit and failure to take dangerous situations seriously,
- underestimation of hazards, causing people to ignore safe working procedure,
- loss of concentration on tasks to be performed (e.g. fatigue),
- failure to comply with procedures,
- stressful working conditions (noise, work rates, etc.),
- uncertainty of employment which can lead to inadequate training,
- inadequate or bad maintenance, generating unsuspected hazards.

■ Machine-related factors:

- inadequate guards,
- inherent machine hazards (e.g. reciprocal motion of a machine, unexpected starting or stopping),
- machines not suited to the application or environment (e.g. sound alarms deadened by the noise of surrounding machinery).

■ Plant-related factors:

- movement of personnel from machine to machine (automated production line),
- machinery from different manufacturers and using different technologies,
- flow of materials or products between machines.
- Risk of varying degrees of physical injury to the user,
- stoppage of the machine involved,
- stoppage of similar machine installations for inspection, for example by health and safety inspectors,
- if necessary, modifications to make machinery safe,
- change of personnel and training new personnel for the job,
- damage to the company brand image.

Damages for physical injuries are equivalent to about 20 thousand million euro paid out each year in the European Union. Decisive action is required to reduce the number of accidents in the workplace. The first essentials are adequate company policies and efficient organisation.
Reducing the number of industrial accidents and injuries depends on the safety of machines and equipment.
The potential hazards of a machine can be classified into three main groups, as illustrated below:

Electrical hazards
Electric shock, electrocution, burns


Catching, entanglement,


Physical and chemical hazards

| Discharge of | Burns |
| :--- | :--- |


dangerous substances

## European legislation and the standards

The main purpose of the Machinery Directive 98/37/EC is to compel manufacturers to guarantee a minimum safety level for machinery and equipment sold within the European Union. A new version of the Machinery Directive 2006/42/EC will be effective at the end of 2009.

To allow free circulation of machinery within the European Union, the C $\in$ marking must be applied to the machine and an EC declaration of conformity is issued to the purchaser. This directive came into effect in January 1995 and has been enforced since January 1997 for all machines.

The user has obligations defined by the Use of Work Equipment directive 89/655/EEC which can in most cases be met by using machinery compliant with relevant standards.
These standards are complex. After a brief presentation of the structure of the standards system, we will provide the reader with a practical guide to the typical standards to be applied according to the selected control system design.

## Standards

The harmonised European safety standards establish technical specifications which comply with the minimum safety requirements defined in the related directives. Compliance with all applicable harmonised European standards can be assumed to ensure compliance with the related directives. The main purpose is to guarantee a minimum safety level for machinery and equipment sold within the EU market and allow the free circulation of machinery within the European Union.


## The 3 groups of European standards

## - Type A standards

Basic safety standards which specify the basic concepts, design principles and general aspects valid for all types of machine: e.g. EN/ISO 12100.

- Type B standards

Standards relating to specific aspects of safety or to a particular device that can be used on a wide range of machines.
$\square$ Type B1 standards
Standards relating to specific safety aspects of machines: e.g. EN/IEC 60204-1 Electrical equipment of machines.

- Type B2 standards

Standards relating to specific products such as two-hand control stations (EN 574), guard switches (EN 1088), emergency stops (EN/ISO 13850), etc.

- Type Gstandards

Standards relating to various families or groups of machines (e.g.: hydraulic presses EN 693, robots, ...) and giving detailed applicable requirements

## Safety of personnel and equipment European legislation and the standards (continued)

| European legislation and the standards (continued) |  |  |
| :---: | :---: | :---: |
| A selection of standards |  |  |
| Standards | Type | Subject |
| EN/ISO 12100-1 | A | Machinery safety - Basic concepts <br> - Part 1: Terminology, methodology, <br> - Part 2: Technical principles |
| EN/ISO 14121-1 (EN 1050) | A | Machinery safety - Principles for risk assessment |
| EN 574 | B | Two-hand control devices - Functional aspects and design principles |
| EN/ISO 13850 | B | Emergency stop - Principles for design |
| EN/IEC 62061 | B | Functional safety of safety-related electrical, electronic and electronic programmable control systems |
| $\begin{aligned} & \text { EN/ISO 13849-1 } \\ & \text { (EN 954-1) } \end{aligned}$ | B | Machinery safety - Safety-related parts of control systems - Part 1 general principles for design |
| EN 349 | B | Minimum gaps to avoid crushing parts of the human body |
| EN 294 | B | Safety distances to prevent hazardous zones being reached by upper limbs |
| EN 811 | B | Safety distances to prevent hazardous zones being reached by lower limbs |
| EN 60204-1 | B | Machinery safety - Electrical equipment of machines <br> - Part 1: general requirements |
| EN 999 | B | Positioning of protective equipment in respect of approach speeds of body parts |
| EN 1088 | B | Interlocking devices associated with guards - Principles for design and selection |
| EN/IEC 61496-1 | B | Electro-sensitive protective equipment |
| EN/IEC 60947-5-1 | B | Electromechanical control circuit devices |
| EN 842 | B | Visual danger signals - General requirements, design and testing |
| EN 1037 | B | Prevention of unexpected start-up |
| EN 953 | B | General requirements for the design and construction of fixed and movable guards |
| EN 201 | C | Machinery for plastics and rubber - Injection moulding machines - Safety requirements |
| EN 692 | G | Mechanical presses - Safety requirements |
| EN 693 | G | Hydraulic presses - Safety requirements |
| EN 289 | C | Machinery for plastics and rubber - Presses - Safety requirements |
| EN 422 | C | Blow moulding machines for producing hollow parts - Design and construction requirements |
| EN/ISO 10218-1 | C | Manipulating industrial robots - Safety requirements |
| EN 415-4 | C | Safety of packaging machines - Part 4: palletisers and depalletisers |
| EN 619 | G | Safety and EMC requirements for equipment for mechanical handling of unit loads |
| EN 620 | C | Safety and EMC requirements for fixed belt conveyors for bulk material |
| EN 746-3 | c | Industrial thermo processing equipment - Part 3: safety requirements for the generation and use of atmosphere gases |

# Safety of personnel and equipment Standards to be applied 

## European Machinery Directive 98/37/EC



## Machinery safety

safety-related parts of control
systems
EN/ISO 13849-1
Non electrical and
simple electrical

Machinery safety EN/IEC 62061

Functional safety of electrical, electronic and electronic programmable control systems
Machinery safety
EN/IEC 60204-1
Electrical equipment of machines

[^52]See page 6/21.

## Standards to be applied <br> The process

## European Machinery Directive 98/37/EC

Compliance with the following standards ensure compliance with the Machinery Directive (a new version of the Machinery Directive 2006/42/EC will be effective in November 2009).

## EN/ISO 12100: Basic concept, General principles for design.

See page 6/7.
The purpose of this standard is to provide designers with an overall framework and guidance to enable them to produce machines that are safe for their intended use.

EN/ISO 14121: Principles for risk assessment.
See page 6/8.

Standards to be apply according to the design selected for the Machine control system.
See page 6/10.

## Safety of personnel and equipment Standards to be applied (continued)



Achieved by design measures, safety-related systems and by external risk reduction devices

Reduction of risk to an acceptable level


Selection of the protection system (EN/ISO 12100-2)

## Standards to be applied (continued)

## Risk and safety

Safety is the absence of risks which could cause injury to or damage the health of persons. Functional safety is a part of safety that depends on the correct operation of safety functions.

According to the requirements of standard EN/ISO 12100-1, the machine designer's job is to reduce all risks to a value lower than the acceptable risk.
For more details concerning the sources of accidents and risk prevention, the reader is referred on page $6 / 3$.

This standard recognises two sources of hazardous phenomena:

- moving parts of machines,
- moving tools and/or workpieces.

It gives guidelines for the selection and installation of devices which can be used to protect persons and identifies those measures that are implemented by the machine designer and those dependent on its user.

The measures taken by the machine designer may be:

- inherent in the design,
- selection of guards and additional measures, including control systems,
- information for the user.

The measures taken by the user may be (non-exhaustive list):

- organisation, procedures, etc.,
- personal protective equipment,
- training.


Definition of risk

## Assessment of machinery related risk European legislation

- Machines are sources of potential risk and the Machinery Directive requires a risk assessment to ensure that any potential risk is reduced to less than the acceptable risk.

Standard EN/ISO 14121 defines risk as follows: risk is the severity multiplied by the possibility of occurrence. It defines an iterative process for achieving machine safety, which states that the risks for each potential hazard can be determined in four stages. This method provides the basis for the requisite risk reduction.

## Risk assessment

Risk assessment consists of a series of logic steps which make it possible to systematically analyse and evaluate machinery-related risks.

Risk assessment is followed, whenever necessary, by a reduction of the risk. This definition taken from standard EN/ISO 14121-1 is based on an iterative process represented in the diagram opposite.

Determination of machine limits
Risk assessment starts by determining the limits of the machine at all stages of its life cycle:

- transport, assembly, installation,
- commissioning,
- use,
- de-commissioning, dismantling.

The use limitations must then be specified:

- operating modes,
- level of training required,
- space limits (amplitude, movement...),
- time limits (life cycle, frequency of maintenance...).


## Identification of the potential hazard

If a potential hazard exists, a hazardous phenomenon will cause harm if measures are not taken. All the tasks associated with the machine's life cycle must be identified, such as:

- assembly, transport and installation,
- adjustment, testing,
- learning, programming,
- tool changing,
- feeding, removal of product from the machine,
- starting, stopping,
- emergency stops, restarting after an unexpected stop,
- maintenance, cleaning, etc.


Elements of the risk

$\lambda$ rate of control system failures
$\lambda_{D}$ rate of dangerous failures
$\lambda_{\text {DU }}$ rate of undetected dangerous failures
$\lambda_{\text {DD }}$ rate of detected dangerous failures
$\lambda_{\mathrm{s}}$ rate of safe failures
$\lambda_{s}$ rate of undetected safe failures
$\lambda_{\mathrm{s}}$ rate of detected safe failures
Breakdown of the probability of failures

## Assessment of machinery related risk (continued) <br> Risk assessment (continued) <br> Risk estimation

The risk is a function of the severity of the harm and the probability that this harm will occur.

- The severity of the harm takes into account:
- the severity of injuries (slight, serious, death),
- the extent of the harm (number of persons).
- The probability of the harm occurring takes into account:
- exposure to the hazard (nature of access, time spent in the hazardous zone, number of persons exposed, frequency of access...),
- the occurrence of a hazardous event (accident history, comparison of risks, ...),
- the possibility of avoiding or limiting the harm (experience, awareness of the risk, ...).

Risk evaluation
On the basis of the risk assessment, the designer has to define the safety related control system. To achieve that, the designer will chose one of the two standards appropriate to the application:

- either standard EN/ISO 13849-1, which defines performance levels (PL),
- or standard EN/IEC 62061, which defines safety integrity leveIS (SIL).


## Risk reduction

The process of risk reduction for dangerous events starts by:

- intrinsic prevention (inherently safe design),
- definition of the appropriate protective means (guards, cover, fix fences, ...),
- personal training.

If the selected preventive measure depends on a safety related control system, the designer has to perform an iterative process for the design of the safety relative control system.

- The first stage is to define the necessary safety-related control functions: - either through the choice of components,
- or by adapting the control system architecture. Redundancy (double circuit components), for example, significantly increases the reliability of the solution.

■ Once the limits of available technologies have been reached, it will not be possible to further reduce the rate of dangerous failures. To achieve the required level of safety, it will be necessary to use a diagnostic system that allows dangerous failures to be detected.

## Standard to be applied according to the design selected for

 the machine control systemSafety standards to be applied according to type of architecture selected
Based on the generic definition of the risk the standards classify levels of risk reduction using different calculation methods, which we will explain in the paragraphs specific to each of these standards.

Two definitions coexist:

- standard EN/ISO 13849-1: PL (Performance Level),
- standard EN/IEC 62061: SIL (Safety Integrity Level).

The table below gives relations between these two definitions.

| Standard | Definition | Relations |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EN/ISO 13849-1 | PL | a | b | c | d | e |
| EN/IEC 62061 | SIL | X | 1 | 1 | 2 | 3 |

In order to be able to select the applicable standard, a common table in both standards gives indications which are summarised in the table below:

|  | EN/ISO 13849-1 | EN/IEC 62061 |
| :--- | :--- | :--- |
| Technology used | max. PL | max. SIL |
| Non electric only, for example hydraulic | e | Not covered |
| Including some electromechanical, for example <br> relays and/or non complex electronics | e (1) | 3 |
| Including complex electronics, <br> for example programmable | e | 3 |

(1) For designated architectures only.

For building specific complex sub-systems or for higher level requirements including software, standard EN/IEC 61508 relating to systems must be used.

# Safety of personnel and equipment Standard to be applied according to the design selected for the machine control system (continued) 

## Standard to be applied according to the design selected for the machine control system (continued)

Designing a control system taking into account the requirements of safety standards may seem rather complex. We will guide the reader through this process by presenting:
■ the basis and development of the standards,

- the safety standards to be applied according to the type of architecture selected,
- machine equipment and wiring.


## Basis and development of the standards

In a complex system, such as a refinery, it is no longer sufficient to consider only the sub-systems to ensure protection; failure of a sub-system could be catastrophic for persons and the environment.
The approach is therefore more global. Taking into account the whole safety life cycle standard EN/IEC 61508 deals with control systems, and includes safety rules, technical specifications, management and training of personnel.

The use of more complex control systems based on electronics and software highlights the weaknesses of standard EN 954-1:

- the reliability of components is not taken into account,
- insufficient requirements for programmable products,
- combining components with a category certification is not enough to "guarantee" the required level of risk reduction.

Based on experience gained with systems, the standards body has, in line with standard EN/IEC 61508, developed standard EN/IEC 62061 which applies the principles of functional safety to the design of control systems for machinery. This standard offers two important advantages:

- it incorporates the new electronic and electronic programmable technologies to provide the safety functions,
- it is consistent with the basic standard EN/IEC 61508 and is therefore being specified more and more for machines by users.

At the same time, standard EN/ISO 13849-1 will totally replace the standard EN 954-1 in November 2009, which brings several improvements and, above all, is consistent with safety standards in general.



Representation of the safety function


## Standard EN/ISO 13849-1 <br> Machinery safety - Safety-related parts of control systems

Standard EN/ISO 13849-1 is a development of standard EN 954-1. For clarity, only a simplified analysis of this new version will be presented here.

## Field of application of the standard

This standard gives safety requirements and advice relating to principles for the design and integration of safety-related parts of control systems (SRP/CS), including software design. For these parts, it specifies the characteristics, including the performance level, needed to achieve these safety functions. It applies to the SRP/ CS of all types of machine, regardless of the technology and type of energy used (electric, hydraulic, pneumatic, mechanical, etc.).

## Process

Risk assessment as defined in standard EN/ISO 14121 (see page 6/6) leads to decisions on risk reduction measures. If these measures depend on a control system, then EN/ISO 13849-1 can apply. It defines a 6-stage design process. 1 - Selection of the essential safety functions that SRP/CS must perform. For each safety function, specify the required characteristics.
2 - Determine the required performance level (PLr).
3 - Design and technical creation of safety functions: identify the parts that perform the safety function.
Determine the performance level (PL) for all safety-related parts, taking into account all the other criteria.
4 - Evaluate the performance level PL for each safety-related part.
5 - Check that the performance level PL achieved is greater than or equal to the required level (PLr).
6 - Validate to ensure that all requirements are satisfied.

We will now illustrate these stages, taking as an example a safety function that stops operation of a machine motor when a safety guard is opened. The machine is potentially dangerous, there is a risk of the operator's arm being amputated if there is no guard.

## Stage 1 - Selection of safety functions

The diagram opposite shows a safety function which consists of several parts:

- the input actuated by opening of the guard (SRP/CSa),
- the control logic, limited in this example to opening or closing of a contactor coil
(SRP/CSb),
- the power output that controls the motor (SRP/CSc),
- the connections (lab, Ibc).

Stage 2 - Estimation of required performance level (PLr)
For our safety function, this is estimated using the risk graph.
The parameters to be considered are:
$\square$ S severity of the injury

- S1 slight injury, normally reversible,
- S2 Serious, normally irreversible, including death.
$\square$ F frequency and/or duration of exposure to the hazardous phenomenon.
- F1 rare to fairly frequent and/or short duration of exposure,
- F2 frequent to permanent and/or long duration of exposure.
$\square \mathbf{P}$ possibility of avoiding the hazardous phenomena or limiting the harm.
- P1 possible under certain circumstances,
- P2 virtually impossible.

As a failure of the safety function could result in a serious injury, the estimate (in blue on the drawing on the next page) gives a required performance level PLr $=e$.

# Safety of personnel and equipment Standard EN/ISO 13849-1 <br> Machinery safety - Safety-related parts of control systems (SRP/CS) (continued) 



Estimation of required performance level
1: Starting point for estimation
L: Low contribution to risk reduction
PLr: Required Performance Level H: High contribution to risk reduction

## Standard EN/ISO 13849-1

Machinery safety - Safety-related parts of control systems

## (continued)

Process (continued)

## Stage 3

## Design and creation of the safety functions

At this point, we need to describe the PL calculation method.
The PL is defined in terms of the probability of a dangerous failure per hour:

| PL | Probability of a dangerous failure per hour |
| :--- | :--- |
| a | $\geqslant 10^{-5} \ldots<10^{-4}$ |
| b | $\geqslant 3 \times 10^{-6} \ldots<10^{-5}$ |
| c | $\geqslant 10^{-6} \ldots<3 \times 10^{-6}$ |
| d | $\geqslant 10^{-7} \ldots<10^{-6}$ |
| e | $\geqslant 10^{-8} \ldots<10^{-7}$ |

It comprises the following main elements:

- the category of the components used,
- the reliability of the components (MTTF ${ }_{\mathrm{d}}$ : mean time to dangerous failure),
- the diagnostic capability DC.
- Category of components used

The table below summarises system behaviour in the event of a failure, for the 5 categories defined:

|  | System behaviour | Principles to achieve safety |
| :---: | :---: | :---: |
| $B$ | A fault can lead to loss of the safety function | Selection of appropriate component |
| 1 | As for category B but greater reliability of the safety function required. | Selection of appropriate component |
| 2 | A fault can lead to loss of the safety function between two periodic inspections and loss of the safety function is detected by the control system at the next test. | Self-monitoring |
| 3 | For a single fault, the safety function is always ensured. Only some faults will be detected. The accumulation of undetected faults can lead to loss of the safety function. |  |
| 4 | When faults occur, the safety function is always ensured. Faults will be detected in time to prevent loss of the safety function |  |

Reliability of the components
The MTTF ${ }_{d}$ is the Mean Time To dangerous Failure of the component.
Without going into the suggested calculation methods, we can decide to use the three ranges suggested below:

| Reliability levels of components |  |
| :--- | :--- |
| Index | Range |
| Low | 3 years $\leqslant \mathrm{MTTF}_{d}<10$ years |
| Medium | 10 years $\leqslant \mathrm{MTTF}_{d}<30$ years |
| High | 30 years $\leqslant \mathrm{MTTF}_{d}<100$ years |

A MTTF ${ }_{d}$ of less than 3 years should never be found, because this would mean that after one year in operation, $30 \%$ of all those components in use would have failed to a dangerous state. The maximum value is limited to 100 years because devices dealing with a significant risk should not depend on the reliability of a single component. Additional measures such as redundancy and tests are required.

# Safety of personnel and equipment Standard EN/ISO 13849-1 <br> Machinery safety - Safety-related parts of control systems (SRP/CS) (continued) 



Functional diagram of the example

## Standard EN/ISO 13849-1 <br> Machinery safety - Safety-related parts of control systems (continued)

## Process continued)

## Stage 3- (continued)

- Diagnostic capability: this term is expressed as a percentage and quantifies the ability to diagnose a dangerous failure.
For example, in the event of welding of a N/C contact in a relay, the state of the N/O contact could incorrectly indicate the opening of the circuit, unless the relay has mechanically linked N/O and N/C contacts, when the fault can be detected. The standard recognises four ranges:

| Diagnostic capability categories |  |
| :--- | :--- |
| Index | Range |
| Nil | $D C<60 \%$ |
| Low | $60 \% \leqslant D C<90 \%$ |
| Medium | $90 \% \leqslant D C<99 \%$ |
| High | $99 \% \leqslant D C$ |

■ Summary table for the designer: to help the designer make their choice, the following table summarises the elements of the PL.


- In our example, to reach the PL=e, the solution will therefore have to correspond to category 4 with redundant circuit; the function scheme is shown opposite with two channels in parallel,
$\square$ a high diagnostic capability,
$\square$ a high MTTF $_{d}$.
For our application, we could suggest a redundant relay scheme but it is nowadays easier to use safety function blocks.
The solution is illustrated below.


The process suggested by the standard is iterative and a few estimations are therefore necessary in order to obtain the expected result. In view of the required performance level, we have chosen a solution with redundant circuit.

# Safety of personnel and equipment Standard EN/ISO 13849-1 <br> Machinery safety - Safety-related parts of control systems (SRP/CS) (continued) 

## Standard EN/ISO 13849-1 <br> Machinery safety - Safety-related parts of control systems (continued) <br> Process (continued)

Stage 4 - Evaluate the performance level PL for each safety-related part Based on the information in the supplier's catalogue and Annex E of the standard, we obtain the following values:

| Example | $\mathbf{B}_{10}$ (number of operations) $/ \%$ <br> dangerous failure | MTTF $_{\mathbf{d}}$ | DC |
| :--- | :--- | :--- | :--- |
| SRP/CS $:$ Safety limit switches | $10.000 .000 / 20 \%$ dangerous failure | 7102 | $99 \%$ |
| SRP/CS $_{b}$ : XPS AK safety module | - | 191.5 | $99 \%$ |
| SRP/CS ${ }_{c}$ : LCK contactor | $1.000 .000 / 73 \%$ dangerous failure | 194 | $99 \%$ |

For electromechanical products,
the MTTF ${ }_{d}$ is calculated on the basis of the total number of operations that the product can perform, using $\mathbf{B}_{10 \mathrm{~d}}$ values:
In our case, the machine operates for 220 days per year, 8 hours per day with a cycle of 90 s .
$N=220 \times 8 \times(3600 / 90)=70400$ operations/year
$\mathrm{MTTF}_{\mathrm{d}}=\mathrm{B}_{10 \mathrm{~d}} /(0.1 \times \mathrm{N})$ and $\mathrm{B}_{10 \mathrm{~d}}=\mathrm{B}_{10} / \%$ dangerous failure.
For the safety switches,
the MTTF $_{d}=(1 / 0.20 \times 10000000) /(0.1) \times 70400=284$ years
For the contactors,
the MTTF $_{d}=(1 / 0.73 \times 1000000) /(0.1) \times 70400=194$ years
The MTTF ${ }_{d}$ for each channel will then be calculated using the formula:
$\frac{1}{\mathrm{MTTF}_{\mathrm{d}}}=\frac{1}{\mathrm{MTTF}_{\mathrm{da}}}+\frac{1}{\mathrm{MTTF}_{\mathrm{db}}}+\frac{1}{\mathrm{MTTF}_{\mathrm{dc}}}$
i.e. 95.2 years for each channel.

A similar formula is used to calculate the diagnostic capability


The result of the calculation in our example gives a value of $99 \%$
Stage 5 - Checking that required performance level is achieved
The result of the above calculations is summarised below:
$\square$ a redundant architecture: category 4 ,
$\square$ a mean time to failure > 30 years: high MTTF $_{d}$,
$\square$ a diagnostic capability of $99 \%$ : high DC.
Looking at this table, we confirm that PL level $\mathbf{e}$ is achieved:


Stage 6 - Validation of the required performance level
The design of SRP/CS must be validated and must show that the combination of SRP/CS performing each safety function satisfies all the applicable requirements of EN/ISO 13849.

## Standard EN/IEC 62061 <br> Machinery safety - Safety-Related Electrical Control systems (SRECS)

Functional Safety of safety-related electrical, electronic and electronic programmable control systems

## Field of application of the standard

Safety-related electrical control systems in machines (SRECS) are playing an increasing role in ensuring the overall safety of machines and are more and more frequently using complex electronic technology.

This standard is specific to the machine sector within the framework of EN/IEC 61508. It gives rules for the integration of sub-systems designed in accordance with EN/ISO 13849. It does not specify the operating requirements of non-electrical control components in machines (for example: hydraulic, pneumatic).

## Functional approach to safety

As with EN/ISO 13849-1, the process starts with analysis of the risks (EN/ISO 14121) in order to be able to determine the safety requirements. A particular feature of this standard is that it prompts the user to make a functional analysis of the architecture, then split it into sub-functions and analyse their interactions before deciding on a hardware solution for them (the SRECS).

- A functional safety plan must be drawn up and documented for each design project. It must include: $\square$ a specification of the safety requirements for the safety functions (SRCF) that is in two parts:
- a description of the functions and interfaces, operating modes, function priorities, frequency of operation, etc.
- specification of the safety integrity requirements for each function, expressed in terms of SIL (Safety Integrity Level).
The table below gives the target maximum failure values for each level.

| SIL | Probability of a dangerous failure per hour (PFHd) |
| :--- | :--- |
| 3 | $\geqslant 10^{-8} \ldots<10^{-7}$ |
| 2 | $\geqslant 10^{-7} \ldots<10^{-6}$ |
| 1 | $\geqslant 10^{-6} \ldots<10^{-5}$ |

$\square$ The structured and documented design process for electrical control systems (SRECS),
$\square$ the procedures and resources for recording and maintaining appropriate information,
$\square$ the process for management and modification of the configuration, taking into account organisation and authorised personnel,
$\square$ the verification and validation plan.

## - Functional safety

The decisive advantage of this approach is that of being able to offer a failure calculation method that incorporates all the parameters that can affect the reliability of electrical systems, whatever the technology used.
The method consists of assigning a SIL to each function, taking into account the following parameters:

- the probability of a dangerous failure of the components (PFHd),
- the type of architecture; with or without redundancy, with or without diagnostic device making it possible to avoid some of the dangerous failures,
- common cause failures (power cuts, overvoltage, loss of communication network, etc.) (CCF),
- the probability of a dangerous transmission error where digital communication is used,
- electromagnetic interference (EMC).


# Safety of personnel and equipment Standard EN/IEC 62061 <br> Machinery safety - Safety-Related Electrical Control systems (SRECS) (continued) 



Risk assessment parameters

Probability of the harm occurring
requency and duration of exposure Fr

Probability of an event occurring

Probability of avoiding or limiting the harm

## Standard EN/IEC 62061 <br> Machinery safety - Safety-Related Electrical Control systems (SRECS) (continued) <br> Process

Designing a system is split into 5 stages after having drawn up the functional safety plan:
1 - based on the safety requirements specification (SRS), assign a safety level (SIL) and identify the basic structure of the electrical control system (SRECS), describe each related function (SRCF)
2 - break down each function into a function block structure (FB),
3 - list the safety requirements for each function block and assign the function blocks to the sub-systems within the architecture,
4 - select the components for each sub-system,
5 - design the diagnostic function and check that the specified safety level (SIL) is achieved.
We will retain the previous example which consists of stopping the operation of a motor when the safety guard is opened. In the event of an incident, there is a risk of an harm being amputated or fracture of a limb.

■ Stage 1 - Assign a safety integrity level (SIL) and identify the structure of the SRECS
Based on the risk assessment performed in accordance with standard EN/ISO 14121, estimation of the required SIL is performed for each hazardous phenomenon and is broken down into parameters, see illustration opposite.
$\square$ Severity Se
The severity of injuries or damage to health can be estimated by taking into account reversible injuries, irreversible injuries and death
The classification is shown in the table below.

| Consequence | Severity Se |
| :--- | :--- |
| Irreversible: death, loss of an eye or an arm | 4 |
| Irreversible: shattered limb, loss of a finger | 3 |
| Reversible: requires the attention of a medical practitioner | 2 |
| Reversible: requires first aid | 1 |

- Probability of the harm occurring

Each of the three parameters Fr, Pr, Av must be estimated separately using the most unfavourable case. It is strongly recommended that a task analysis model be used in order to ensure that estimation of the probability of the harm occurring is correctly taken into account.

- Frequency and duration of exposure Fr

The level of exposure is linked to the need to access the hazardous zone (normal operation, maintenance, ...) and the type of access (manual feeding, adjustment, ...). It must then be possible to estimate the average frequency of exposure and its duration.
The classification is shown in the table below:

| Frequency of dangerous exposure | Fr |
| :--- | :--- |
| $\leqslant 1$ hour | 5 |
| $>1$ hour... $\leqslant 1$ day | 5 |
| $>1$ day... $\leqslant$ weeks | 4 |
| 2 weeks... 1 year | 3 |
| $>1$ year | 2 |

- Probability of occurrence of a hazardous event Pr.

Two basic concepts must be taken into account:

- the predictability of the dangerous components in the various parts of the machine in its various operating modes (normal, maintenance, troubleshooting), paying particular attention to unexpected restarting,
- behaviour of the persons interacting with the machine, such as stress, fatigue, inexperience, etc.

| Probability of occurrence of a dangerous event | Pr |
| :--- | :--- |
| Very high | 5 |
| Probable | 4 |
| Possible | 3 |
| Almost impossible | 2 |
| Negligible | 1 |

Stage 1: Basic structure of the electrical control system

Safety of personnel and equipment Standard EN/IEC 62061
Machinery safety - Safety-Related Electrical Control systems (SRECS) (continued)


## SRECS



Stage 2: Break down into function blocks


## Standard EN/IEC 62061 <br> Machinery safety - Safety-Related Electrical Control systems

Process (continued)

## ■ Stage 1 -(continued)

- Probability of avoiding or limiting the harm Av. suddenness of the occurrence of the hazardous event, the nature of the dangerous component (cutting, temperature, electrical) and the possibility for a person to dentify a hazardous phenomenon
- Assignment of the SIL

Estimation is made with the help of the table below.
 amputated; this value is shown in the first column of the table.
(vertical columns in the table below), which gives us:
$\mathrm{Fr}=5$ accessed several times a day
$\mathrm{Pr}=4$ hazardous event probable
Therefore a class $\mathrm{Cl}=5+4+3=12$
A level of SIL 2 must be achieved by the safety-related electrical control system(s) (SRECS) on the machine
$\square$ Basic structure of the SRECS
Without going into detail about the hardware components to be used, the system is broken down into sub-systems. In our case, we find the 3 sub-systems that will perform the input, processing and output functions. The figure opposite illustrates this stage, using the terminology given in the standard.

Stage 2 - Break down each function into a function block structure (FB) A function block (FB) is the result of a detailed break down of a safety-related function.
The function block structure gives an initial concept of the SRECS architecture. The safety requirements of each block are deduced from the specification of the safety requirements of the system's function.

■ Stage 3 - List the safety requirements for each function block and assign the function blocks to the sub-systems within the architecture

Each function block is assigned to a sub-system in the SRECS architecture. A failure of any sub-system will lead to the failure of the safety-related control function. More than one function block may be assigned to each sub-system. Each sub-system may include sub-system elements and, if necessary, diagnostic functions in order to ensure that anomalies can be detected and the appropriate action taken. These diagnostic functions ( D ) are considered as separate functions; they may be performed within the sub-system, by another internal or external sub-system.

# Safety of personnel and equipment Standard EN/IEC 62061 <br> Machinery safety - Safety-Related Electrical Control systems (SRECS) (continued) 



Stage 4: Component selection


Types of sub-system architecture


Stage 5: Design of the diagnostic function

## Standard EN/IEC 62061 <br> Machinery safety - Safety-Related Electrical Control systems (SRECS) (continued)

## Process (continued)

■ Stage 4 - Select the components for each sub-system
The products shown in the illustration opposite are selected. If the sensors and contactors are the same as in the previous example, a safety module XPS AK will be chosen. The cycle in this example is 450 s which means the duty cycle $\mathbf{C}$ is 8 operations per hour.

As the safety integrity level required for the entire system is SIL 2, each of the components must achieve this level.
The manufacturer's catalogue gives the following values:
Safety limit switches 1 and 2: $B_{10}=10000000$ operations, the proportion of dangerous failures is $20 \%$, lifetime is 10 years.

- Safety module: $\mathrm{PFH}_{\mathrm{d}}=5.9610^{-9}$
- Contactors 1 and 2: $\mathrm{B}_{10}=1000000$ operations, the proportion of dangerous failures $=73 \%$, lifetime is 20 years.

■ Stage 5 - Design the diagnostic function
The SIL of the sub-system depends not only on the components, but also on the architecture selected. For our example, we will choose architectures B and D of the standard.
In our architecture, the safety module performs diagnostics not only on itself, but also on the safety limit switches.

We have three sub-systems for which the safety levels must be determined $\square$ SS1: two redundant safety limit switches in a sub-system with a type D architecture,
$\square$ SS2: a SIL 3 safety module (obtained on the basis of the PFH provided by the manufacturer),
$\square$ SS3: two redundant contactors built in accordance with a type B architecture.
The calculation method is quite complex, so we will only give the final result. This method takes into account the following parameters:

- $\mathbf{B}_{10}$ : number of operations at which $10 \%$ of the population fail
- C: Duty cycle (number of operations per hour)
- $\lambda_{D}$ : rate of dangerous failures ( $\lambda_{D}=\lambda \times$ portion of dangerous failures in $\%$ )
- $\beta$ : common cause failure coefficient, which is $10 \%$ here and $10 \%$ is the worst case: see Annex F.
- T1: Proof Test Interval or life time whichever is smaller, as provided by the supplier - T2: diagnostic test interval
- DC: Diagnostic coverage rate $=\lambda_{\mathrm{DD}} / \lambda_{\mathrm{D}}$, ratio between the rate of detected failures and the rate of dangerous failures.

We obtain:

- for SS1 PFH ${ }_{d}=1.6 \mathrm{E}^{-9}$
- for SS3 PFH ${ }_{d}=1.07 \mathrm{E}^{-7}$

The total probability of dangerous failures per hour is:
$-\mathrm{PFH}_{\text {DSRECS }}=\mathrm{PFH}_{\mathrm{DSS} 1}+\mathrm{PFH}_{\mathrm{DSS} 2}+\mathrm{PFH}_{\mathrm{DSS} 3}$

- PFH $_{\text {DSRECs }}=1.6 \mathrm{E}^{-9}+5.9610^{-9}+1.07 \mathrm{E}^{-7}=1.14 \mathrm{E}^{-7}$

Which corresponds to the expected result (table below) of a SIL = 2
Comment: A level of SIL 3 could have been achieved by using mirror contacts to create a feedback loop on the contactors, i.e. a sub-system architecture type D.

## Checking the required SIL

| SIL | Probability of dangerous failures per hour (PFHd) |
| :--- | :--- |
| 3 | $\geqslant 10^{-8} \ldots<10^{-7}$ |
| 2 | $\geqslant 10^{-7} \ldots<10^{-6}$ |
| 1 | $\geqslant 10^{-6} \ldots<10^{-5}$ |

## Certification and $\subset \in$ marking

There are 6 stages in the process for certification and affixing of the $C \in$ marking on machines:
1 - apply all the relevant directives,
2 - conform to the essential health and safety requirements,
3 - draw up the technical documentation,
4 - if applicable proceed with the conformity examination,
5 - draw up the Declaration of Conformity,
6 - affix the $C \in$ marking.

## The Machinery Directive

The Machinery Directive is an example of the "New approach" for the harmonisation of products in terms of technical specifications and standards. It is based on:

- essential health and safety requirements which must be complied with before the machine is put on the market,
- a voluntary harmonisation process of standards undertaken by the European Standards Committee (CEN) and the European committee for electro-technical standardisation (CENELEC).
- conformity of evaluation procedures adapted to the types of risk and associated with machine types,
- the C€ marking, affixed by the manufacturer to indicate that the machine conforms to the applicable directives; machines bearing this marking can circulate freely within the European Union.

The directive has considerably simplified the multiple national legislations which were in force and has therefore removed many barriers which made trading difficult in the European Union. This has also made it possible to reduce the social cost of accidents. The directives do not apply to pre-existing machines within the EU unless they are substantially modified.
A list of the machines requiring special attestation procedures can be found in the Machinery Directive Annex 4.

## The essential requirements

Annexe I of the Machinery Directive groups together the essential health and safety requirements, for putting machines and safety components on the market and into service in Europe.
It follows that:

- if all the requirements of the directive are complied with, no member state of the European Union can oppose circulation of this product.
- if the requirements of the directive are not complied with, putting the product on the market may be prohibited or withdrawal of the product from the market may be required.

In the European Union, this concerns not only manufacturers or their distributors, but also importers and resellers who import these machines or put them into service. Second-hand machines within the EU are not covered, but used machines that have been modified or refurbished can be considered to be new machines.

## The harmonised standards

The simplest way to demonstrate conformity with the directives is to conform to the European Harmonised Standards. When, for a product listed in Annex 4 of the Machinery Directive, there is no harmonised standard, or the existing standards are not relevant to cover the essential health and safety requirements, or if the manufacturer considers that these standards are not applicable to their product, they can apply for approval by an outside Notified Body.

These bodies are approved by the Member States after having shown that they have the recognised expertise to give such an opinion (TÜV, BGIA, INRS, BSI Product Services, etc.).

Although the Notified Body has a certain number of responsibilities under the Directive, it is always the manufacturer or their representative who remain responsible for conformity of the product

## Certification and ( $\in$ marking (continued) Declaration of conformity

In accordance with Article 1 of the Machinery Directive, the manufacturer or their authorised representative established in the European Union must draw up a European Declaration of Conformity for each machine (or safety component). This is in order to certify that the machine or safety component conforms to the Directive.
Before putting a product on the market, the manufacturer or their representative must be able to prepare a technical file.

## © $€$ marking

Finally, the C€ mark must be affixed to the machine by the manufacturer or their authorised representative in the European Union. This marking has been obligatory since 1st January 1995 and can only be affixed if the machine conforms to all the applicable directives, such as:

- the Machinery Directive 98/37/EC,
- the Electromagnetic Compatibility (EMC) directive 2004/108/EC,
- the Low Voltage Directive 2006/95/EC.

There are other directives such as the protection of persons, lifts, medical equipment, etc., which may also be applicable.

The C $€$ marking is the machine's passport in the European Union, which allows it to be marketed in all countries within the Union without taking into account regulations in each individual country.
( $\in$ marking procedure

Protective treatment of equipment according to climatic environment ..... 7/2
Product standards and certifications ..... 7/4
Degrees of protection provided by enclosures ..... 7/6
IP code. ..... 7/6
IK code ..... 7/7
Product reference index ..... 7/8

## Technical information

Protective treatment of equipment according to climatic environment

Depending on the climatic and environmental conditions in which the equipment is placed, Schneider Electric can offer specially adapted products to meet your requirements.

In order to make the correct choice of protective finish, two points should be remembered:

- the prevailing climate of the country is never the only criterion,
- only the atmosphere in the immediate vicinity of the equipment need be considered.


## All climates treatment "TC"

This is the standard treatment for Telemecanique brand equipment and is suitable for the vast majority of applications. It is the equivalent of treatments described as "Klimafest", "Climateproof".
In particular, it meets the requirements specified in the following publications:

- Publication UTE C 63-100 (method I), successive cycles of humid heat at:
$+40^{\circ} \mathrm{C}$ and $95 \%$ relative humidity.
- DIN 50016 - Variations of ambient conditions within a climatic chamber:
$+23^{\circ} \mathrm{C}$ and $83 \%$ relative humidity,
$+40^{\circ} \mathrm{C}$ and $92 \%$ relative humidity.
It also meets the requirements of the following marine classification societies: BV-LR-GL-DNV-RINA.


## Characteristics

■ Steel components are usually treated with zinc. When they have a mechanical function, they may also be painted.

- Insulating materials are selected for their high electrical, dielectric and mechanical characteristics.
- Metal enclosures have a stoved paint finish, applied over a primary phosphate protective coat, or are galvanised (e.g. some prefabricated busbar trunking components).

Limits for use of "TC" (All climates) treatment

- "TC" treatment is suitable for the following temperatures and humidity:

| Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Relative humidity $(\%)$ |
| :--- | :--- |
| 20 | 95 |
| 40 | 80 |
| 50 | 50 |

"TC" treatment is therefore suitable for all latitudes and in particular tropical and equatorial regions where the equipment is mounted in normally ventilated industrial premises. Being sheltered from external climatic conditions, temperature variations are small, the risk of condensation is minimised and the risk of dripping water is virtually non-existent.

## Extension of use of "TC" (All climates) treatment

In cases where the humidity around the equipment exceeds the conditions described above, or in equatorial regions if the equipment is mounted outdoors, or if it is placed in a very humid location (laundries, sugar refineries, steam rooms, etc.), "TC" treatment can still be used if the following precautions are taken:
■ The enclosure in which the equipment is mounted must be protected with a "TH" finish (see next page) and must be well ventilated to avoid condensation and dripping water (e.g. enclosure base plate mounted on spacers).

- Components mounted inside the enclosure must have a "TC" finish.

■ If the equipment is to be switched off for long periods, a heater must be provided ( 0.2 to 0.5 kW per square decimetre of enclosure), that switches on automatically when the equipment is turned off. This heater keeps the inside of the enclosure at a temperature slightly higher than the outside surrounding temperature, thereby avoiding any risk of condensation and dripping water (the heat produced by the equipment itself during normal running is sufficient to provide this temperature difference).
■ Special considerations for "Operator dialog" and "Detection" products: for certain pilot devices, the use of "TC" treatment can be extended to outdoor use provided their enclosure is made of light alloys, zinc alloys or plastic material. In this case, it is also essential to ensure that the degree of protection against penetration of liquids and solid objects is suitable for the applications involved.

## Technical information

## Protective treatment of equipment according to climatic environment

## "TH" treatment for hot and humid environments

This treatment is suitable for hot and humid atmospheres where installations are regularly subject to condensation, dripping water and the risk of fungi.

In addition, plastic insulating components are resistant to attacks from insects such as termites and cockroaches. These properties have often led to this treatment being described as "Tropical Finish", but this does not mean that all equipment installed in tropical and equatorial regions must systematically have undergone "TH" treatment. On the other hand, certain operating conditions in temperate climates may well require the use of "TH" treated equipment (see limitations for use of "TC" treatment).

Special characteristics of "TH" treatment

- All insulating components are made of materials which are either resistant to fungi or treated with a fungicide, and which have increased resistance to creepage (Standards IEC 60112, NF C 26-220, DIN 5348).
■ Metal enclosures receive a top-coat of stoved, fungicidal paint, applied over a rust inhibiting undercoat. Components with "TH" treatment may be subject to a surcharge (1). Please consult your Regional Sales Office.

| Protective treatment selection guide |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Surrounding <br> environment | Duty cycle | Internal <br> heating of <br> enclosure <br> when not in <br> use | Type of <br> climate | Protective <br> treatment |

These treatments cover, in particular, the applications defined by methods I and II of guide UTE C 63-100.

## Special precautions for electronic equipment

Electronic products always meet the requirements of "TC" treatment. A number of them are "TH" treated as standard.

Some electronic products (for example: programmable controllers, flush mountable controllers CCX and flush mountable operator terminals XBT) require the use of an enclosure providing a degree of protection to at least IP 54, as defined by standards IEC 60664 and NF C 20 040, for use in industrial applications or in environmental conditions requiring "TH" treatment.

These electronic products, including flush mountable products, must have a degree of protection to at least IP 20 (provided either by their own enclosure or by their installation method) for restricted access locations where the degree of pollution does not exceed 2 (a test booth not containing machinery or other dust producing activities, for example).

## Special treatments

For particularly harsh industrial environments, Schneider Electric is able to offer special protective treatments. Please consult your Regional Sales Office.
(1) A large number of the Telemecanique brand products are "TH" treated as standard and are, therefore, not subject to a surcharge.

## Standardisation

## Conformity to standards

Telemecanique brand products satisfy, in the majority of cases, national (for example: BS in Great Britain, NF in France, DIN in Germany), European (for example: CENELEC) or international (IEC) standards. These product standards precisely define the performance of the designated products (such as IEC 60947 for low voltage equipment).
When used correctly, as designated by the manufacturer and in accordance with regulations and correct practices, these products will allow users to build equipment, machine systems or installations that conform to their appropriate standards (for example: IEC 60204-1, relating to electrical equipment used on industrial machines).
Schneider Electric is able to provide proof of conformity of its production to the standards it has chosen to comply with, through its quality assurance system.
On request, and depending on the situation, Schneider Electric can provide the following:

- a declaration of conformity,
- a certificate of conformity (ASEFA/LOVAG),
- a homologation certificate or approval, in the countries where this procedure is required or for particular specifications, such as those existing in the merchant navy.

| Code | Certification authority |  | Country |
| :--- | :--- | :--- | :--- | :--- |
|  | Name | Abbreviation |  |
| ANSI | American National Standards Institute | ANSI | USA |
| BS | British Standards Institution | BSI | Great Britain |
| CEI | Comitato Elettrotecnico Italiano | CEI | Italy |
| DIN/VDE | Verband Deutscher Electrotechniker | VDE | Germany |
| EN | Comité Européen de Normalisation Electrotechnique | CENELEC | Europe |
| GOST | Gosudarstvenne Komitet Standartov | GOST | Russia |
| IEC | International Electrotechnical Commission | IEC | Worldwide |
| JIS | Japanese Industrial Standard | JISC | Japan |
| NBN | Institut Belge de Normalisation | IBN | Belgium |
| NEN | Nederlands Normalisatie Institut | NNI | Netherlands |
| NF | Union Technique de l'Electricité | UTE | France |
| SAA | Standards Association of Australia | SAA | Australia |
| UNE | Asociacion Española de Normalizacion y Certificacion | AENOR | Spain |

## European EN standards

These are technical specifications established in conjunction with, and with approval of, the relative bodies within the various CENELEC member countries (European Union, European Free Trade Association and many central and eastern European countries having «member» or «affiliated» status). Prepared in accordance with the principle of consensus, the European standards are the result of a weighted majority vote. Such adopted standards are then integrated into the national collection of standards, and contradictory national standards are withdrawn. European standards incorporated within the French collection of standards carry the prefix NF EN. At the 'Union Technique de l'Electricité' (Technical Union of Electricity) (UTE), the French version of a corresponding European standard carries a dual number: European reference (NF EN ...) and classification index (C ...).
Therefore, the standard NF EN 60947-4-1 relating to motor contactors and starters, effectively constitutes the French version of the European standard EN 60947-4-1 and carries the UTE classification C 63-110.
This standard is identical to the British standard BS EN 60947-4-1 or the German standard DIN EN 60947-4-1.
Whenever reasonably practical, European standards reflect the international standards (IEC). With regard to automation system components and distribution equipment, in addition to complying with the requirements of French NF standards, Telemecanique brand components conform to the standards of all other major industrial countries.

## Regulations

## European Directives

Opening up of European markets assumes harmonisation of the regulations pertaining to each of the member countries of the European Union.
The purpose of the European Directive is to eliminate obstacles hindering the free circulation of goods within the European Union, and it must be applied in all member countries. Member countries are obliged to transcribe each Directive into their national legislation and to simultaneously withdraw any contradictory regulations. The Directives, in particular those of a technical nature which concern us, only establish the objectives to be achieved, referred to as "essential requirements".
The manufacturer must take all the necessary measures to ensure that his products conform to the requirements of each Directive applicable to his production.
As a general rule, the manufacturer certifies conformity to the essential requirements of the Directive(s) for his product by affixing the C $\in$ mark.
The C $\in$ mark is affixed to Telemecanique brand products concerned, in order to comply with French and European regulations.

## Significance of the C $\in$ mark

- The C $\in$ mark affixed to a product signifies that the manufacturer certifies that the product conforms to the relevant European Directive(s) which concern it; this condition must be met to allow free distribution and circulation within the countries of the European Union of any product subject to one or more of the E.U. Directives.
- The C€ mark is intended solely for national market control authorities.

The C $\in$ mark must not be confused with a conformity marking.

Technical information
Product standards and certifications

## European Directives (continued)

For electrical equipment, only conformity to standards signifies that the product is suitable for its designated function, and only the guarantee of an established manufacturer can provide a high level of quality assurance.
For Telemecanique brand products, one or several Directives are likely to be applicable,
depending on the product, and in particular:

- the Low Voltage Directive $73 / 23 / E E C$ amended by Directive 93/68/EEC: the C $\in$ mark relating to this Directive has been compulsory since 1st January 1997.
- the Electromagnetic Compatibility Directive 89/336/EEC, amended by Directives 92/31/EEC and $93 / 68 / E E C$ : the $C \in$ mark on products covered by this Directive has been compulsory since 1st January 1996


## ASEFA-LOVAG certification

The function of ASEFA (Association des Stations d'Essais Française d'Appareils électriques Association of French Testing Stations for Low Voltage Industrial Electrical Equipment) is to carry out tests of conformity to standards and to issue certificates of conformity and test reports. ASEFA laboratories are authorised by the French authorisation committee (COFRAC). ASEFA is now a member of the European agreement group LOVAG (Low Voltage Agreement Group). This means that any certificates issued by LOVAG/ASEFA are recognised by all the authorities which are members of the group and carry the same validity as those issued by any of the member authorities.

## Quality labels

When components can be used in domestic and similar applications, it is sometimes recommended that a "Quality label" be obtained, which is a form of certification of conformity.

| Code | Quality label | Country |
| :--- | :--- | :--- |
| CEBEC | Comité Electrotechnique Belge | Belgium |
| KEMA-KEUR | Keuring van Electrotechnische Materialen | Netherlands |
| NF | Union Technique de l'Electricité | France |
| ÖVE | Österreichischer Verband für Electrotechnik | Austria |
| SEMKO | Svenska Electriska Materiel Kontrollanatalten | Sweden |

## Product certifications

In some countries, the certification of certain electrical components is a legal requirement. In this case, a certificate of conformity to the standard is issued by the official test authority. Each certified device must bear the relevant certification symbols when these are mandatory:

| Code | Certification authority | Country |
| :--- | :--- | :--- |
| CSA | Canadian Standards Association | Canada |
| UL | Underwriters Laboratories | USA |
| CCC | China Compulsory Certification | China |

Note on certifications issued by the Underwriters Laboratories (UL). There are two levels of approval:
"Recognized" (7)
The component is fully approved for inclusion in equipment built in a workshop, where the operating limits are known by the equipment manufacturer and where its use within such limits is acceptable by the Underwriters Laboratories.
The component is not approved as a "Product for general use" because its manufacturing characteristics are incomplete or its application possibilities are limited.
A "Recognized" component does not necessarily carry the certification symbol.
"Listed" (UL) The component conforms to all the requirements of the classification applicable to it and may therefore be used both as a "Product for general use" and as a component in assembled equipment. A "Listed" component must carry the certification symbol.

## Marine classification societies

Prior approval (= certification) by certain marine classification societies is generally required for electrical equipment which is intended for use on board merchant vessels.

| Code | Classification authority | Country |
| :--- | :--- | :--- |
| BV | Bureau Veritas | France |
| DNV | Det Norske Veritas | Norway |
| GL | Germanischer Lloyd | Germany |
| LR | Lloyd's Register | Great Britain |
| NKK | Nippon Kaiji Kyokaï | Japan |
| RINA | Registro Italiano Navale | Italy |
| RRS | Register of Shipping | Russia |

## Note

For further details on a specific product, please refer to the "Characteristics" pages in this catalogue or consult your Regional Sales Office.

## Technical information

Degrees of protection provided by enclosures IP code

Degrees of protection against the penetration of solid bodies, water and personnel access to live parts

The European standard EN 60529 dated October 1991, IEC publication 529 ( $2^{\text {nd }}$ edition - November 1989), defines a coding system (IP code) for indicating the degree of protection provided by electrical equipment enclosures against accidental direct contact with live parts and against the ingress of solid foreign objects or water. This standard does not apply to protection against the risk of explosion or conditions such as humidity, corrosive gasses, fungi or vermin.
Certain equipment is designed to be mounted on an enclosure which will contribute towards achieving the required degree of protection (example : control devices mounted on an enclosure).
Different parts of an equipment can have different degrees of protection (example : enclosure with an opening in the base)
Standard NF C 15-100 (December 2002 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.
Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

## P •・ゃ code

The IP code comprises 2 characteristic numerals (e.g. IP 55) and may include an additional letter when the actual protection of personnel against direct contact with live parts is better than that indicated by the first numeral (e.g. IP 20C).
Any characteristic numeral which is unspecified is replaced by an $X$ (e.g. IP XXB).

## $1^{\text {st }}$ characteristic numeral:

corresponds to protection of the equipment against penetration of solid objects and protection of personnel against direct contact with live parts.

| Protection of <br> personnel |
| :--- |
| Non-protected |
| Protected against <br> direct contact with <br> the back of the <br> hand (accidental <br> contacts). |
| Protected against <br> direct finger <br> contact. |
| Protected against <br> direct contact with <br> a $\varnothing$ <br> 2.5 mm tool. |
| Protected against <br> direct contact with <br> a $\varnothing$ <br> 1 mm wire. |
| Protected against <br> direct contact with <br> a $\varnothing 1 \mathrm{~mm}$ wire. |
| Protected against <br> direct contact with <br> a $\varnothing 1 \mathrm{~mm}$ wire. |



Additional letter: corresponds to protection of personnel against direct contact with live parts.

## $2^{\text {nd }}$ characteristic numeral:

corresponds to protection of the equipment against penetration of water with harmful effects.


Technical information
Degrees of protection provided by enclosures
IK code

The European standard EN 62262 dated February 2002 defines a coding system (IK code) for indicating the degree of protection provided by electrical equipment enclosures against external mechanical impact.
Standard NF C 15-100 (December 2002 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.
Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

## IK $\bullet$ code

The IK code comprises 2 characteristic numerals (e.g. IK 05).
2 characteristic numerals:
corresponding to a value of impact energy.

|  |  | $\mathrm{h}(\mathrm{cm})$ | Energy (J) |
| :---: | :---: | :---: | :---: |
| 00 | Non-protected |  |  |
| 01 | 0,2 kg | 7.5 | 0.15 |
| 02 |  | 10 | 0.2 |
| 03 |  | 17.5 | 0.35 |
| 04 |  | 25 | 0.5 |
| 05 |  | 35 | 0.7 |
| 06 | $0,5 \mathrm{~kg}$ | 20 | 1 |
| 07 |  | 40 | 2 |
| 08 | 7 kg | 30 | 5 |
| 09 |  | 20 | 10 |
| 10 |  | 40 | 20 |


| 1 |  | ABL 8RPS24050 | 2/13 | GV A॰026 | 5/29 | KCF 2PZ | 5/13 | LJ8 K06Q710 | 5/41 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 DTN 11000 | 2/14 |  | 2/28 | GV A.055 | 5/29 | KCF 3PZ | 5/13 | LJ8 K09Q714 | 5/41 |
|  | 2/29 |  | 2/46 | GV A॰056 | 5/29 | KZ 100 | 5/15 | Q |  |
|  | 2/47 |  | 3/124 | GV A॰107 | 5/29 | KZ 101 | 5/15 | Q99 900901 | 4/12 |
| 4 |  | ABL 8RPS24100 | 2/13 | GV A॰115 | 5/29 | KZ 103 | 5/15 | Q99 900911 | 4/12 |
| 467 NHP 81100 | 2/14 | ASI SA01 | 2/268 | GV A॰116 | 5/29 | KZ 106 | 5/14 | S |  |
|  | $2 / 29$ $2 / 47$ |  | 2/272 | GV A॰125 | 5/29 | KZ 13 | 5/15 | SIS CD104200 | 3/89 |
|  | 2/14 | ASI SAFEMON1 | 2/268 | GV A॰207 | 5/29 | KZ 14 | 5/15 | SIS CD104200 | 3/92 |
| 490 NAD 91103 | 2/29 | ASI SAFEMON1B | 2/268 | GV A॰225 | 5/29 | KZ 15 | 5/15 | SSV1XPSMFWIN | $2 / 12$ |
|  | 2/47 | ASI SAFEMON2 | 2/268 | GV A॰226 | 5/29 | KZ 16 | 5/15 |  | $2 / 27$ |
| 490 NAD 91104 | 2/14 | ASI SAFEMON2B | 2/268 | GV A•385 | 5/29 | KZ 32 | 5/14 |  | 2/45 |
|  | 2/29 | ASI SCM | 2/268 | GV A•386 | 5/29 | KZ 62 | 5/15 |  | 2/68 |
|  | 2/47 | ASI SCPC | 2/268 | GV A•415 | 5/29 | KZ 65 | 5/15 | SSVASISWINUP | 2/268 |
| 490 NAD 91105 | 2/14 | ASI SEA1C | 2/268 | GV A॰416 | 5/29 | KZ 66 | 5/15 | SSVXPSMCWINUP | 2/124 |
|  | 2/29 | ASI SEA1C | 2/272 | GV A•505 | 5/29 | KZ 67 | 5/15 | SSVXPSMFWINUP | 2/12 |
|  | 2/47 | ASI SEK1C | 2/272 | GV AE1 | 5/29 | KZ 74 | 5/14 |  | $2 / 27$ $2 / 45$ |
| 490 NAE 91100 | 2/14 | ASI SSLB4 | 2/272 | GV AX115 | 5/29 | KZ 76 | 5/15 |  | 2/45 |
|  | $2 / 29$ $2 / 47$ | ASI SSLB5 | 2/272 | GV AX116 | 5/29 | KZ 77 | 5/15 | STB NDP 2112 | 2/14 |
| 490 NTC 00005 | 2/14 | ASI SSLC2 | 2/272 | GV AX225 | 5/29 | KZ 81 | 5/14 |  | 2/29 |
|  | $2 / 29$ | ASI SSLE4 | 2/272 | GV AX226 | 5/29 | KZ 83 | 5/14 |  | 2/47 |
|  | 2/47 | ASI SSLE5 | $2 / 272$ | GV AX385 | 5/29 | L |  | T |  |
| 490 NTC 00015 | 2/14 | ASI SSLLS | 2/272 | GV AX386 | 5/29 | LG1 D122••16 | 5/35 | TSC CANTDM4 | 2/125 |
|  | 2/29 | ASI SWIN2 | $2 / 272$ | GV AX415 | 5/29 | LG1 D182••20 | 5/35 | TSX CANCA100 | 2/125 |
|  | 2/47 | ASI TERV2 | $\begin{array}{r} 2 / \angle 08 \\ 2 / 26 \end{array}$ | GV2 CP21 | 5/31 | LG1 D182••21 | 5/35 | TSX CANCA300 | 2/125 |
| 490 NTC 00040 | 2/14 |  | 2/272 | GV2 E01 | 5/31 | LG1 K065••02 | 5/35 | TSX CANCA50 | 2/125 |
|  | 2/29 |  |  | GV2 E02 | 5/31 | LG1 K065••03 | 5/35 | TSX CANCADD03 | 2/125 |
|  | 2/47 | DE9 EC21 | 4/32 | GV2 K011 | 5/31 | LG1 K065••04 | 5/35 | TSX CANCADD1 | 2/125 |
| 490 NTC 00080 | $2 / 14$ $2 / 29$ | DE9 RA1012 | 3/38 | GV2 K021 | 5/31 | LG1 K065••05 | 5/35 | TSX CANCADD3 | 2/125 |
|  | $2 / 47$ | DE9 RA1016 | 3/38 | GV2 K031 | 5/31 | LG1 K065••06 | 5/35 | TSX CANCADD5 | 2/125 |
| 490 NTW 00002 | 2/14 | DE9 RA13520 | 3/26 | GV2 K04 | 5/31 | LG1 K065••07 | 5/35 | TSX CPP 102 | 2/284 |
|  | 2/29 | DE9 RA1620 | 4/20 | GV2 MC01 | 5/31 | LG1 K065••08 | 5/35 | TSX CPP 202 | 2/284 |
|  | 2/47 | DE9 RA200612 | 4/23 | GV2 MC02 | 5/31 | LG1 K065••10 | 5/35 | TSX CPP 301 | 2/284 |
|  | 2/125 | DE9 RA201014 | 4/23 | GV2 MC03 | 5/31 | LG1 K095••14 | 5/35 | TSX CPP 302 | 2/284 |
| 490 NTW 000 02U | 2/125 | DE9 RA2012 | 3/26 | GV2 MCK04 | 5/31 | LG7 D12••16 | 5/34 | TSX CSA 100 | 2/14 |
| 490 NTW 00005 | 2/14 | DE9 RA2125 | 4/32 | GV2 ME01 | 5/28 | LG7 D18••20 | 5/34 |  | 2/47 |
|  | 2/29 | DE9 RI2016 | 2/272 | GV2 ME02 | 5/28 | LG7 D18••21 | 5/34 | TSX CSA 200 | 2/14 |
|  | 2/47 | DE9 RP13520 | 4/1/2 | GV2 ME03 | 5/28 | LG7 K06••02 | 5/34 |  | 2/47 |
| 490 NTW 00005 U | 2/125 | DL1 AA024 | 4/12 | GV2 ME04 | 5/28 | LG7 K06••03 | 5/34 | TSX CSA 500 | 2/14 |
| 490 NTW 00012 | 2/14 | DL1 AA048 | 4/12 | GV2 ME05 | 5/28 | LG7 K06••04 | 5/34 |  | 2/47 |
|  | 2/29 | DL1 AA048 | 4/12 | GV2 ME06 | 5/28 | LG7 K06••05 | 5/34 | TSX CUSB485 | 2/125 |
|  | 2/47 | DL1 AA127 | 4/12 | GV2 ME07 | 5/28 | LG7 K06••06 | 5/34 | TSX DPZ 10D2A | 2/278 |
| 490 NTW 000 12U | 2/125 | DL1 AA220 | 4/12 | GV2 ME08 | 5/28 | LG7 K06••07 | 5/34 | TSX PAY 262 | 2/284 |
| 490 NTW 00040 | 2/14 | DL1 BDB• | 4/57 | GV2 ME10 | 5/28 | LG7 K06••08 | 5/34 | TSX PAY 282 | 2/284 |
|  | 2/29 | DL1 BDG• | 4/57 | GV2 ME14 | 5/28 | LG7 K06••10 | 5/34 | TSX PBS CA 100 | 2/14 |
|  | 2/47 | DL1 BDM• | 4/57 | GV2 ME14 | 5/28 | LG7 K06••10 | 5/34 |  | 2/29 |
| 490 NTW 00080 | 2/14 | DL1 BEB | 4/57 | GV2 ME16 | 5/28 | LG7 K09••14 | 5/34 |  | 2/47 |
|  | 2/29 | DL1 BEE | 4/57 | GV2 ME20 | 5/28 | LG8 K06•002 | 5/36 |  | 2/125 |
|  | 2/47 | DL1 BEG | 4/57 | GV2 ME21 | 5/28 | LG8 K06•003 | 5/36 | TSX PBS CA 400 | 2/14 |
| 9001 KP1R9 | 4/12 |  | 4/57 | GV2 ME22 | 5/28 | LG8 K06•004 | 5/36 |  | 2/29 |
| 9001 KP35R9 | 4/12 | DL1 BEM |  | GV2 ME32 | 5/28 | LG8 K06••05 | 5/36 |  | 2/47 |
| 9001 KP36R9 | 4/12 | DL1 BEM |  | GV2 MP01 | 5/31 | LG8 K06••06 | 5/36 |  | 2/125 |
| 9001 KP7R9 | 4/12 | DL1 BKB• | 4/57 | GV2 MP02 | 5/31 | LG8 K06••07 | 5/36 | TSX PBY 100 | 2/14 |
| A |  | DL1 BKG• | 4/57 | GV2 MP03 | 5/31 | LG8 K06••08 | 5/36 |  | 2/29 |
| AB1 AC6BL | 5/31 | DL1 BKM• | 4/61 | GV2 MP04 | 5/31 | LG8 K06••10 | 5/36 |  | 2/47 |
| AB1 VV635UBL | 5/31 | DL1 BRBH | $4 / 61$ | GV2 SN13 | 5/31 | LG8 K09••14 | 5/36 | TSX PCX 1031 | 2/125 |
| ABE 7CPA13 <br> ABL 1REM12050 | 2/284 | DL1 BRG | 4/61 | GV2 SN14 | 5/31 | LG8 K12••16 | 5/36 | vo |  |
|  | 2/13 | DL1 BRM | 4/61 | GV2 SN15 | 5/31 | LJ7 K06Q702 | 5/40 | v01 | 5/11 |
|  | 2/28 | DL1 CB006 | $4 / 12$ | GV2 SN17 | 5/31 | LJ7 K06Q703 | 5/40 | v01 |  |
| ABL 1REM24025 | 2/46 | DL1 CE024 | $4 / 12$ | GV2 SN23 | 5/31 | LJ7 K06Q704 | 5/40 | V01 | 5/17 |
|  | 2/13 |  |  | GV2 SN24 | 5/31 | LJ7 K06Q705 | 5/40 | V02 | 5/11 |
|  | 2/28 |  |  | GV2 SN25 | 5/31 | LJ7 K06Q706 | 5/40 |  | 5/17 |
|  | 2/46 | DL1 CE130 | 4/12 | GV2 SN27 | 5/31 | LJ7 K06Q707 | 5/40 | V1 | 5/11 |
|  | 3/124 | G |  | GV2 SN33 | 5/31 | LJ7 K06Q708 |  |  | 5/17 |
| ABL 1REM24100 | 2/13 | GV AD0101 | 5/29 |  |  |  | $5 / 40$ | V2 | 5/11 |
|  | 2/28 | GV AD0110 | 5/29 | GV2 SN34 | 5/31 | LJ7 K06Q710 | 5/40 |  | 5/17 |
|  | 2/46 | GV AD1001 | 5/29 | GV2 SN35 | 5/31 | LJ7 K09Q714 | 5/40 | V3 | 5/11 |
|  | 3/124 | GV AD10 |  | GV2 SN37 | 5/31 | LJ8 K06Q702 | 5/41 |  | 5/17 |
| ABL 8RPS24030 | 2/13 | GV AE11 |  | GV2 V01 | 5/31 | LJ8 K06Q703 | 5/41 | V4 | 5/11 |
|  | 2/28 |  | 5 | K |  | LJ8 K06Q704 | 5/41 |  | 5/17 |
|  | 2/46 | GV AE20 | 5/29 | KCC 1YZ | 5/13 | LJ8 K06Q705 | 5/41 | V5 | 5/11 |
|  | 3/124 |  |  | KCD 1PZ | 5/13 | LJ8 K06Q706 | 5/41 | V6 | 5/11 |
|  |  | GV AN11 | 5/29 | KCE 1YZ | 5/13 | LJ8 K06Q707 | 5/41 | VCCD 0• | 5/10 |
|  |  | GV AN20 | 5/29 | KCF 1PZ | 5/13 | LJ8 K06Q708 | 5/41 | VCCD • | 5/10 |
|  |  | GV A025 | 5/29 |  |  |  |  |  |  |


| VCCDN 12 | 5/8 | XBT GT4330 | 2/13 | XCS D3719P20 | 3/81 | XCS E7331 | 3/23 | XCS PA593 | 3/40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VCCDN 20 | 5/8 |  | 2/28 | XCS D3902G13 | 3/80 | XCS E73317 | 3/23 | XCS PA691 | 3/38 |
| VCCF 0 | 5/10 |  | 2/46 | XCS D3902N12 | 3/80 | XCS E7332 | 3/21 | XCS PA692 | 3/36 |
| VCCF - | 5/10 | XBT GT5230 | 2/13 | XCS D3902P20 | 3/80 | XCS E73327 | 3/21 | XCS PA693 | 3/40 |
| VCD 0 | 5/10 |  | 2/28 | XCS D3910G13 | 3/80 | XCS E7333 | 3/25 | XCS PA791 | 3/38 |
| VCD 0• | 5/10 | XBT GT5330 | 2/13 | XCS D3910N12 | 3/80 | XCS E73337 | 3/25 | XCS PA792 | 3/36 |
| VCD • | 5/10 | GT5330 | 2/28 | XCS D3910P20 | 3/80 | XCS E7341 | 3/23 | XCS PA793 | 3/40 |
| VCDN 12 | 5/8 |  | 2/46 | XCS D3918G13 | 3/80 | XCS E73417 | 3/23 | XCS PA891 | 3/38 |
| VCDN 20 | 5/8 | XBT GT6330 | 2/13 | XCS D3918N12 | 3/80 | XCS E7342 | 3/21 | XCS PA892 | 3/36 |
| VCF 0 | 5/10 |  | 2/28 | XCS D3918P20 | 3/80 | XCS E73427 | 3/21 | XCS PA893 | 3/40 |
| VCF 01 | 5/10 |  | 2/46 | XCS D3919G13 | 3/80 | XCS E8311 | 3/23 | XCS PA991 | 3/38 |
| VCF 01GE | 5/16 | XBT GT7340 | 2/13 | XCS D3919N12 | 3/80 | XCS E83117 | 3/23 | XCS PA992 | 3/36 |
| VCF 02 | 5/10 |  | 2/28 | XCS D3919P20 | 3/80 | XCS E8312 | 3/21 | XCS PA993 | 3/40 |
| VCF 02GE | 5/16 |  | 2/46 | XCS DM379102 | 3/68 | XCS E83127 | 3/21 | XCS TA591 | 3/38 |
| VCF • | 5/10 | XBT Z938 | 2/14 | XCS DM379105 | 3/68 | XCS E8313 | 3/25 | XCS TA592 | 3/36 |
| VCF •GE | 5/16 |  | 2/29 | XCS DM379110 | 3/68 | XCS E8322 | 3/21 | XCS TA593 | 3/40 |
| VCFN 25GE | 5/16 | XBT ZG909 | 2/14 | XCS DM3791M12 | 3/66 | XCS E8331 | 3/23 | XCS TA791 | 3/38 |
| VCFN 32GE | 5/16 | XBT ZG909 | 2/29 |  | 3/69 | XCS E83317 | 3/23 | XCS TA792 | 3/36 |
| VCFN 40GE | 5/16 |  | 2/47 | XCS DM480102 | 3/68 | XCS E83417 | 3/23 | XCS TA793 | 3/40 |
| VCFX GDXE | 5/17 | XBY 2U | 4/56 | XCS DM480105 | 3/68 | XCS M3702L1 | 3/76 | XCS TA891 | 3/38 |
| VCFX GE1 | 5/17 | XCM 2514 | 4/31 | XCS DM480110 | 3/68 | XCS M3710L1 | 3/76 | XCS TA892 | 3/36 |
| VCFX GE4 | 5/17 | XCO M2512 | 4/11 | XCS DM4801M12 | 3/69 | XCS M3715L1 | 3/76 | XCS TE5311 | 3/39 |
| VN 12 | 5/9 | XCS A501 | 3/22 | XCS DMC5902 | 3/56 | XCS M3716L1 | 3/76 | XCS TE5312 | 3/37 |
|  | 5/17 | XCS A502 | 3/20 | XCS DMC590L01M8 | 3/57 | XCS M3902L1 | 3/76 | XCS TE5331 | 3/39 |
| VN 20 | 5/9 | XCS A503 | 3/24 | XCS DMC5912 | 3/56 | XCS M3910L1 | 3/76 | XCS TE5341 | 3/39 |
|  | 5/17 | XCS A511 | 3/22 | XCS DMC591L01M8 | 3/57 | XCS M3915L1 | 3/76 | XCS TE6311 | 3/39 |
| VVE $\bullet$ | 5/10 | XCS A512 | 3/20 | XCS DMC7902 | 3/56 | XCS M3916L1 | 3/76 | XCS TE7311 | 3/39 |
| VW3 A8 306 R | $2 / 14$ | XCS A521 | 3/22 | XCS DMC790L01M8 | 3/57 | XCS M4102L1 | 3/76 | XCS TE7312 | 3/37 |
|  | $2 / 47$ $2 / 125$ | XCS A523 | 3/24 | XCS DMC7912 | 3/56 | XCS M4110L1 | 3/76 | XCS TE7313 | 3/41 |
| VW3 A8 306 R30 VW3 A8 306 RC | 2/125 | XCS A701 | 3/22 | XCS DMC791L01M8 | 3/57 | XCS M4115L1 | 3/76 | XCS TE7331 | 3/39 |
| VW3 A8 306 RC | $\begin{aligned} & 2 / 14 \\ & 2 / 47 \end{aligned}$ | XCS A702 | 3/20 | XCS DMP5002 | 3/56 | XCS M4116L1 | 3/76 | XCS TE7341 | 3/39 |
| VW3 A8 306 R03 | 2/29 | XCS A703 | 3/24 | XCS DMP500L01M12 | 3/57 | XCS MP59L• | 3/32 | XCS 201 | 3/20 |
| VW3 A8 306 R10 | 2/29 | XCS A711 | $3 / 22$ | XCS DMP5012 | 3/56 | XCS MP70L• | 3/32 |  | 3/22 |
| VW3 A8 306 R30 | 2/29 | XCS A712 | 3/20 | XCS DMP501L01M12 | 3/57 | XCS MP79L | 2 | Xcs 702 | 3/20 |
| VZ 0• | 5/11 | XCS A713 | 3/24 | XCS DMP5902 | 3/57 | XCS MP80L | 3/32 | XCS 202 | 3/22 |
|  | 5/14 | XCS A721 | 3/22 | XCS DMP590L01M12 | 3/57 | XCS P3702G13 | 3/83 |  | 3/24 |
|  | 5/18 | XCS A723 | 3/24 | XCS DMP5912 | 3/56 | XCS P3702N12 | 3/83 | XCS Z03 | 3/20 |
| VZN 0• | 5/9 | XCS A801 | 3/22 | XCS DMP591L01M12 | 3/57 | XCS P3702P20 | 3/83 |  | 3/22 |
|  | 5/19 | XCS A802 | 3/20 | XCS DMP7002 | 3/56 | XCS P3710G13 | 3/83 |  | 3/24 |
| VZN 1 • | 5/9 | XCS A803 | 3/24 | XCS DMP700L01M12 | 3/57 | XCS P3710N12 | 3/83 | XCS Z05 | 3/20 |
|  | 5/19 | XCS B501 | 3/22 | XCS DMP7012 | 3/56 | XCS P3710P20 | 3/83 |  | 3/22 |
| VZN 2• | 5/9 | XCS B502 | 2/46 | XCS DMP701L01M12 | 3/57 | XCS P3718G13 | 3/83 |  | 3/24 |
|  | 5/19 |  | 3/20 | XCS DMP7902 | 3/56 | XCS P3718N12 | 3/83 | XCS Z100 | 3/36 |
| VZN 30 | 5/14 | XCS B503 | 3/24 | XCS DMP790L01M12 | 3/57 | XCS P3718P20 | 3/83 |  | 3/38 |
| X |  | XCS B511 | 3/22 | XCS DMP7912 | 3/56 | XCS P3719G13 | 3/83 |  | 3/40 |
| XAL K01 | 4/44 | XCS B701 | 3/22 | XCS DMP791L01M12 | 3/57 | XCS P3719N12 | 3/83 | XCS $\mathbf{Z 1 1}$ | 3/37 |
| XAL K01H7 | 4/44 | XCS B702 | 3/20 | XCS DMR5902 | 3/56 | XCS P3719P20 | 3/83 |  | $3 / 39$ $3 / 41$ |
| XAL K178E | 4/43 | XCS B703 | 3/24 | XCS DMR590L01M12 | 3/57 | XCS P3902G13 | 3/82 | XCS 712 | $3 / 41$ $3 / 37$ |
| XAL K178F | 4/43 | XCS B713 | 3/24 | XCS DMR5912 | 3/56 | XCS P3902N12 | 3/82 | XCS 212 | 3/39 |
| XAL K178G | 4/43 | XCS B723 | 3/24 | XCS DMR591L01M12 | 3/57 | XCS P3902P20 | 3/82 |  | 3/41 |
| XAL K188E | 4/43 | XCS B801 | 3/22 | XCS DMR7902 | 3/56 | XCS P3910G13 | 3/82 | XCS Z13 | 3/37 |
| XAL K188F | 4/43 | XCS B803 | 3/24 | XCS DMR790L01M12 | 3/57 | XCS P3910N12 | 3/82 |  | 3/39 |
| XAL K188G | 4/43 | XCS C501 | 3/22 | XCS DMR7912 | 3/56 | XCS P3910P20 | 3/82 |  | 3/41 |
| XB4 BS8445 | 4/35 | XCs C502 | 3/20 | XCS DMR791L01M12 | 3/57 | XCS P3918G13 | 3/82 | XCS Z14 | 3/37 |
| XB4 BS9445 | 4/35 | XCS C511 | 3/22 | XCS DMT | 3/70 | XCS P3918N12 | 3/82 |  | 3/39 |
| XB4 BT845 | 4/35 | XCS C701 | 3/22 | XCS E5311 | 3/23 | XCS P3918P20 | 3/82 |  | 3/41 |
| XB5 AS8445 | 4/39 | XCS C702 | 3/20 | XCS E5312 | 3/21 | XCS P3919G13 | 3/82 | XCS Z15 | 3/37 |
| XB5 AS9445 | 4/39 | XCS C703 | 3/24 | XCS E5313 | 3/25 | XCS P3919N12 | 3/82 |  | $3 / 39$ $3 / 41$ |
| XB5 AT845 | 4/39 | XCS C801 | 3/22 | XCS E5321 | 3/23 | XCS P3919P20 | 3/82 | XCS Z200 | 3/36 |
| XBT GT6330 | 2/13 | XCS C803 | 3/24 | XCS E5331 | 3/23 | XCS PA191 | 3/38 | XCS 2200 | 3/38 |
|  | $2 / 28$ | XCS D3702G13 | 3/81 | XCS E5333 | 3/25 | XCS PA192 | 3/36 |  | 3/40 |
|  | 2/46 | XCS D3702N12 | 3/81 | XCS E5341 | 3/23 | XCS PA193 | 3/40 | XCS Z21 | 3/37 |
| XBT GT7340 | $\begin{aligned} & 2 / 128 \\ & 2 / 28 \end{aligned}$ | XCS D3702P20 | 3/81 | XCS E5342 | 3/21 | XCS PA291 | 3/38 |  | 3/39 |
|  | 2/46 | XCS D3710G13 | 3/81 | XCS E7311 | 3/23 | XCS PA292 | 3/36 |  | 3/41 |
| XBT GT2130 | 2/13 | XCS D3710N12 | 3/81 | XCS E73117 | 3/23 | XCS PA293 | 3/40 | XCS Z25 | 3/26 |
|  | 2/28 | XCS D3710P20 | 3/81 | XCS E7312 | 3/21 | XCS PA391 | 3/38 | XCS Z27 | 3/26 |
|  | 2/46 | XCS D3718G13 | 3/81 | XCS E73127 | 3/21 | XCS PA491 | 3/38 | XCS Z28 | 3/36 |
| XBT GT2330 | 2/13 | XCS D3718N12 | 3/81 | XCS E7313 | 3/25 | XCS PA492 | 3/36 |  | 3/38 |
|  | 2/28 | XCS D3718P20 | 3/81 | XCS E73137 | 3/25 | XCS PA493 | 3/40 |  | 3/40 |
|  | 2/46 | XCS D3719G13 | 3/81 | XCS E7321 | 3/23 | XCS PA591 | 3/38 | XCS Z29 | 3/32 |
|  |  | XCS D3719N12 | 3/81 | XCS E73217 | 3/23 | XCS PA592 | 3/36 | XCS Z31 | 3/26 |


| XCS Z32 | 3/26 | XPE R510 | 4/19 | XPS BF1132 | 2/211 | XPS PVK3784 | 2/255 | XUS LPZ3A0400B | 3/114 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XCS Z43 | 3/26 | XPE R5100D | 4/19 | XPS BF1132P | 2/211 | XPS PVT1180 | 2/251 | XUS LPZ3A0400M | 3/113 |
| XCS Z81 | 3/32 | XPE R511 | 4/19 | XPS DA3442 | 2/249 | XPS TSA3442P | 2/233 | XUS LPZ3A0500B | 3/114 |
| XCS Z83 | 3/32 | XPE R5110D | 4/19 | XPS DA3742 | 2/249 | XPS TSA3742P | 2/233 | XUS LPZ3A0500M | 3/113 |
| XCS Z84 | 3/32 | XPE R529 | 4/19 | XPS DA5142 | 2/249 | XPS TSA5142P | 2/233 | XUS LPZ4A0300B | 3/114 |
| XCS Z85 | 3/32 | XPE R611 | 4/19 | XPS DMB1132 | 2/237 | XPS TSW3442P | 2/233 | XUS LPZ4A0300M | 3/113 |
| XCS Z90 | 3/26 | XPE R711 | 4/19 | XPS DMB1132P | 2/237 | XPS TSW3742P | 2/233 | XUS LPZ5A0300B | 3/114 |
| XCS 291 | 3/36 | XPE R810 | 4/20 | XPS DME1132 | 2/237 | XPS TSW5142P | 2/233 | XUS LPZ5A0300M | 3/113 |
|  | 3/38 | XPE R811 | 4/20 | XPS DME1132P | 2/237 | XPS VC1132 | 2/206 | XUS LPZ6A0300B | 3/114 |
|  | 3/40 | XPE R911 | 4/20 | XPS ECM3431 | 2/229 | XPS VC1132P | 2/206 | XUS LPZ6A0300M | 3/113 |
| XCS ZC1 | 3/58 | XPE R929 | 4/20 | XPS ECM3731 | 2/229 | XPS VNE1142HSP | 2/243 | XUS LTQ6A0260 | 3/105 |
| Xcs zcc | 3/58 | XPE Y110 | 4/23 | XPS ECM5131 | 2/229 | XPS VNE1142P | 2/243 | XUS LTQ6A0350 | 3/105 |
| XCS ZCP | 3/58 | XPE Y211 | 4/23 | XPS ECP3431 | 2/229 | XPS VNE3442HSP | 2/243 | XUS LTQ6A0435 | 3/105 |
| XCS ZCR | 3/58 | XPE Y310 | 4/23 | XPS ECP3731 | 2/229 | XPS VNE3442P | 2/243 | XUS LTQ6A0520 | 3/105 |
| XCS ZP1 | 3/58 | XPE Y311 | 4/23 | XPS ECP5131 | 2/229 | XPS VNE3742HSP | 2/243 | XUS LTQ6A0610 | 3/105 |
| XCS ZR1 | 3/58 | XPE Y510 | 4/23 | XPS LCD1141 | 2/217 | XPS VNE3742P | 2/243 | XUS LTQ6A0700 | 3/105 |
| XE2S P4151 | 4/20 | XPE Y511 | 4/23 | XPS LCM1150 | 2/222 | XSZ B130 | 3/58 | XUS LTQ6A0785 | 3/105 |
|  | 4/23 | XPE Y611 | 4/23 | XPS MC16Z | 2/124 | XSZ CM02 | 2/222 | XUS LTQ6A0870 | 3/105 |
| XE2S P4151B | 4/20 | XPE Y711 | 4/23 | XPS MC16ZC | 2/124 | XSZ NCR03 | 3/121 | XUS LTQ6A0955 | 3/105 |
| XPE A110 | 4/23 | XPE Z901 | 4/20 | XPS MC16ZP | 2/124 | XSZ NCR10 | 3/121 | XUS LTQ6A1045 | 3/105 |
| XPE A111 | 4/23 | XPE Z902 | 4/20 | XPS MC32Z | 2/124 | XSZ NCR30 | 3/121 | XUS LTQ6A1130 | 3/105 |
| XPE B110 | 4/2 | XPE Z903 | 4/20 | XPS MC32ZC | 2/124 | XSZ NCT03 | 3/121 | XUS LTQ6A1215 | 3/105 |
| XPE B111 | 4/23 | XPE Z904 | 4/20 | XPS MC32ZP | 2/124 | XSZ NCT10 | 3/121 | XUS LTQ6A1305 | 3/105 |
| XPE B211 | 4/23 | XPE Z905 | 4/20 | XPS MCCPC | 2/125 | XSZ NCT30 | 3/121 | XUS LTQ6A1390 | 3/105 |
| XPE B310 | 4/23 | XPE Z911 | 4/20 | XPS MCSCY | 2/29 | XSZ PCR05 | 3/115 | XUS LTR5A0350 | 3/105 |
| XPE B311 | 4/23 | XPE Z912 | 4/20 |  | 2/125 | XSZ PCR10 | 3/115 | XUS LTR5A0520 | 3/105 |
| XPE B510 | 4/23 | XPE Z913 | 4/20 | XPS MCTC16 | 2/124 | XSZ PCR15 | 3/115 | XUS LTR5A0700 | 3/105 |
| XPE B511 | 4/23 | XPE Z921 | 4/20 | XPS MCTC32 | 2/124 | XSZ PCR30 | 3/115 | XUS LTR5A0870 | 3/105 |
| XPE B611 | 4/23 | XPE 2931 | 4/20 | XPS MCTS16 | 2/124 | XSZ PCT05 | 3/115 | XUS LTR5A1045 | 3/105 |
| XPE B711 | 4/23 | XPS AC1321 | 2/175 | XPS MCTS 32 | 2/124 | XSZ PCT10 | 3/115 | XUS LTR5A1215 | 3/105 |
| XPE G110 | 4/23 | XPS AC1321P | 2/175 | XPS MCWIN | 2/124 | XSZ PCT15 | 3/115 | XUS LTR5A1390 | 3/105 |
| XPE G111 | 4/23 | XPS AC3421 | 2/175 | XPS MCWIN | 2/124 | XSZ PCT30 | 3/115 | XUS LTR5A1570 | 3/105 |
| XPE G211 | 4/23 | XPS AC3421P | 2/175 | XPS MF1DI1601 | 2/78 | XSZ SMK | 3/126 | XUS LTR5A1745 | 3/105 |
| XPE G310 | 4/23 | XPS AC3721 | 2/175 | XPS MF2DO1601 | 2/85 | XSZ SMK1 | 3/126 | XUS LTR5A1920 | 3/105 |
| XPE G311 | 4/23 | XPS AC3721P | 2/175 | XPS MF2DO1602 | 2/85 | XSZ SMK2 | 3/126 | XUS LTR5A2095 | 3/105 |
| XPE G510 | 4/23 | XPS AC5121 | 2/175 | XPS MF2DO401 | 2/85 | XSZ TCR05 | 3/106 | XUS LZ100 | 3/106 |
| XPE G511 | 4/23 | XPS AC5121P | 2/175 | XPS MF2DO801 | 2/85 | XSZ TCR10 | 3/106 | XUS LZ213 | 3/106 |
| XPE G611 | 4/23 | XPS AF5130 | 2/187 | XPS MF3022 | 2/27 | XSZ TCR15 | 3/106 | XUS LZ218 | 3/121 |
| XPE G711 | 4/23 | XPS AF5130P | 2/187 | XPS MF31222 | 2/27 | XSZ TCR30 | 3/106 | XUS LZ219 | 3/115 |
| XPE G810 | 4/23 | XPS AFL5130 | 2/191 | XPS MF3502 | 2/27 | XSZ TCT05 | 3/106 | XUS LZ222 | 3/106 |
| XPE G911 | $4 / 23$ | XPS AFL5130P | 2/191 | XPS MF3522 | 2/27 | XSZ TCT10 | 3/106 | XUS LZ227 | 3/126 |
| XPE M110 | 4/20 | XPS AK311144 | 2/201 | XPS MF3542 | 2/27 | XSZ TCT15 | 3/106 | XUS LZ320 | 3/115 |
| XPE M111 | 4/20 | XPS AK311144P | 2/201 | XPS MF3AIO8401 | 2/97 | XSZ TCT30 | 3/106 | XUS LZ450 | 3/106 |
| XPE M211 | 4/20 | XPS AK331144P | 2/201 | XPS MF3DIO16801 | 2/97 | XUS LNG5C0150 | 3/121 |  | 3/115 |
| XPE M310 | 4/19 | XPS AK351144 | 2/201 | XPS MF3DIO20802 | 2/97 | XUS LNG5C0300 | 3/121 |  | 3/121 |
| XPE M3100D | 4/19 | XPS AK351144P | 2/201 | XPS MF3DIO8801 | 2/97 | XUS LNG5C0450 | 3/121 | XUS LZ500 | 3/106 |
| XPE M311 | 4/19 | XPS AK361144 | 2/201 | XPS MF4000 | 2/12 | XUS LNG5C0600 | 3/121 |  | 3/115 |
| XPE M3110D | 4/19 | XPS AK361144P | 2/201 | XPS MF4002 | 2/12 | XUS LNG5C0750 | 3/121 |  | 3/121 |
| XPE M329 | 4/19 | XPS AK371144 | 2/201 | XPS MF4020 | 2/12 | XUS LNG5C0900 | 3/121 | XUS LZ500 | 3/70 |
| XPE M410 | 4/19 | XPS AK371144P | 2/201 | XPS MF4022 | 2/12 | XUS LNG5C1050 | 3/121 | XUS LZ70260 | 3/107 |
| XPE M510 | 4/19 | XPS AR311144 | 2/195 | XPS MF4040 | 2/12 | XUS LNG5C1200 | 3/121 | XUS LZ70350 | 3/107 |
| XPE M5100D | 4/19 | XPS AR311144P | 2/195 | XPS MF4042 | 2/12 | XUS LNG5C1350 | 3/121 | XUS LZ70435 | 3/107 |
| XPE M511 | 4/19 | XPS AR351144 | 2/195 | XPS MFADAPT | 2/29 | XUS LNG5C1500 | 3/121 | XUS LZ70520 | 3/107 |
| XPE M5110D | 4/19 | XPS AR351144P | 2/195 |  | 2/47 | XUS LNG5D0150 | 3/121 | XUS LZ70610 | 3/107 |
| XPE M529 | 4/19 | XPS AR371144 | 2/195 | XPS MFAI801 | 2/51 | XUS LNG5D0300 | 3/121 | XUS LZ70700 | 3/107 |
| XPE M611 | 4/19 | XPS AR371144P | 2/195 | XPS MFA0801 | 2/53 | XUS LNG5D0450 | 3/121 | XUS LZ70785 | 3/107 |
| XPE M6210D | 4/19 | XPS ATE3410 | 2/180 | XPS MFBLK | 2/45 | XUS LNG5D0600 | 3/121 | XUS LZ70870 | 3/107 |
| XPE M711 | 4/19 | XPS ATE3410P | 2/180 | XPS MFCIO2401 | 2/55 | XUS LNG5D0750 | 3/121 | XUS LZ70955 | 3/107 |
| XPE M810 | 4/20 | XPS ATE3710 | 2/180 | XPS MFCPU22 | 2/44 | XUS LNG5D0900 | 3/121 | XUS LZ71045 | 3/107 |
| XPE M811 | 4/20 | XPS ATE3710P | 2/180 | XPS MFDI2401 | 2/57 | XUS LNG5D1050 | 3/121 | XUS LZ71130 | 3/107 |
| XPE M911 | 4/20 | XPS ATE5110 | 2/180 | XPS MFDI3201 | 2/59 | XUS LNG5D1200 | 3/121 | XUS LZ71215 | 3/107 |
| XPE M929 | 4/20 | XPS ATE5110P | 2/180 | XPS MFDIO241601 | 2/61 | XUS LNG5D1350 | 3/121 | XUS LZ71305 | 3/107 |
| XPE R110 | 4/20 | XPS AV11113 | 2/180 | XPS MFDO801 | 2/63 | XUS LNG5D1500 | 21 | XUS LZ71390 | 3/107 |
| XPE R111 | 4/20 | XPS AV11113P | 2/180 | XPS MFGEH01 | 2/44 | XUS LPB2A | 3/113 | XUS LZ71570 | 3/107 |
| XPE R211 | 4/20 | XPS BA3420 | 2/211 | XPS MFPS 01 | 2/44 | XUS LPB2A600M | 3/113 | XUS LZ71745 | 3/107 |
| XPE R229 | 4/20 | XPS BA3720 | 2/211 | XPS MP11123 | 2/108 | XUS LPZ1AB | 3/114 | XUS LZ71920 | 3/107 |
| XPE R310 | 4/19 | XPS BA5120 | 2/211 | XPS MP11123P | 2/108 | XUS LPZ1AM |  | XUS LZ72095 | 3/107 |
| XPE R3100D | 4/19 | XPS BC1110 | 2/211 | XPS OT3444 | 2/260 | XUS LPZ2A0 |  | XUS ZA0102 | 3/124 |
| XPE R311 | 4/19 | XPS BC3110 | 2/211 | XPS OT3744 | 2/260 | XUS LPZ2A0500M | 3/113 | XUS ZA0152 | 3/124 |
| XPE R3110D | 4/19 | XPS BC3410 | 2/211 | XPS PVK1184 | 2/255 | XUS LPZ2A0600B | 3/114 | XUS ZA0305 | 3/124 |
| XPE R410 | 4/19 |  |  | XPS PVK3484 | 2/255 |  |  | XUS ZA0457 | 3/124 |
|  |  | XPS BC3710 |  |  |  | XUS LPZ2A0600M | 3/13 | XUS ZA0508 | 3/124 |


| XUS ZA0610 | 3/124 | \|XVB C2G• | 4/54 | XY2 CB34 | 4/8 | XY2 SB76 | 4/31 | ZB5 AS944 | 2/272 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XUS ZA0711 | 3/124 | XVB C2M• | 4/54 | XY2 CE1A250 | 4/7 | XY2 SB90 | 4/32 |  | 4/39 |
| XUS ZA0762 | 3/124 | XVB C3. | 4/53 | XY2 CE1A270 | 4/7 | XY2 SB93 | 4/32 |  | 4/40 |
| XUS ZA0813 | 3/124 | XVB C4B• | 4/53 | XY2 CE1A296 | 4/7 | XY2 SB96 | 4/32 |  | 4/44 |
| XUS ZA0914 | 3/124 | XVB C4M• | 4/53 | XY2 CE1A297 | 4/7 | XY2 SB98 | 4/32 | ZB5 AS964 | 4/44 |
| XUS ZA1016 | 3/124 | XVB C5B• | 4/54 | XY2 CE1A450 | 4/7 | XY2 SB99 | 4/32 | ZB5 AT84 | 4/40 |
| XUS ZA1067 | 3/124 | XVB C5G• | 4/54 | XY2 CE1A470 | 4/7 | XY2 TP1 | 3/89 |  | $4 / 44$ $4 / 40$ |
| XUS ZA1219 | 3/124 | XVB C5M• | 4/54 | XY2 CE2A250 | 4/7 | XY2 TP2 | 3/89 | ZB5 AZ102 | 4/40 |
| XUS ZA1321 | 3/124 | XVB C6B• | 4/55 | XY2 CE2A270 | $4 / 7$ | XY2 TP3 | 3/89 | ZB5 AZ104 | 4/40 |
| XUS ZA1372 | 3/124 | XVB C6G• | 4/55 | XY2 CE2A296 | $4 / 7$ | XY2 TP4 | 3/89 | ZB5 AZ141 | 4/40 |
| XUS ZA1422 | 3/124 | XVB C6M• | 4/55 | XY2 CE2A297 | 4/7 | XY2 TZ1 | 3/89 | ZBY 2113 | 4/35 |
| XUS ZA1524 | 3/124 | XVB C8B• | 4/55 | XY2 CE2A450 | 4/7 | XY2 TZ10 | 3/89 | ZBY 2113 | 4/39 |
| XUS ZA1626 | 3/124 | XVB C8E5 | 4/55 | XY2 CE2A470 | 4/7 | XY2 TZ2 | 3/89 |  | 4/44 |
| XUS ZA1830 | 3/124 | XVB C8G• | 4/55 | XY2 CH13170 | 4/7 | XY2 TZ20 | 3/89 | ZBY 2230 | 4/35 |
| XUS ZA2134 | 3/124 | XVB C8M• | 4/55 | XY2 CH13250 | $4 / 7$ | XY2 TZ30 | 3/89 |  | 4/39 |
| XUS ZA2134 | 3/124 | XVB C9B | 4/56 | XY2 CH13253 | $4 / 7$ | XY2 TZ4 | 3/89 |  | 4/44 |
| XUS ZC1200 | 3/127 | XVB C9M | 4/56 | XY2 CH13258 | 4/7 | XY2 TZ40 | 3/89 | ZBY 2330 | 4/35 |
| XUS ZC1800 | 3/127 | XVB CY1 | 4/56 | XY2 CH13270 | 4/7 | XY2 TZ5 | 3/89 |  | 4/39 |
| XUS ZC2100 | 3/127 | XVB CY2 | 4/56 | XY2 CH13273 | $4 / 7$ | XY2 TZ50 | 3/89 |  | 4/44 |
| XUS ZC2400 | 3/127 | XVB LOB• | 4/51 | XY2 CH13278 | 4/7 | XY2 TZ60 | 3/89 | ZBY 8130 | 4/35 |
| XUS ZC3100 | 3/127 | XVB LOG• | 4/51 | XY2 CH13350 | $4 / 7$ | XY2 TZ70 | 3/89 |  | 4/39 |
| XUS ZCA | 3/127 | XVB LOM• | 4/51 | XY2 CH13370 | 4/7 | XY2 TZ80 | 3/89 | ZBY 8230 | 4/35 |
| XUS ZCB | 3/127 | XVB L1B• | 4/51 | XY2 CH13450 | 4/7 | XY2 TZ90 | 3/89 | ZBY 8330 | 4/35 |
| XUS ZM0102 | 3/124 | XVB L1G• | 4/51 | XY2 CH13470 | 4/7 | XZ CP0941L10 | 3/58 |  | 4/39 |
| XUS ZM0152 | 3/124 | XVB L1M• | 4/51 | XY2 CZ0024 | 4/12 | XZ CP0941L2 | 3/58 | ZBY 9130 | 4/35 |
| XUS ZM0305 | 3/124 | XVB L33 | 4/50 | XY2 CZ0048 | 4/12 | XZ CP0941L5 | 3/58 |  | 4/39 |
| XUS ZM0457 | 3/124 | XVB L34 | 4/50 | XY2 CZ0130 | 4/12 | XZ CP1041L10 | 3/58 | ZBY 9230 | 4/35 |
| XUS ZM0508 | 3/124 | XVB L35 | 4/50 | XY2 CZ0230 | 4/12 | XZ CP1041L2 | 3/58 |  | 4/39 |
| XUS ZM0610 | 3/124 | XVB L36 | 4/50 | XY2 CZ1015 | 4/11 | XZ CP1041L5 | 3/58 | ZBY 9330 | 4/35 |
| XUS ZM0711 | 3/124 | XVB L37 | 4/50 | XY2 CZ102 | 4/11 | XZ CP1141L10 | 3/58 | ZEN L1111 | 4/44 |
| XUS ZM0762 | 3/124 | XVB L38 | 4/50 | XY2 CZ105 | 4/11 | XZ CP1141L• | 3/58 | ZEN L1121 | 4/44 |
| XUS ZM0813 | 3/124 | XVB L4B• | 4/50 | XY2 CZ110 | 4/11 | XZ CP1241L•• | 3/58 |  |  |
| XUS ZM0914 | 3/124 | XVB L4M• | 4/50 | XY2 CZ203 | 4/11 | XZ CP29P11L•• | 3/58 |  |  |
| XUS ZM1016 | 3/124 | XVB L6B• | 4/52 | XY2 CZ301 | 4/11 | XZ CP29P12L•• | 3/70 |  |  |
| XUS ZM1067 | 3/124 | XVB L6G• | 4/52 | XY2 CZ3015 | 4/11 | XZC PTP0104L2 | 3/90 |  |  |
| XUS ZM1219 | 3/124 | XVB L6M• | 4/52 | XY2 CZ302 | 4/11 | XZC PTP0205L5 | 3/90 |  |  |
| XUS ZM1321 | 3/124 | XVB L8B• | 4/52 | XY2 CZ305 | 4/11 | XZC PTP0306L10 | 3/90 |  |  |
| XUS ZM1372 | 3/124 | XVB L8G• | 4/52 | XY2 CZ310 | 4/11 | XZC RTPA• | 3/90 |  |  |
| XUS ZM1422 | 3/124 | XVB L8M• | 4/52 | XY2 CZ402 | 4/11 | Z |  |  |  |
| XUS ZM1524 | 3/124 | XVB Z0• | 4/57 | XY2 CZ404 | 4/11 | Z01 | 5/15 |  |  |
| XUS ZM1626 | 3/124 | XVR 012 | 4/61 | XY2 CZ503 | 4/11 | ZA2 BA639 | 4/12 |  |  |
| XUS ZM1830 | 3/124 | XVR 013 | 4/61 | XY2 CZ513 | 4/11 | ZA2 BC64 | 4/12 |  |  |
| XUS ZM2134 | 3/124 | XVR 015• | 4/61 | XY2 CZ523 | 4/11 | ZA2 BP6 | 4/12 |  |  |
| XUS ZM2134 | 3/124 | XVR 1B0• | 4/61 | XY2 CZ524 | 4/11 | ZA2 BS062 | 4/12 |  |  |
| XUS ZWS0260 | 3/125 | XVR 1G0• | 4/61 | XY2 CZ601 | 4/11 | ZA2 BS06212 | 4/12 |  |  |
| XUS ZWS0350 | 3/125 | XVR 1M0• | 4/61 | XY2 CZ602 | 4/11 | ZA2 BV05 | 4/12 |  |  |
| XUS ZWS0435 | 3/125 | XVS B. | 4/63 | XY2 CZ701 | 4/11 | ZA2 BZ901 | 4/12 |  |  |
| XUS ZWS0520 | 3/125 | XVS G• | 4/63 | XY2 CZ702 | 4/11 | ZB2 BV015 | 4/12 |  |  |
| XUS ZWS0610 | 3/125 | XVS M• | 4/63 | XY2 CZ703 | 4/11 | ZB4 BR216 | 4/32 |  |  |
| XUS ZWS0700 | 3/125 | XY2 AU1 | 4/27 | XY2 CZ704 | 4/11 | ZB4 BS834 | 4/36 |  |  |
| XUS ZWS0785 | 3/125 | XY2 AU2 | 4/27 | XY2 CZ705 | 4/11 | ZB4 BS844 | 2/272 |  |  |
| XUS ZWS0870 | 3/125 | XY2 AZ1 | 4/27 | XY2 CZ708 | 4/11 |  | 4/32 |  |  |
| XUS ZWS0955 | 3/125 | XY2 AZ2 | 4/27 | XY2 CZ901 | 4/12 |  | 4/35 |  |  |
| XUS ZWS1045 | 3/125 | XY2 AZ3 | 4/27 | XY2 CZ902 | 4/12 |  | 4/36 |  |  |
| XUS ZWS1130 | 3/125 | XY2 CB10 | 4/8 | XY2 CZ903 | 4/12 | ZB4 BS845S | 4/32 |  |  |
| XUS ZWS1215 | 3/125 | XY2 CB104 | 4/8 | XY2 CZ904 | 4/12 | ZB4 BS934 | 2/272 |  |  |
| XUS ZWS1305 | 3/125 | XY2 CB11 | 4/8 | XY2 CZ908 | 4/12 |  | 4/32 |  |  |
| XUS ZWS1390 | 3/125 | XY2 CB12 | 4/8 | XY2 CZ917 | 4/11 |  | 4/36 |  |  |
| XUS ZWS1570 | 3/125 | XY2 CB13 | 4/8 | XY2 CZ9310 | 4/11 | ZB4 BS964 | 4/36 |  |  |
| XUS ZWS1745 | 3/125 | XY2 CB14 | 4/8 | XY2 CZ9315 | 4/11 | ZB4 BT84 | 4/36 |  |  |
| XUS ZWS1920 | 3/125 | XY2 CB20 | 4/8 | XY2 CZ9325 | 4/11 | ZB4 BZ10• | 4/32 |  |  |
| XUS ZWS2095 | 3/125 | XY2 CB204 | 4/8 | XY2 CZ9350 | 4/11 |  | 4/36 |  |  |
| XUS ZWSP | 3/125 | XY2 CB21 | 4/8 | XY2 CZ9525 | 4/11 | ZB4 BZ141 | 4/36 |  |  |
| XVB C07 | 4/56 | XY2 CB22 | 4/8 | XY2 CZ9550 | 4/11 | ZB5 AS834 | 4/40 |  |  |
| XVB C081 | 4/56 | XY2 CB23 | 4/8 | XY2 SB511 | 4/32 |  | 4/44 |  |  |
| XVB C14 | 4/56 | XY2 CB24 | 4/8 | XY2 SB531 | 4/32 | ZB5 AS844 | 2/272 |  |  |
| XVB C21 | 4/56 | XY2 CB30 | 4/8 | XY2 SB71 | 4/31 |  | 4/39 |  |  |
| XVB C21A | 4/56 | XY2 CB304 | 4/8 | XY2 SB714 | 4/31 |  | 4/40 |  |  |
| XVB C21B | 4/56 | XY2 CB31 | 4/8 | XY2 SB72 | 4/31 |  | 4/44 |  |  |
| XVB C22 | 4/56 | XY2 CB32 | 4/8 | XY2 SB724 | 4/31 | ZB5 AS934 | $4 / 40$ $4 / 44$ |  |  |
| XVB C23 | 4/56 | XY2 CB33 | 4/8 | XY2 SB75 | 4/31 |  |  |  |  |


[^0]:    Functional diagram of a two-hand control station

[^1]:    (1) With $500 \Omega$ shunt. (2) The digital outputs can be configured as line control outputs.

[^2]:    (1) With $250 \Omega$ or $500 \Omega$ shunt. (2) Digital inputs can be supplied by the line control outputs of the same I/O card. (3) The digital outputs ( $n^{\circ} 1 \ldots n^{\circ} 16$ ) can be configured as line control outputs.

[^3]:    (1) AWG: American Wire Gauge.
    (2) Removable Screw and Cage Clamp terminals provided with safety PLCs XPS MF40••

[^4]:    XBT GT7340

[^5]:    (1) Cable conforming to standard EIA/TIA-568 category 5 and IEC 1180/EN 50173 class D. For UL and CSA 22.1 approved cables, add the letter $\boldsymbol{U}$ to the end of the reference.
    (2) Requires adaptor XBT ZG909.

[^6]:    1 Premium automation platform: PROFIBUS DP master.
    2 Graphic terminal XBT GT: PROFIBUS DP master.
    3 Safety PLC XPS MF3542: PROFIBUS DP slave, Modbus TCP/IP server.
    4 Safety remote I/O modules XPS MF1/2/3. They communicate with safety PLC XPS MF3542 using the SafeEthernet protocol.
    5 Graphic terminal XBT GT: Modbus TCP/IP client.

[^7]:    (1) Removable screw terminals are provided with compact safety PLCs XPS MF31/30/35

[^8]:    (1) Depending on PLC model.

[^9]:    (1) Prefabricated electrical ducting for passage of cables.

[^10]:    (1) Removable screw terminal blocks are provided with the power supply and "in rack" I/O cards. (2) Use shielded dual twisted pair cables, maximum length 300 m , short-circuit unused analogue inputs.

[^11]:    (1) Removable screw terminal blocks are provided with the power supply and "in rack" I/O cards.
    (2) Configurable for line control.

[^12]:    (1) The unused input channels must be short-circuited on the reference pole (L-).
    (2) With $250 \Omega$ external shunt.
    (3) With $500 \Omega$ external shunt.
    (4) Removable screw terminals are provided with the "in rack" card XPS MFAI801.

[^13]:    (1) Removable screw terminals are provided with the "in rack" card XPS MFAO801.

[^14]:    (1) Removable screw terminals are provided with the "in rack" card XPS MFCIO2401.

[^15]:    (1) Removable screw terminals are provided with the "in rack" card XPS MFDI3201

[^16]:    Safety communication on Ethernet network
    The safety remote output modules XPS MF2DOゃゃゃ७ incorporate two RJ45（type 10BASE－T／100BASE－TX）integrated switched ports，that enable communication on the Ethernet network using SafeEthernet communication protocol and therefore， data exchange with compact or modular safety PLCs XPS MF．

[^17]:    XPS MP11123P

[^18]:    1-2-3 Function 1 configuration code.
    $4 \quad$ K1/K2 status (function 1, N/O safety outputs closed).
    5-6-7 Function 2 configuration code.
    K3/K4 status (function 2, N/O safety outputs closed)
    Supply voltage A1-A2
    Fault.
    Function 1 configuration.
    Function 2 configuration
    Configuration buttons.

[^19]:    (1) Prevention of start-up necessary: to check the sensors connected, open and reclose the guard.

[^20]:    (1) The controller is also capable of switching low power loads (17 V/10 mA minimum) provided that the contact has not been used for switching high power loads

[^21]:    (1) 153 mm with screw connector XPS MCTS••. 151.4 mm with spring clip connector XPS MCTC•• .

[^22]:    Key $0=1$

[^23]:    Key $\quad 0=1$

[^24]:    (1)The module is also capable of switching low power loads ( $17 \mathrm{~V} / 10 \mathrm{~mA}$ ) provided that the contact has not been used for switching high power loads (possible contamination or wear of the gold layer on the contact tips).

[^25]:    1 S12 input status.
    2 S22 input status.
    3 S32 input status.
    4 S34 input status.
    5 S14 input status.
    6 Y40 input status (time delay stop).
    7 K1/K2 status (N/O instantaneous opening safety outputs).
    8 K3/K4 status (time delay opening safety outputs).
    9 Supply voltage A1-A2.
    10 Fault.
    11 Configuration mode

[^26]:    (1) With start button monitoring.
    (2) Without start button monitoring

[^27]:    Closing command.
    Closing test.
    Opening command.
    Opening test.
    Opening valve (Y2) in position 0.
    Closing enabled.
    Safety valve (Y3) activated.
    8 Closing valve (Y2) in position 0.

[^28]:    Not all faults are detected. A short-circuit on a pushbutton or limit switch is not detected.
    When using less than 4 single contacts, the input terminals not in use must be linked.
    For example, if contact S 5 is not in use, a bridge is required between terminals 10 and 12.

[^29]:    Automatic start-up

[^30]:    (1) Live parts of these switches are protected against the penetration of dust and water.

[^31]:    （1）Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$ ．Blanking plug for operating head slot included with switch．
    （2）Unlocking by pushbutton for XCS Bゃゃゃ and by key operated lock for XCS C $\bullet \bullet$ ．
    （3）Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch．

[^32]:    (1) Solenoid
    (2) Auxiliary contact

    E1-E2: Solenoid supply
    51-52: Solenoid signalling contact
    21-22 and 31-32: Safety contacts, available for redundancy
    13-X1: LED (orange): actuator withdrawn
    43-X1: LED (green): actuator inserted and locked
    21-44: Safety pre-wiring obligatory

[^33]:    Locking by operating key and actuation in positive mode associated with a safety module

[^34]:    (1) Head adjustable in $90^{\circ}$ steps throughout $360^{\circ}$. Blanking plug for operating head slot included with switch.

[^35]:    Conforming to EN/IEC 60947-5-1 Appendix C.
    Utilisation categories AC-15 and DC-13.
    Maximum operating rate: 3600 operating cycles/hour.
    Load factor: 0.5

    2 and 3 slow break contact versions
    3 slow break contact version (XCS PL/TR)
    
    

[^36]:    References:
    pages 3/56 and 3/56

[^37]:    1) With start button monitoring
    (2) Without start button monitoring.
[^38]:    References：
    pages $3 / 56$ and $3 / 57$

[^39]:    (1) With start button monitoring.
    (2) Without start button monitoring.

    ESC: External start conditions.

[^40]:    Pages $3 / 82$ and $3 / 83$

[^41]:    (1) The resistance of the covering to the products listed is valid for an ambient temperature of $23^{\circ} \mathrm{C}$, provided there is no surface deterioration.

[^42]:    （1）Sensing distance reduction coefficient to be taken into account for each $90^{\circ}$ mirror adaptor used．
    （2）Usable reflective height．
    （3）For full information，please refer to the Phaseo Power Supplies catalogue．

[^43]:    (1) See separate components, page 4/11. End spring XY2 CZ702 included.
    (2) Bulb DL1 CB006 included.

[^44]:    (1) Emergency stop trip wire switches $\mathrm{XY} 2 \mathrm{CH} 13 \bullet \bullet \bullet$ and $\mathrm{XY} 2 \mathrm{CH} 14 \bullet \bullet \bullet$ incorporate a cable tensioner as standard. Therefore,

[^45]:    (1) To order an ATEX D version of the product (protection against dust), add EX to the end of the reference. Example: XPE M110EX.

[^46]:    M20 x 1.5 cable gland included

[^47]:    (1) Switches supplied with a shaft extension VZN 17 and a door interlock plate KZ 32 or KZ 74 (see page 5/14).

[^48]:    Please consult your Regional Sales Office.

[^49]:    (1) Compliance with a harmonised European standard assumes conformity with the corresponding directive, provided that installation, building in and/or assembly of the starter is carried out correctly by the machine manufacturer.
    Harmonised European standards: EN 60947 and EN 60439
    Conformity to international standards: IEC 60947 and IEC 60439.
    (2) Example: LG7 D12M716A04.
    (3) Delete the last 2 digits of the selected starter reference. Example: LG1 K065••08 becomes LG1 K065••.
    (4) Example: LG8 K095••A04A39A59.
    (5) LG1 K06: the mushroom head type Emergency Stop acts mechanically on the circuit-breaker

    LG1 K09, D12, D18: the Emergency Stop function is performed by an undervoltage trip, acting on the circuit-breaker. This circuit-breaker is always supplied pre-wired for use on $380 / 415 \mathrm{~V} 50 \mathrm{~Hz}$. For a 60 Hz supply, please consult your Regional Sales Office.

[^50]:    1) In the reference, the voltage code $\mathbf{Q 7}(\mathbf{3 8 0 / 4 0 0} \mathrm{V})$ indicates the power supply voltage to which the starter will be connected, it being assumed that the contactor has a $\sim 24 \mathrm{~V}$ coil (see control circuit scheme).
    (2) LJ7 K06 ( $P \leqslant 3 \mathrm{~kW}$ at 400 V ): the mushroom head type Emergency Stop acts mechanically on the circuit-breaker.

    LJ7 K09 ( $P>3 \mathrm{~kW}$ at 400 V ): the Emergency Stop function is performed by an undervoltage trip GV AX385, acting on the circuit-breaker. This circuit-breaker is always supplied pre-wired for use on $380 / 400 \mathrm{~V} 50 \mathrm{~Hz}$
    (3) Possible combination of variants A04, A29 and A39 on starters LJ7 K06. Example: LJ7 K06Q702A04A29A39.

    Possible combination of variants A04 and A39 on starters LJ7 K09Q714A04A39.
    (4) Example: LJ7 K06Q702A04.
    (5) Delete the last 2 digits of the selected starter reference. Example: LJ7 K06Q702 becomes LJ7 K06Q7.

[^51]:    (1) In the reference, the voltage code Q7 (380/400 V) indicates the power supply voltage to which the starter will be connected, it being assumed that the contactor has a $\sim 24 \mathrm{~V}$ coil (see control circuit scheme).
    (2) LJ8 K06 ( $P \leqslant 3 \mathrm{~kW}$ at 400 V ): the mushroom head type Emergency Stop acts mechanically on the circuit-breaker.

    LJ8 K09 (P>3 kW at 400 V ): the Emergency Stop function is performed by an undervoltage trip GV AX385, acting on the circuit-breaker. This circuit-breaker is always supplied pre-wired for use on $380 / 400 \mathrm{~V} 50 \mathrm{~Hz}$.
    (3) Possible combination of variants A04, A29 and A39 on starters LJ8 K06. Example: LJ8 K06Q702A04A29A39.

    Possible combination of variants A04 and A39 on starters LJ8 K09. Example : LJ8 K09Q714A04A39.
    (4) Example: LJ8 K06Q702A04.
    (5) Delete the last 2 digits of the selected starter reference. Example: LJ8 K06Q702 becomes LJ8 K06Q7.

[^52]:    ENIIEC 60204-1: Electrical equipment of machines
    Standard EN/IEC 60204-1 completes the safety standards by giving setting-up rules for each component of a machine's electrical functions.
    It specifies, amongst other things:

    - the type of connection terminals and disconnection and breaking devices,
    - the type of electric shock protection,
    - the type of control circuits,
    - the type of conductors and wiring rules,
    - the type of motor protection.

