Low voltage

Masterpact NT and NW

LV power circuit breakers and switch-disconnectors

Catalogue 2011

Masterpact NT and NW

The standard for power circuit breakers around the world.

Over the years, other major manufacturers have tried to keep up by developing products incorporating Masterpact's most innovative features, including the breaking principle, modular design and the use of composite materials.

In addition to the traditional features of power circuit breakers (withdrawability, discrimination and low maintenance), Masterpact NT and NW ranges offer built-in communications and metering functions, all in optimised frame sizes.

Masterpact NT and NW incorporate the latest technology to enhance both performance and safety. Easy to install, with user-friendly, intuitive operation and environment-friendly design, Masterpact NT and NW are, quite simply, circuit breakers of their time.

Covering all your applications

Masterpact meets the needs of all types of LV electrical distribution networks.

Building

- > Hotels
- HospitalsOffices
- > Retail

Industry

- > Mining and minerals
- > Automotive
- > Food and beverage
- > Chemical industry

☆ Energy and Infrastructures

- > Airports
- > Oil and gas
- > Water
- > Electrical energy
- > Marine

An answer to specific applications

- > 1000 V for mining applications
- > Direct current networks
- > Corrosion protection
- > Switch-disconnectors and earthing switches
- Automatic transfer switching equipment (ATSE) for emergency power systems
- > High electrical endurance applications: Masterpact NT H2 is a high performance device offering high breaking capacity (Icu: 50 kA/480 V) and a high level of discrimination, all in a small volume.

Whenever high short circuit is involved

Masterpact UR is a low voltage ultra rapid opening circuit breaker. Its fault detection rate and its reaction speed mean that it will stop a short circuit from developing. As a result, this is the key component in very high power installations equipped with a number of power sources connected in parallel.

Masterpact UR truly comes into its own when short circuit currents can reach very high levels and when continuity of service is a must: offshore installations, cement plants, petrochemical industry. It is also especially suited to electrical installations on board merchant.

All standards

Masterpact is compliant with international standards IEC 60947-1 and 2, IEC 68230 for type 2 tropicalisation, UL489, ANSI, UL1066, CCC and GOST.

Two families and three frame sizes

The range of power circuit breakers includes two families:

- > Masterpact NT, the world's smallest true power circuit breaker, with ratings from 630 to 1600 A
- > Masterpact NW, in two frame sizes, one from 800 to 4000 A and the other from 4000 A to 6300 A

5 performance levels

- > N1 for standard applications with low short-circuit levels.
- > H1 for industrial sites with high short-circuit levels or installations with two parallel-connected transformers.
- > H2 high-performance for heavy industry where very high short-circuits can occur.
- > H3 for incoming devices supplying critical applications requiring both high performance and a high level of discrimination.
- L1 for high current-limiting capability and a discrimination level (37 kA) as yet unequalled by any other circuit breaker of its type; intended for the protection of cable-type feeders or to raise the performance level of a switchboard when the transformer power rating is increased.

Masterpact NW 4000 to 6300 A

Ш

Optimised volumes and ease of installation

Aiming at standardising electrical switchboards at a time when installations are increasingly complex, Masterpact provides an unequalled simplicity, both concerning choice and installation.

The smallest circuit breaker in the world

Masterpact NT innovates by offering all the performance of a power circuit breaker in an extremely small volume. The 70 mm pole pitch means a three-pole draw out circuit breaker can be installed in a switchboard section 400 mm wide and 400 mm deep. Maximum security

The arc chutes absorb the energy released during breaking, thus limiting the stresses exerted on the installation. They filter and cool the gases produced, reducing effects perceptible from the outside.

Optimised volumes

Up to 4000 A, Masterpact NW circuit breakers are all the same size, the same as the old M08 to 32 range.

From 4000 A to 6300 A, there is just one size.

More than 600 patents are used to design Masterpact

Retrofit solutions

- Special connections terminals are available to replace a fixed or a drawout Masterpact M08 to 32 with a Masterpact NW, without modifying the busbars or the door cut-out.
- Plug and Play" retrofit solution : this solution enables retrofitting of Masterpact M units with considerably reducing on-site intervention time and getting the performance of last generation device.

IV

Standardisation of the switchboard

With optimised sizes, the Masterpact NT and NW ranges simplify the design of switchboards and standardise the installation of devices:

- > a single connection layout for Masterpact NT
- > three connection layouts for Masterpact NW:
 - one from 800 to 3200 A
 - one for 4000 A
 - one up to 6300 A

> horizontal or vertical rear connections can be modified on-site by turning the connectors 90° or they can even be replaced by front connection terminals

> identical connection terminals for the fixed or draw-out version for each rating (Masterpact NW)

> front connection requires little space because the connectors not increase the depth of the device.

Practical installation solutions

The Masterpact NW range further improves the installation solutions that have built the success of its predecessors:

- > incoming connection to top or bottom terminals
- > no safety clearance required
- > connection:
 - horizontal or vertical rear connection
 - front connection with minimum extra space
 - mixed front and rear connections
- > 115 mm pole pitch on all versions

> no derating up to 55 °C and 4000 A.

Compliance with environmental requirements The materials used for Masterpact are not potentially dangerous to the environment and are marked to facilitate sorting for recycling. Production facilities are nonpolluting in compliance with the ISO 14001 standard.

Monitoring and protecting your low voltage network

Masterpact can be integrated in a general supervision system to optimise your electrical installation.

Intuitive use

Micrologic control units are equipped with a digital LCD display used in conjunction with simple navigation buttons. Users can directly access parameters and settings. Navigation between screens is intuitive and the immediate display of values greatly simplifies settings. Text is displayed in the desired language.

VI

Ensuring safety at any time

All Masterpact circuit breakers are equipped with a Micrologic electronic control unit that offers all types of current and advanced protection, measurement and communication. Protection functions are separated from the measurement functions and are managed by an ASIC electronic component. This independence guarantees immunity from conducted or radiated disturbances and ensures the highest degree of reliability.

Maximising continuity of service

Because a LV power supply interruption is unacceptable especially in critical power applications, an automatic system is required for LV transfer switching. For your peace of mind, Masterpact enables automatic control and management of power sources in your low voltage distribution network guaranteeing the hi-reliability of your installation.

Optimising the management of your electrical installation

When equipped with a Micrologic type E, P or H, Masterpact can be integrated in a general supervision system to optimise installation operation and maintenance. Alarms may be programmed for remote indications. Used with PowerLogic ION Enterprise software, you can exploit the electrical data (current, voltage, frequency, power, and power quality) to optimise continuity of service and energy management:

- > reduce energy and operations costs
- > improve power quality, reliability and uptime
- > optimise equipment use.

EGX300 gateway-server or iRIO RTU

The EGX300 web-enabled gateway-server or the iRIO RTU (remote terminal unit) can both be used as Ethernet coupler for the PowerLogic System devices and for any other communicating devices operating under Modbus RS485 protocol. Data is viewable via a standard web browser.

PowerLogic ION Enterprise PowerLogic ION Enterprise software is a complete power management solution for your facility or plant operations. It can be connected to Masterpact through Ethernet/Modbus protocol.

Measurement functions are controlled by an additional microprocessor.

Protection functions are electronically managed independently of measurement functions. An ASIC (Application-Specific Integrated Circuit) is common to all trip units, which boosts immunity to conducted or radiated interference and increases reliability.

Presentation	3
Functions and characteristics	A-1
Installation recommendations	B-1
Dimensions and connection	C -1
Electrical diagrams	D-1
Additional characteristics	E-1

General overview Detailed contents

This overview describes all the functions offered by families have identical functions implemented using the same or different components depending on the case.

PB100762-60/

DB101123

Ratings:

- □ Masterpact NT 630 to 1600 A □ Masterpact NW 800 to 6300 A.
- Circuit breakers type N1, H1, H2, H3, L1.
- Switch-disconnectors type NA, HA, HF.
- 3 or 4 poles.
- Fixed or drawout versions.
- Option with neutral on the right. Protection derating.

Ammeter A and Energy E

- 2.0 basic protection
- 5.0 selective protection
- 6.0 selective + earth-fault protection
- 7.0⁽¹⁾ selective + earth-leakage protection

Power meter P

- 5.0 selective protection
- 6.0 selective + earth-fault protection
- 7.0 selective + earth-leakage protection

Harmonic meter H

- 5.0 selective protection
- 6.0 selective + earth-fault protection
- 7.0 selective + earth-leakage protection
- External sensor for earth-fault protection.
- Rectangular sensor for earth-leakage protection.
- Setting options (long-time rating plug):
- □ low setting 0.4 to 0.8 x Ir
- □ high setting 0.8 to 1 x Ir
- □ without long-time protection.
- External power-supply module.
- Battery module.
- (1) Only for ammeter A.

Power Meter

Masterpact equipped with Micrologic 2 /5 / 6 trip units offer type A (ammeter) or E (energy) metering functions as well as communication. Using Micrologic sensors and intelligence, Masterpact provides access to measurements of all the main electrical parameters on the built-in screen, on a dedicated FDM121 display unit or via the communication system.

Integration of measurement functions provides operators with operating assistance functions including alarms tripped by user-selected measurement values, timestamped event tables and histories, and maintenance indicators.

page A-22

The main measurements can be read on the built-in screen of Micrologic 5 / 6 trip units. They can also be displayed on the FDM121 switchboard display unit along with pop-up windows signalling the main alarms.

Masterpact and GetnSet.

- COM option in Masterpact.
- Masterpact in a communication network.

60

OF contact. page A

DB101113

MX, XF and MN volage releases.

2

 Auxiliary terminal shield. Operation counter. Escutcheon.

■ Transparent cover for escutcheon. Escutcheon blanking plate.

PB104353A55

PB104347A55

PB 104348A55

PB104349A5

schneider-electric.com

The technical guide

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading - optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

2

Presentation	3
Circuit breakers and switch-disconnectors NT06 to NT16 and NW08 to NW63 NT06 to NT16 NW08 to NW63	A-2 A-2 A-4 A-6
Micrologic control units	A-0
Overview of functions	А-о А-8
Micrologic A "ammeter"	A-10
Micrologic E "energy"	A-12
Micrologic P "power" Micrologic H "harmonics"	A-14 A-18
Power Meter functions Micrologic A/E/P/H control unit with COM option (BCM ULP)	A-20 A-20
Operating-assistance functions Micrologic A/E/P/H control unit with COM option (BCM ULP)	A-22 A-22
Switchboard-display functions	A-23
Micrologic A/E/P/H control unit with COM option (BCM ULP)	A-23
Micrologic control units Accessories and test equipment	A-25 A-25
Portable data acquisition Masterpact and GetnSet	A-28 A-28
Communication	A-30
COM option in Masterpact Overview of functions	A-30 A-31
Masterpact communication	A-32
Networks and sofware	A-32
RSU and RCU utilities	A-34
Supervision software Communication wiring system	A-35 A-36
Connections	A-37
Overview of solutions	A-37
Accessories	A-38
Locking	A-41
On the device	A-41
On the chassis	A-42
Indication contacts	A-43
Remote operation	A-45
Remote ON / OFF	A-45
Remote tripping	A-48
Accessories	A-49
Source-changeover systems	A-50
Presentation Mechanical interlocking	A-50 A-51
Electrical interlocking	A-53
Associated automatic controllers	A-55
Masterpact NW with corrosion protection 800-4000 A	A-56
Earthing switch Masterpact	A-58
Installation recommendations	B-1
Dimensions and connection	C-1
Electrical diagrams Additional characteristics	D-1 E-1
Catalogue numbers and order form	F-1

Circuit breakers and switch-disconnectors NT06 to NT16 and NW08 to NW63

NT and NW selection criter	ria				
	Masterpact NT			Masterpact NW	1
	Standard application	ons		Standard application	ons
	NT06, NT08, NT10, NT H1	12, NT16 H2	NT06, NT08, NT10 L1	NW08NW16 N1	NW08NW40 H1
Type of application	Standard applications with low short-circuit currents	Applications with medium-level short- circuit currents	Limiting circuit breaker for protection of cable- type feeders or upgraded transformer ratings	Standard applications with low short-circuit currents	Circuit breaker for industrial sites with high short-circuit currents
Icu/Ics at 440 V	42 kA	50 kA	130 kA	42 kA	65 kA
Icu/Ics at 1000 V	-	-	-	-	-
Icu/Ics at 500 V DC L/R < 15 ms	-	-	-	-	-
Position of neutral	Left	Left	Left	Left	Left or right
Fixed	F	F	F	F	F
Drawout	D	D	D	D	D
Switch-disconnector version	Yes	No	No	Yes	Yes
Front connection	Yes	Yes	Yes	Yes	Yes up to 3200 A
Rear connection	Yes	Yes	Yes	Yes	Yes
Type of Micrologic control unit	A, E, P, H	A, E, P, H	A, E, P, H	A, E, P, H	A, E, P, H

Masterpact NT06 to NT16 installation characteristics

Circuit br	eaker	NT06, NT08, NT1	0		NT12, NT16			
Туре		H1	H2	L1	H1	H2		
Connection								
Drawout	FC	•	•	•	•	•		
	RC	•		•				
Fixed	FC	•		•				
	RC	•		•		•		
Dimensions (mm) H x W x D							
Drawout	3P	322 x 288 x 277						
	4P	322 x 358 x 277						
Fixed	3P	301 x 276 x 196						
	4P	301 x 346 x 196						
Weight (kg) (a	pproximate)							
Drawout	3P/4P	30/39						
Fixed	3P/4P	14/18						

Masterpact NW08 to NW63 installation characteristics

Circuit b	reaker	NW08, I	NW10, N	W12, NW	16		NW20				
Туре		N1	H1	H2	L1	H10	H1	H2	H3	L1	H10
Connection											
Drawout	FC	•	•	-	-	-	-	•	•	•	-
	RC	•	•	•	•	•	•	•	•	•	•
Fixed	FC		•	•	-	-		•	-	-	-
	RC	•	•	•	-	-	-	•	-	-	-
Dimensions	s (mm) H x W x D	•									
Drawout	3P	439 x 441 x	395								
	4P	439 x 556 x	395								
Fixed	3P	352 x 422 x	(297								
	4P	352 x 537 x	297								
Weight (kg)	(approximate)										
Drawout	3P/4P	90/120									
Fixed	3P/4P	60/80									
(1) Except 40	00										

(1) Except 4000

			Special application	tions			
H2	НЗ	L1	NW H10	NW H2 with corrosion protection	NW10NW40 N DC	H DC	NW earthing switch
High-performance circuit breaker for heavy industry with high short- circuit currents	Incoming device with very high performance for critical applications	Limiting circuit breaker for protection of cable-type feeders or upgraded transformer ratings	1000 V systems, e.g. mines and wind power	Environments with high sulphur contents	DC system	DC system	Installation earthing
100 kA	150 kA	150 kA	-	100 kA	-	-	-
-	-	-	50 kA	-	-	-	-
-	-	-	-	-	35 kA	85 kA	-
Left or right	Left	Left	Left	Left or right	-	-	-
F	-	-	-	-	F	F	-
D	D	D	D	D	D	D	D
Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
Yes up to 3200 A	Yes up to 3200 A	Yes up to 3200 A	No	Yes up to 3200 A	No	No	Yes up to 3200 A
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
A, E, P, H	A, E, P, H	A, E, P, H	A, E, consult us for P and H	A, E, P, H	DC Micrologic	DC Micrologic	-

NW25, NW32, N	NW40		NW40b, NW50,NW63			
H1	H2	H3	H10	H1	H2	
(1)	(1)	(1)	-	-	-	
■ ⁽¹⁾	■ ⁽¹⁾	-	-	-	-	
		-	-		•	
				479 x 786 x 395		
				479 x 1016 x 395		
				352 x 767 x 297		
				352 x 997 x 297		
				225/300		
				120/160		

Circuit breakers and switch-disconnectors NT06 to NT16

	aracteristics			
Number of poles				3/4
Rated insulation vo			Ui	1000
Impulse withstand v			Uimp	12
· · · ·	oltage (VAC 50/60 H	lz)	Ue	690
Suitability for isolati	on		IEC 60947-2	
Degree of pollution			IEC 60664-1	3
Basic sweat	chaoar			
	as per IEC 60947	' ว		
Rated current (A)	as per IEC 60947	-2	In	at 40 °C/50 °C (1)
Rating of 4th pole (A)	۵۱		m	al 40 C/50 C 4
Sensor ratings (A)	<u>.</u>			
Type of circuit bro	eaker			
Ultimate breaking c	apacity (kA rms)		lcu	220/415 V
V AC 50/60 Hz				440 V
				525 V
				690 V
	king capacity (kA rms)	lcs	% Icu
Utilisation category				
V AC 50/60 Hz	thstand current (kA rr	ns)	lcw	0.5 s
V / (0 00/00 112				1 s 3 s
Integrated instantar	neous protection (kA)	neak +10 %)		35
Rated making capa			lcm	220/415 V
V AC 50/60 Hz				440 V
				525 V
				690 V
	ween tripping order a	and arc extinction		
Closing time (ms)		-		
	as per NEMA AB	1		0.40.14
Breaking capacity (V AC 50/60 Hz	KA)			240 V
				490.1/
V AC 50/00 TIZ				480 V
VAC 50/00 HZ				480 V 600 V
	ector as per IEC	60947-3 and Ani	nex A	
	nector as per IEC	60947-3 and Ani	nex A	
Switch-disconr	sconnector	60947-3 and Ani	nex A Icm	
Switch-disconr Type of switch-di	sconnector city (kA peak)	60947-3 and Ani		600 V
Switch-disconr Type of switch-di: Rated making capa AC23A/AC3 categ	sconnector icity (kA peak) ory V AC 50/60 Hz		lcm	600 V 220 V 440 V 525/690 V
Switch-disconr Type of switch-di: Rated making capa AC23A/AC3 categ Rated short-time wi	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr			600 V 220 V 440 V 525/690 V 0.5 s
Switch-disconr Type of switch-di: Rated making capa AC23A/AC3 categ	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr		lcm	600 V 220 V 440 V 525/690 V 0.5 s 1 s
Switch-disconr Type of switch-di: Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz	ns)	Icm Icw	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s
Switch-disconr Type of switch-di: Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v	ns)	Icm Icw	600 V 220 V 440 V 525/690 V 0.5 s 1 s
Switch-disconr Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v	ns) vith an external prot	Icm Icw ection relay	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V
Switch-disconr Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms	ns) vith an external prot	Icm Icw ection relay 0947-2/3 at I	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V
Switch-disconr Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durab	ns) vith an external prot ility as per IEC 6	Icm Icw ection relay 0947-2/3 at I	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms delectrical durabi Mechanical	ns) vith an external prot ility as per IEC 6	Icm Icw ection relay 0947-2/3 at I ce	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms delectrical durabi Mechanical eaker	ns) vith an external prot ility as per IEC 6 without maintenan	Icm Icw ection relay 0947-2/3 at I ce In (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms delectrical durabi Mechanical	ns) vith an external prot ility as per IEC 6	Icm Icw ection relay 0947-2/3 at I ce In (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical	ns) vith an external prot ility as per IEC 6 without maintenan without maintenan	Icm Icw ection relay 0947-2/3 at I ce In (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc	ns) vith an external prot ility as per IEC 6 without maintenan without maintenan	Icm Icw ection relay 0947-2/3 at I ce In (A) ce	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro Rated operationn	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc nal current	ns) vith an external prot ility as per IEC 6 without maintenan without maintenan	Icm Icw eection relay 0947-2/3 at I ce In (A) ce Ie (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc nal current	ns) vith an external prot ility as per IEC 6 without maintenan without maintenan connector	Icm Icw eection relay 0947-2/3 at I ce In (A) ce Ie (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V AC23A
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro Rated operationn C/O cycles x 1000 IEC 60947-3	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc nal current	ms) vith an external prot ility as per IEC 6 without maintenan without maintenan connector without maintenan	Icm Icw eection relay 0947-2/3 at I ce In (A) ce Ie (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V AC23A 440 V ⁽⁴⁾
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro Rated operationn C/O cycles x 1000 IEC 60947-3	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc eaker or switch-disc	ms) vith an external prot ility as per IEC 6 without maintenan without maintenan connector without maintenan	Icm Icw eection relay 0947-2/3 at I ce In (A) ce Ie (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V AC23A 440 V ⁽⁴⁾
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bre Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bre Rated operationn C/O cycles x 1000 IEC 60947-3 Type of circuit bre	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc eaker or switch-disc	ms) vith an external prot ility as per IEC 6 without maintenan without maintenan connector without maintenan	Icm Icw Rection relay 0947-2/3 at I ce In (A) ce Ie (A) ce	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V AC23A 440 V ⁽⁴⁾ 690 V
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro Rated operationm C/O cycles x 1000 IEC 60947-3 Type of circuit bro Rated operationm Motor power	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc al current Electrical eaker or switch-disc al current	ns) vith an external prot ility as per IEC 6 without maintenan without maintenan connector without maintenan connector	Icm Icw eection relay 0947-2/3 at I ce In (A) ce Ie (A) ce Ie (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V AC23A 440 V ⁽⁴⁾ 690 V AC3 ⁽⁵⁾ 380/415 V (kW) 440 V (kW)
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro Rated operationm C/O cycles x 1000 IEC 60947-3 Type of circuit bro Rated operationm Motor power C/O cycles x 1000	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc al current Electrical eaker or switch-disc al current Electrical	ms) vith an external prot ility as per IEC 6 without maintenan without maintenan connector without maintenan	Icm Icw eection relay 0947-2/3 at I ce In (A) ce Ie (A) ce Ie (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V AC23A 440 V ⁽⁴⁾ 690 V AC3 ⁽⁶⁾ 380/415 V (kW) 440 V (kW)
Switch-discom Type of switch-di Rated making capa AC23A/AC3 categ Rated short-time wi AC23A/AC3 categ Ultimate breaking c Maximum time dela Mechanical and Service life C/O cycles x 1000 Type of circuit bro Rated current C/O cycles x 1000 IEC 60947-2 Type of circuit bro Rated operationm C/O cycles x 1000 IEC 60947-3 Type of circuit bro Rated operationm Motor power	sconnector city (kA peak) ory V AC 50/60 Hz thstand current (kA rr ory V AC 50/60 Hz apacity Icu (kA rms) v y: 350 ms d electrical durabi Mechanical eaker Electrical eaker or switch-disc al current Electrical eaker or switch-disc al current Electrical	ns) vith an external prot ility as per IEC 6 without maintenan without maintenan connector without maintenan connector	Icm Icw eection relay 0947-2/3 at I ce In (A) ce Ie (A) ce Ie (A)	600 V 220 V 440 V 525/690 V 0.5 s 1 s 3 s 690 V n/le 440 V ⁽⁴⁾ 690 V AC23A 440 V ⁽⁴⁾ 690 V AC3 ⁽⁵⁾ 380/415 V (kW) 440 V (kW)

(1) 50 °C: rear vertical connected. Refer to temperature derating tables for other connection types. (2) See the current-limiting curves in the "additional characteristics" section.

(3) SELLIM system.
(4) Available for 480 V NEMA.
(5) Suitable for motor control (direct-on-line starting).

Sensor selection							
Sensor rating (A)	250 (1)	400	630	800	1000	1250	1600
Ir threshold setting(A)	100 to 250	160 to 400	250 to 630	320 to 800	400 to 1000	500 to 1250	640 to 1600
(1) For circuit-breaker NT02, pleas	e consult us.						

2, p (1)

	NT06	j		NT08	3		NT10)		NT12	2	NT1	6
	630			800			1000			1250		1600	
	630			800			1000			1250		1600	
	400 to (330		400 to	800		400 to	1000		630 to	1250		0 1600
	400 l0 l	H2	L1 ⁽²⁾	+00 10	000		400 10	1000		H1	H2	000 10	1000
	н1 42									42			
		50	150								50		
	42	50	130							42	50		
	42	42	100							42	42		
	42	42	25							42	42		
	100 %									100 %			
	В	В	А							В	В		
	42	36	10							42	36		
	42	36	-							42	36		
	24	20	-							24	20		
	-	90	10 x ln ⁽³⁾							-	90		
1	88	105	330							88	105		
	88	105	286							88	105		
	88	88	220							88	88		
	88	88	52							88	88		
	25	25	9							25	25		
	< 50		-							< 50			
	42	50	150							42	50		
	42 42									42			
		50	100								50		
	42	42	25							42	42		
	HA									HA			
	75									75			
	75									75			
	75									75			
	36									36			
:	36									36			
	20									20			
	36									36			
	12.5												
	H1	H2	L1	H1	H2	L1	H1	H2	L1	H1	H2	H1	H2
	630			800			1000			1250			
	6	6	3	6	6	3	6	6	3	6	6	3	3
	3	3	2	3	3	2	3	3	2	3	3	1	3 1
	3 H1/H2/		<u> </u>	5	5	4	3	5	4	5	5	· ·	1
		ΠA		800			4000			4050		4000	
	630 C			800			1000			1250		1600	
	6			6			6			6		3	
	3			3			3			3		1	
	H1/H2/	HA											
	500			630			800			1000		1000	
	≤250			250 to			335 to -			450 to		450 to	
	≤ 300			300 to	400		400 to	500		500 to	630	500 to	o 630

Circuit breakers and switch-disconnectors NW08 to NW63

Common characteristics			
Number of poles			3/4
Rated insulation voltage (V) Impulse withstand voltage (kV)		Ui Uimp	1000/1250 12
Rated operational voltage (V AC 50/60 F	Hz)	Ue	690/1150
Suitability for isolation	,	IEC 60947-2	
Degree of pollution		IEC 60664-1	4 (1000 V) / 3 (1250 V)
Basic circuit-breaker			
Circuit-breaker as per IEC 60947	7-2		
Rated current (A)			at 40 °C / 50 °C (1)
Rating of 4th pole (A)			
Sensor ratings (A)			
Type of circuit breaker			
Ultimate breaking capacity (kA rms)		lcu	220/415/440 V
V AC 50/60 Hz			525 V
			690 V
Rated service breaking capacity (kA rms	:)	lcs	1150 V % Icu
Utilisation category	/		
Rated short-time withstand current (kAr	ms)	lcw	1 s
V AC 50/60 Hz			3 s
Integrated instantaneous protection (kA	peak ±10 %)		
Rated making capacity (kA peak) V AC 50/60 Hz		lcm	220/415/440 V
V AC 50/60 HZ			525 V 690 V
			1150 V
Break time (ms) between tripping order a	and arc extinction		
Closing time (ms)			
Circuit-breaker as per NEMA AB	1		
Breaking capacity (kA) V AC 50/60 Hz			240/480 V
			600 V
Unprotected circuit-break			
Tripping by shunt trip as per IEC Type of circuit breaker	;60947-2		
Ultimate breaking capacity (kA rms) V A	C 50/60 Hz	lcu	220690 V
Rated service breaking capacity (kArms		lcs	% lcu
· · · · · · · · · · · · · · · ·	;)		
Rated service breaking capacity (kA rms Rated short-time withstand current (kA r	;)	lcs	% Icu
Rated service breaking capacity (kA rms Rated short-time withstand current (kA r Overload and short-circuit protection	s) ms)	lcs lcw	% lcu 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA r Overload and short-circuit protection External protection relay: short-circuit protection	s) ms) otection, maximum	Ics Icw delay: 350 ms ⁽⁴	% lcu 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA r Overload and short-circuit protection External protection relay: short-circuit pro Rated making capacity (kA peak) V AC 5	i) ms) otection, maximum 50/60 Hz	Ics Icw delay: 350 ms ⁽⁴ Icm	% Icu 1 s 3 s 220690 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rn Overload and short-circuit protection External protection relay: short-circuit pro Rated making capacity (kA peak) VAC 5 Switch-disconnector as p	i) ms) otection, maximum 50/60 Hz	Ics Icw delay: 350 ms ⁽⁴ Icm	% Icu 1 s 3 s 220690 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA r Overload and short-circuit protection External protection relay: short-circuit pro Rated making capacity (kA peak) V AC 5	i) ms) otection, maximum 50/60 Hz	Ics Icw delay: 350 ms ⁽⁴ Icm	% Icu 1 s 3 s 220690 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rm Overload and short-circuit protection External protection relay: short-circuit pro Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector	i) ms) otection, maximum 50/60 Hz	Ics Icw delay: 350 ms ⁽⁴ Icm 7-3 and An	% Icu 1 s 3 s 220690 V nex A
Rated service breaking capacity (kA rms Rated short-time withstand current (kA r Overload and short-circuit protection External protection relay: short-circuit pro Rated making capacity (kA peak) V AC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category V AC 50/60 Hz Rated short-time withstand current (kA n	e) ms) Dtection, maximum 50/60 Hz De r IEC 60947	Ics Icw delay: 350 ms ⁽⁴ Icm 7-3 and An	% Icu 1 s 3 s 220690 V nex A 220690 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rm Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) V AC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category V AC 50/60 Hz Rated short-time withstand current (kA m AC23A/AC3 category V AC 50/60 Hz	e) ms) Dtection, maximum 50/60 Hz De r IEC 60947	Ics Icw delay: 350 ms ⁽⁴ Icm Icm	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rm Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch	e) ms) Dtection, maximum 50/60 Hz De r IEC 60947	Ics Icw delay: 350 ms ⁽⁴ Icm Icm	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rm Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak)	e) ms) Dtection, maximum 50/60 Hz De r IEC 60947	Ics Icw delay: 350 ms ⁽⁴ Icm Icm Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rm Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch	e) ms) Dtection, maximum 50/60 Hz De r IEC 60947	Ics Icw delay: 350 ms ⁽⁴ Icm Icm	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rm Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) V AC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category V AC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category V AC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms)	a) ms) Dection, maximum 50/60 Hz ner IEC 60947 ms)	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rm Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical	a) ms) Detection, maximum 50/60 Hz Her IEC 60947 ms) durability as	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms) Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical	a) ms) Detection, maximum 50/60 Hz Her IEC 60947 ms) ms) durability as with maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms) Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000	a) ms) Detection, maximum 50/60 Hz Her IEC 60947 ms) durability as	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms) Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical	a) ms) Detection, maximum 50/60 Hz Her IEC 60947 ms) ms) durability as with maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms) Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rmAC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Type of circuit breaker	a) ms) Detection, maximum 50/60 Hz Her IEC 60947 ms) ms) durability as with maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms) Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Type of circuit breaker Rated current	a) ms) Detection, maximum 50/60 Hz Der IEC 60947 ms) durability as with maintenance without maintenar	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s 0947-2/3 at In/I 440 V ⁽⁶⁾ 690 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms) Overload and short-circuit protection External protection relay: short-circuit protection relay: short-circuit protection Rated making capacity (kA peak) V AC 5 Switch-disconnector Rated making capacity (kA peak) V AC 5 Switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category V AC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category V AC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Type of circuit breaker Rated current C/O cycles x 1000 Electrical IEC 60947-2	ms) Detection, maximum 50/60 Hz Ter IEC 60947 ms) durability as with maintenance without maintenar without maintenar	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s 0947-2/3 at In/l 440 V ⁽⁵⁾
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rm AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rms) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Type of circuit breaker Rated current C/O cycles x 1000 Electrical IEC 60947-2 Type of circuit breaker or switch-disc	ms) Detection, maximum 50/60 Hz Ter IEC 60947 ms) durability as with maintenance without maintenar without maintenar	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw S per IEC 6 Ince In (A)	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 0947-2/3 at In/l 440 V ⁽⁶⁾ 690 V 1150 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms) Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) VAC 5 AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Type of circuit breaker Rated current C/O cycles x 1000 Electrical IEC 60947-2 Type of circuit breaker or switch-disc Rated operational current	a) ms) Detection, maximum 50/60 Hz rer IEC 60947 ms) durability as with maintenance without maintenar without maintenar without maintenar	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw S per IEC 6 Ince In (A) Ice	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 0947-2/3 at In/I 440 V ⁽⁶⁾ 690 V 1150 V AC23A
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector as p Type of switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Electrical IC/O cycles x 1000 Electrical	ms) Detection, maximum 50/60 Hz Ter IEC 60947 ms) durability as with maintenance without maintenar without maintenar	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw S per IEC 6 Ince In (A) Ice	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 0947-2/3 at In/l 440 V ⁽⁶⁾ 690 V 1150 V
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 5 AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Type of circuit breaker Rated current C/O cycles x 1000 Electrical IEC 60947-2 Type of circuit breaker or switch-disc Rated operational current	a) ms) Detection, maximum 50/60 Hz er IEC 60947 ms) durability as with maintenance without maintenance without maintenance without maintenance without maintenance without maintenance without maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw S per IEC 6 Ince In (A) Ice	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 0947-2/3 at In/I 440 V ⁽⁵⁾ 690 V 1150 V AC23A 440 V ⁽⁵⁾
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 50/60 Hz Ac23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kArn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Electrical ICO cycles x 1000	a) ms) Detection, maximum 50/60 Hz er IEC 60947 ms) durability as with maintenance without maintenance without maintenance without maintenance without maintenance without maintenance without maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm Icm Icm Icw Icw S per IEC 6 Ince In (A) Ice	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 0947-2/3 at In/I 440 V ⁽⁵⁾ 690 V 1150 V AC23A 440 V ⁽⁵⁾
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 50/60 Hz Ac23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kArn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Electrical ICO cycles x 1000	a) ms) Detection, maximum 50/60 Hz er IEC 60947 ms) durability as with maintenance without maintenance without maintenance without maintenance without maintenance without maintenance without maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm -3 and An Icm Icw Icw Icw Icw Icw Icw Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s 0947-2/3 at In/I 440 V ⁽⁶⁾ 690 V 1150 V AC23A 440 V ⁽⁶⁾
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) AC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rn AC23A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Electrical ICO cycles x 1000 Electrical IEC 60947-2 Type of circuit breaker or switch-disc Rated operational current C/O cycles x 1000 IEC 60947-3 Type of circuit breaker or switch-disc Rated operational current C/O cycles x 1000	a) ms) Detection, maximum 50/60 Hz er IEC 60947 ms) durability as with maintenance without maintenance without maintenance without maintenance without maintenance without maintenance without maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm -3 and An Icm Icw Icw Icw Icw Icw Icw Icw Icw Icw	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s 0947-2/3 at In/I 440 V ⁽⁶⁾ 690 V 1150 V AC23A 440 V ⁽⁶⁾ 690 V 590 V 1150 V AC3 ⁽⁶⁾ 380/415 V (kW) 440 V ⁽⁶⁾ (kW)
Rated service breaking capacity (kA rms Rated short-time withstand current (kA rms Overload and short-circuit protection External protection relay: short-circuit protection Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 5 Switch-disconnector Rated making capacity (kA peak) VAC 50/60 Hz Rated short-time withstand current (kA rmAC23A/AC3 category VAC 50/60 Hz Rated short-time withstand current (kA rnAC3A/AC3 category VAC 50/60 Hz Earthing switch Latching capacity (kA peak) Rating short time withstand (kA rms) Mechanical and electrical Service life Mechanical C/O cycles x 1000 Electrical IEC 60947-2 Type of circuit breaker or switch-disc Rated operational current C/O cycles x 1000 IEC 60947-3 Type of circuit breaker or switch-disc Rated operational current C/O cycles x 1000	a) ms) Detection, maximum 50/60 Hz er IEC 60947 ms) durability as with maintenance without maintenance without maintenance without maintenance without maintenance without maintenance without maintenance	Ics Icw delay: 350 ms ⁽⁴⁾ Icm '-3 and An Icm Icw Icw Icw S per IEC 6 Ince In (A) Ince Ie (A)	% Icu 1 s 3 s 220690 V nex A 220690 V 1150 V 1 s 3 s 135 1 s 3 s 0947-2/3 at In/I 440 V ⁽⁶⁾ 690 V 1150 V AC23A 440 V ⁽⁶⁾ 690 V AC3 ⁽⁶⁾ 380/415 V (kW)

C/O cycles x 1000 Electrical IEC 60947-3 Annex M/IEC 60947-4-1

(5) Available for 480 V NEMA.

to 500 V network voltage.

A-6

characteristics" section.

50 °C: rear vertical connected. Refer to temperature derating tables for other connection types.
 See the current-limiting curves in the "additional

(4) External protection must comply with permissible thermal constraints of the circuit breaker (please consult us).
No fault-trip indication by the SDE or the reset button.

(3) Equipped with a trip unit with a making current

(6) Suitable for motor control (direct-on-line starting).

(7) The use of NW08 to NW20 H1 in IT systems is limited

Sensor rating (A) 250 ⁽¹⁾ 400 630 800 1000 1250 1600 2000	2000 2500	3200	4000	5000	6300
Ir threshold setting(A) 100 160 250 320 400 500 630 800	300 1000	1250	1600	2000	2500
to 250 to 400 to 630 to 800 to 1000 to 1250 to 1600 to 20	o 2000 to 2500	to 3200	to 4000	to 5000	to 6300

(1) For circuit-breaker NW02 , please consult us.

NW08	NW10	NW12	NW1	6	NW2	0				NW25	NW32	NW	40	NW40b	NW50	NW6
800	1000	1250	1600		2000					2500	3200	4000		4000	5000	6300
800	1000	1250	1600		2000					2500	3200	4000		4000	5000	6300
400 to 800	400 to 1000	630 to 1250	800 to	1600	1000 to	2000				1250 to 2500	1600 to 3200	2000 t	o 4000	2000 to 4000	2500 to 5000	3200 to 6300
N1	H1 ⁽⁷⁾	H2	L1 ⁽²⁾	H10	H1 (7)	H2	H3	L1 ⁽²⁾	H10	H1	H2	H3	H10	H1	H2	
42	65	100	150	-	65	100	150	150	-	65	100	150	-	100	150	
42	65	85	130	-	65	85	130	130	-	65	85	130	-	100	130	
42	65	85	100	-	65	85	100	100	-	65	85	100	-	100	100	
-	-	-	-	50	-	-	-	-	50	-	-	-	50	-	-	
100 %					100 %					100 %				100 %		
В					В					В				В		
42	65	85	30	50	65	85	65	30	50	65	85	65	50	100	100	
22	36	50	30	50	36	75	65	30	50	65	75	65	50	100	100	
-	-	190	80	-	-	190	150	80	-	-	190	150	-	-	270	
88	143	220	330	-	143	220	330	330	-	143	220	330	-	220	330	
88	143	187	286	-	143	187	286	286	-	143	187	286	-	220	286	
88	143	187	220	-	143	187	220	220	-	143	187	220	-	220	220	
-	-	-	-	105	-	-	-	-	105	-	-	-	105	-	-	
25	25	25	10	25	25	25	25	10	25	25	25	25	25	25	25	
< 70					< 70					< 70				< 80		
·																
42	65	100	150	-	65	100	150	150	-	65	100	150	-	100	150	
42	65	85	100	-	65	85	100	100	-	65	85	100	-	100	100	

	HA HI	(3)	HA	HF ⁽³⁾			HA	HF ⁽³⁾			HA
	50 85	5	50	85			55	85			85
	100 %		100 %				100 %				100 %
	50 85	5	50	85			55	85			85
	36 50)	36	75			55	75			85
			-	-			-	-			-
	105 18	37	105	187			121	187			187
NW08/N	W10/NW	12/NW16		N	W20			NW25	/ <mark>NW32</mark> /	NW40	NW40b/NW50/NW63
NA	HA	HF	HA10	H	A HI	F	HA10	HA	HF	HA10	HA
88	105	187	-	10)5 18	37	-	121	187	-	187
-	-	-	105	-	-		105	-	-	105	-
42	50	85	50	50) 85	5	50	55	85	50	85
-	36	50	50	36	6 75	5	50	55	75	50	85

60	Hz
50	Hz

25				20							10	
12.5				10							5	
N1/H1/H2	L1	H10		H1/H2	H3	L1	H10	H1/H2	H3	H10	H1	H2
800/1000/1250	0/1600			2000				2500/320	00/4000		4000b/5000/6	6300
10	3	-		8	2	3	-	5	1.25	-	1.5	1.5
10	3	-		6	2	3	-	2.5	1.25	-	1.5	1.5
-	-	0.5		-	-	-	0.5	-	-	0.5	-	-
H1/H2/NA/HA	/HF			H1/H2/H	3/HA/HF			H1/H2/H	3/HA/HF		H1/H2/HA	
800/1000/1250	0/1600			2000				2500/320	00/4000		4000b/5000/6	5300
10				8				5			1.5	
10				6				2.5			1.5	
H1/H2/NA/HA	/HF			H1/H2/H	3/HA/HF							
800	1000	1250	1600	2000								
335 to 450	450 to 560	560 to 670	670 to 900	900 to 11	50							
400 to 500	500 to 630	500 to 800	800 to 1000	1000 to 1	300							
≤ 800	800 to 1000	1000 to 1250	1250 to 1600	1600 to 2	2000							
6												

Micrologic control units

Overview of functions

All Masterpact circuit breakers are equipped with a Micrologic control unit that can be changed on site. Control units are designed to protect Power circuits and loads. Alarms may be programmed for remote indications.

Measurements of current, voltage, frequency, power and power quality optimise continuity of service and energy management.

Dependability

Integration of protection functions in an ASIC electronic component used in all Micrologic control units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.

On Micrologic A, E, P and H control units, advanced functions are managed by an independent microprocessor.

Accessories

Certain functions require the addition of Micrologic control unit accessories, described on page A-25.

The rules governing the various possible combinations can be found in the documentation accessible via the Products and services menu of the www.schneider-electric.com web site.

Measurements and programmable protection

A: ammeter

I₁, I₂, I₃, I_N, I_{earth-fault}, I_{earth-leakage} and maximeter for these measurements
 fault indications

settings in amperes and in seconds.

E: Energy
 incorporates all the rms measurements of Micrologic A, plus voltage, power factor, power and energy metering measurements. calculates the current demand value "Quickview" function for the automatic cyclical display of the most useful values (as standard or by selection).

Micrologic control units

Micrologic A "ammeter"

Micrologic A control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earth-leakage protection.

- long-time threshold and tripping delay 1
- overload alarm (LED) at 1,125 Ir 2
- 3 4 short-time pick-up and tripping delay
- instantaneous pick-up
- earth-leakage or earth-fault pick-up and tripping delay 5 earth-leakage or earth-fault test button
- 6 7 long-time rating plug screw
- 8 test connector
- lamp test, reset and battery test 9
- 10 indication of tripping cause digital displav 11
- three-phase bargraph and ammeter 12
- navigation buttons 13

"Ammeter" measurements

Micrologic A control units measure the true (rms) value of currents.

They provide continuous current measurements from 0.2 to 1.2 In and are accurate to within 1.5 % (including the sensors).

A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the I_1 , I_2 , I_3 , I_N , I_g , $I_{\Delta n}$, stored-current (maximeter) and setting values by successively pressing the navigation button.

The optional external power supply makes it possible to display currents < 20 % In. Below 0.1 In, measurements are not significant. Between 0.1 and 0.2 In, accuracy changes linearly from 4 % to 1.5 %.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" measurements
- tripping causes
- maximeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection. Thermal memory: thermal image before and after tripping.

Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.

Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection.

Selection of I²t type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection. Selection of I²t type (ON or OFF) for delay.

Residual earth-leakage protection (Vigi).

Operation without an external power supply.

∩ Protected against nuisance tripping.

ഹ് DC-component withstand class A up to 10 A.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:

- overload (long-time protection Ir)
- short-circuit (short-time lsd or instantaneous li protection)
- earth fault or earth leakage (Ig or I∆n)
- internal fault (Ap).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 A and 7.0 A control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Note: Micrologic A control units come with a transparent leadseal cover as standard.

Protection			Mic	rolo	gic 2	.0 A								×
Long time			Inne		910 -									_
Current setting (A)			0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1	DB101126		
	. In							u.9 Jing long				DB10	th Ir	
Tripping between 1.05 and 1.20 x		t= (a)		-					<u> </u>		-	-		
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24	-		
Time delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5	25	50	100	200	300	400	500	600		💊 tr	
	Accuracy: 0 to -20 %	6 x lr	0.7(1)		2	4	8	12	16	20	24		₩	
	Accuracy: 0 to -20 %	7.2 x lr	0.7(2)		1.38	2.7	5.5	8.3	11	13.8	16.6	-		
Thermal memory			20 m	inutes	before a	and afte	er trippi	ng				_		sd
(1) 0 to -40 % - (2) 0 to -60 %												0	-	
Instantaneous												, i		
Pick-up (A)	Isd = Ir x		1.5	2	2.5	3	4	5	6	8	10			
Accuracy: ±10 %												_		
Time delay					ble time		S							
			Max	oreak t	me: 80	ms						_		
Protoction			Mio	rolo	nio 5	0/6	0/7	0.4						*
Protection					gic 5			.0 A						
Long time	In - In			-	5.0/6			0.0	0.05	0.00	1	t≰ t	📥 lr	
Current setting (A)	lr = ln x		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98		DB101127	1 [°]	1 ² .
Fripping between 1.05 and 1.20 x	(Ir							jing lon	-			_	\ _{**}	
Fime setting		tr (s)	0.5	1	2	4	8	12	16	20	24	_	\mathbf{M}^{u}	À,
Γime delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5	25	50	100	200	300	400	500	600			∟lfto
	Accuracy: 0 to -20 %	6 x Ir	0.7 ⁽¹⁾	1	2	4	8	12	16	20	24		了	sd
	Accuracy: 0 to -20 %	7.2 x lr	0.7 ⁽²⁾	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	_	K	, <mark>≜</mark> tsd
Thermal memory			20 m	inutes l	before a	and aft	er trippi	ing				_	•	
(1) 0 to -40 % - (2) 0 to -60 %														Ľ
Short time												0		
Pick-up (A)	Isd = Ir x		1.5	2	2.5	3	4	5	6	8	10			
Accuracy: ±10 %														
Fime setting tsd (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					-		
		I ² t On	-	0.1	0.2	0.3	0.4							
Time delay (ms) at 10 x Ir	tsd (max resettable tir	ne)	20	80	140	230	350					_		
I ² t Off or I ² t On)	tsd (max break time)	- /	80	140	200	320	500							
Instantaneous	. ,													
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off			
Accuracy: ±10 %			-	Ũ	•	•	•				0			
Time delay			Махи	resetta	ble time	• 20 m	\$					-		
					me: 50		•							
Earth fault			Micro	ologic	6 O A							▲t ³⁸		
Pick-up (A)	lg = ln x		A	B	С	D	Е	F	G	н	J	DB101128		r o المر
Accuracy: ±10 %	In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	- "	📥 lg	×
1000100y. ±10 /0	400 A < In < 1250 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		Ϊ.	∐ I ² t of
			0.2 500	0.3 640	0.4 720	0.5 800	0.6 880	0.7 960	0.8 1040	0.9 1120	1 1200		tg	
Fime setting to (s)	In ≥ 1250 A	12t Off						900	1040	1120	1200	-		
Time setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4							
Time delay (ma)	te (may resoltable the	I ² t On	- 20	0.1	0.2	0.3	0.4					_ 0		
Time delay (ms)	tg (max resettable time)	ie)	20	80	140	230	350							
at In or 1200 A (I ² t Off or I ² t On)	tg (max break time)		80	140	200	320	500					81.		
Residual earth leakage (Vigi)				ologic		^	-	7	10	00	00	08101129 DB101129	⇔ l∆n	
Sensitivity (A)	l∆n		0.5	1	2	3	5	7	10	20	30	B	· · · ·	
Accuracy: 0 to -20 %												-		
īime delay ∆t (ms)	Settings		60	140	230	350	800					_	V	
	Δt (max resettable times the times of th	ıe)	60	140	230	350	800					0		
	Δt (max break time)		140	200	320	500	1000					-		
A						0.65	0-1-0	0.15	0.0					mei
Ammeter					gic 2	.075		.0/7.	UA					
Type of measurements			Rang				Accu	-						
nstantaneous currents	l1, l2, l3, lN			In to 1.			± 1.5							
	a(60A)		02 x	In to In			$+10^{\circ}$	%						

l∆n (7.0 A) Current maximeters of I1, I2, I3, IN 0.2 x In to 1.2 x In **Note:** all current-based protection functions require no auxiliary source. The test / reset button resets maximeters, clears the tripping indication and tests the battery.

lg (6.0 A)

0.2 x In to In

0 to 30 A

± 10 %

± 1.5 %

± 1.5 %

Micrologic control units

Micrologic E "energy"

Micrologic E control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection.

- long-time threshold and tripping delay 1
- overload alarm (LED) at 1,125 Ir 2
- 3 4 short-time pick-up and tripping delay
- instantaneous pick-up
- 5 earth-leakage or earth-fault pick-up and tripping delay
- earth-leakage or earth-fault test button 6 7 long-time rating plug screw
- 8 test connector
- lamp test, reset and battery test 9
- 10 indication of tripping cause
- 11 diaital displav 12 three-phase bargraph and ammeter
- 13
- navigation button "quick View" (only with Micrologic E) navigation button to view menu contents 14
- navigation button to change menu 15

(1) Display on FDM121 only.

Note: Micrologic E control units come with a transparent leadseal cover as standard.

A-12

Schneider Gelectric

"Energy meter" measurements

In addition to the ammeter measurements of Micrologic A

- Micrologic E control units measure and display:
- current demand
- voltages: phase to phase, phase to neutral, average⁽¹⁾ and unbalanced⁽¹⁾
- instantaneous power: P, Q, S
- power factor: PF
- power demand: P demand
- energy: Ep, Eq⁽¹⁾, Es⁽¹⁾

Accuracy of active energy Ep is 2 % (including the sensors). The range of measurement is the same as current with Micrologic A, depending of an external power supply module (24 V DC).

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" and "energy" measurements
- enable connection to FDM121
- tripping causes
- maximeter / minimeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.

Thermal memory: thermal image before and after tripping.

Setting accuracy may be enhanced by limiting the setting range using a different longtime rating plug. Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection.

Selection of I2t type (ON or OFF) for short-time delay.

Earth-fault protection

Source ground return earth fault protection.

Selection of I²t type (ON or OFF) for delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d).

Zone selective interlocking (ZSI)

AZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before trippina

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

M2C programmable contacts

The M2C (two contacts) programmable contacts may be used to signal envents (Ir, Isd, Alarm Ir, Alarm Ig, Ig). They can be programmed using the keypad on the Micrologic E control unit or remotely using the COM option (BCM ULP).

Fault indications

- LEDs indicate the type of fault:
- overload (long-time protection Ir)
- short-circuit (short-time lsd or instantaneous li protection)
- earth fault (lg)
- internal fault (Ap).

Trip history

The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed:

- the tripping cause: Ir, Isd, Ii, Ig or Auto-protection (Ap) trips
- the date and time of the trip (requires communication option).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 E control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Protection Micrologic 2.0 E Current setting (A) 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Tripping between 105 and 1.20 x lr Other ranges or disable by changing long-time rating plug 1 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Time setting Current's the (9) 0.5 1 2 4 8 12 16 20 244 Accuracy: 010-20 % 6xir 0.7" 1 2 4 8 12 16 20 244 Accuracy: 010-20 % 6xir 0.7" 1 2 4 8 12 16 20 244 Accuracy: 010-20 % 20minubes before and after tripping 10 0.4 0.5 0.6 8 10 Ime delay Max resettable time: 20 ms Max break time: 80 ms 0.9 0.95 0.98 1 Time delay Max resettable time: 20 ms Max break time: 80 ms 1.5	tr Isd	
Long time Out mutual setting (A) Out and 1.20 x Ir Other ranges or disable by changing long-time rating plug Time setting Accuracy: 0 to -30 % 1.5 x Ir 1.2 5 2 4 8 12 16 20 24 Time setting Accuracy: 0 to -20 % 6 x Ir 0.7 Ir 1.2 4 8 12 16 20 24 Accuracy: 0 to -20 % 7.2 x Ir 0.7 Ir 1.2 4 8 12 16 20 24 Time delay (s) Accuracy: 0 to -20 % 7.2 x Ir 0.7 Ir 2.4 4 8 12 16 20 24 Time delay Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Accuracy: 10 % Isd = Ir x 1.5 2 2.5 5 0.6 0.7 0.8 0.9 0.95 0.98 1 Protection Micrologic 5.0 / 6.0 E E E 2 4 8 12 16 20 24 Ime delay <td>tr Isd</td>	tr Isd	
Current setting (A) 0.4 0.5 0.6 0.7 0.8 0.95 0.95 0.98 1 Tripping between 1.05 and 1.20 x lr Other ranges or disable by changing long-time rating plug 0 1 2 4 8 12 16 0 20 20 4 0.15 1 2 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 6 12 4 8 12 16 20 24 4 6 12 16 20 24 4 6 12 15 2 2.5 3 4 5 6 8 10 10 4 6 8 10 15 2 2.5 3 4 5 6 8 10 4 12 16 0 2 12 16 0 2 12 16 0 2 16 12 15 <t< td=""><td>tr Isd</td></t<>	tr Isd	
Impartment of the setting of the se	tr Isd	
Impartment of the setting of the se	tr Isd	
Time delay (s) Accuracy: 0 to -30 % 1.5 x ir 12.5 25 50 100 200 300 400 500 600 Accuracy: 0 to -20 % 6 x ir 0.7° 1 2 4 8 12 16 20 24 Thermal memory 20 minutes before and after tripping 11 13.8 16.6 Thermal memory 1.5 2 2.5 3 4 5 6 8 10 Instantaneous Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Current setting (A) Isd = Ir x 1.5 2 2.5 5 0.0 0.9 0.95 0.98 0.95 0.98 0.95 0.98 0.95 0.98 0.95 0.98 0.90 0.95 0.98 0.90 0.95 0.98 0.90 0.95 0.98 0.90 0.95 0.98 0.90 0.95 0.98 0.90 0.95 0.98 0.90 0.90 0.95 0.98 0.90 0.95 0.98 0.90 0.90 <	tr Isd	
Accuracy: 0 to -20 % 6 x lr 0.7% 1 2 4 8 12 16 20 24 Accuracy: 0 to -20 % 7.2 x lr 0.7% 0.69 1.38 2.7 5.5 8.3 11 13.8 16.6 Thermal memory 20 minutes before and after tripping 1 1.5 2 2.5 3 4 5 6 8 10 Pick-up (A) Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Accuracy: ±10 % Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Current setting (A) Ir = In x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Time delay (s) Accuracy: 0 to -30 % Ir = In x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Time setting (A) Ir = In x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Time setting (A) <td>tr Isd</td>	tr Isd	
Accuracy: 0 to -20 % 7.2 x Ir 0.7.9 0.69 1.38 2.7 5.5 8.3 11 13.8 16.6 Thermal memory 20 minutes before and after tripping 0 <td>Isd State</td>	Isd State	
Thermal memory 20 minutes before and after tripping (1) 0 to -40 % - (2) 0 to -60 % Instantaneous Instantaneous Proteop(A) Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Accuracy: ±10 % Ime delay Max resettable time: 20 ms Max break time: 80 ms Ime delay	Isd	
(1) 0 to -40 % - (2) 0 to -60 % Instantaneous Instantes Instantaneous Instantaneous<	◆ Isd ☆	
Instantaneous 0 Pick-up (A) Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Accuracy: ±10 % Time delay Max resettable time: 20 ms Max break time: 80 ms Protection Micrologic 5.0 / 6.0 E Long time Micrologic 5.0 / 6.0 E Current setting (A) Ir = In x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Tripping between 1.05 and 1.20 x Ir Other ranges or disable by changing long-time rating plug Time setting 1 2 4 8 8 12 16 20 24 Time delay (s) Accuracy: 0 to -30 % 6 x Ir 3.7 % 0.69 1.38 2.7 5.5 6 8 8 10 Accuracy: 0 to -20 % 7.2 x Ir 0.7 % 0.69 1.38 2.7 5.5 6 8 8 10 Colspan= 6 8 10 Time delay (s) Settings Pt Off 0 0 0.1 0.2 0.3 0.4 Flock-up (A) Isd = Ir x 1.0 2 0.3 0.4 Time delay (ms) at 10 x Ir tsd (max resettable time: 20 ms Max break time: 50 ms Macroacy: 10 % 100 200 300 400 500 600 Instantaneous Pick-up (A) <t< td=""><td>漆</td></t<>	漆	
Instantaneous Pick-up (A) Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Pick-up (A) Micrologic 5.0 / 6.0 E Long time Micrologic 5.0 / 6.0 E Current setting (A) Ir = In x 0.4 0.5 1 0.95 0.98 1 Current setting (A) Ir = In x 0.4 0.5 1 2 Time setting Ir = In x 0.4 0.5 1 2 Current setting (A) Ir = In x 0.4 8 12 4 8 12 4 8 10 10 10 10 12 4 8 10	漆	
Accuracy: ±10 % Max resettable time: 20 ms Max break time: 80 ms Protection Micrologic 5.0 / 6.0 E Long time Micrologic 5.0 / 6.0 E Current setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0	漆	
Max resettable time: 20 ms Max break time: 80 ms Protection Micrologic 5.0 / 6.0 E Current setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Tripping between 1.05 and 1.20 x Ir Other ranges or disable by changing long-time rating plug Time setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Time setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Time setting (A) Ir = ln x 0.4 4 8 12 16 20 24 Time setting (A) Accuracy: 0 to -30 % Accuracy: 0.5 1 3.2 4 8 8 12 16 20 24 Accuracy: 0 to -20 % 6 x Ir 0.760 1 2 4 8 8 12 16 20 24 Accuracy: 0 to -20 % 6 x Ir 0.760 1.2 2 4 8 8 12 16 20 24 Accuracy: 0 to -20 % 6 x Ir 0.760 1.38 0.7 5.5 8.3 11 1.3.8 16.6 Thermal memory 20 minutes before and after tripping (1) 0 to -40 % - (2) 0 to -60 % Short time setting ta (Is) Settings PiC Off 0 0.1 0.2 0.3 0.4	迹	
Max break time: 80 ms Protection Micrologic 5.0 / 6.0 E Current setting (A) Ir = In x 0.4 0.5 0.95 <th 1="" 12="" 16="" 20="" 24="" 4="" 60="" 8="" colspa="</td><td>漆</td></tr><tr><td>Protection Micrologic 5.0 / 6.0 E Long time Micrologic 5.0 / 6.0 E Current setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Tripping between 1.05 and 1.20 x Ir Other ranges or disable by changing long-time rating plug Time atting plug Time setting Tripping between 1.05 and 1.20 x Ir Other ranges or disable by changing long-time rating plug Time setting Accuracy: 0 to -30 % 1.5 x Ir 12.5 25 50 100 200 300 400 500 600 Accuracy: 0 to -20 % 6 x Ir 0.76° 0.69 1.38 2.7 5.5 8.3 11 13.8 16.6 Thermal memory Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Accuracy: ±10 % Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Ime delay (ms) at 10 x Ir Isd (max break time) 20 80 140 <t</td><td>渁</td></tr><tr><td>Long time Micrologic 5.0 / 6.0 E Current setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Tripping between 1.05 and 1.20 x lr Other ranges or disable by changing long-time rating plug 1 0 1 2 4 8 12 1 6 20 24 Time setting Accuracy: 0 to -30 % 1.5 tl 1.2 2.5 50 100 200 300 400 500 600 Accuracy: 0 to -20 % 7.2 x lr 0.70° 1 2 4 8 12 16 20 24 Accuracy: 0 to -20 % 7.2 x lr 0.70° 1.38 2.7 5.5 8.3 11 13.8 16.6 Thermal memory 20 minutes before and after tripping (1) 0 to -60 % 5 6 8 10 10 2.0 3 0.4 1 1 1.5 2 2.5 3 4 5 6 8 <t</td><td>滋</td></tr><tr><td>Long time Micrologic 5.0 / 6.0 E Current setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.95 1 Tripping between 1.05 and 1.20 x Ir Other ranges or disable by changing long-time rating plug 1 0 1 2 4 8 12 1 6 20 24 Time setting Accuracy: 0 to -30 % 1.5 tr 1.2 2.5 5 100 200 300 400 500 600 Accuracy: 0 to -20 % 7.2 x Ir 0.76* 1.38 2.7 5.5 8.3 11 13.8 16.6 Thermal memory 20 minutes before and after tripping (1) 0 to -40 % - (2) 0 to -60 % 5 6 8 10 Short time 1.5 2 2.5 3 4 5 6 8 10 Accuracy: ±10 % Isd = lr x 1.5 2 2.5 3 4 5 6 8 10 Ime delay (ms) at 10 x lr</td><td></td></tr><tr><td>Current setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 1 Tripping between 1.05 and 1.20 x Ir Other ranges or disable by changing long-time rating plug Time setting Time setting Time setting 15 x Ir 12 x 4 8 12 x 16 20 z4 24 Time delay (s) Accuracy: 0 to -20 % 6 x Ir 0.7" td="" z="" z0="" z4="" z<=""><td></td></th>	<td></td>	
Tripping between 1.05 and 1.20 x lr Other ranges or disable by changing long-time rating plug Image of the setting Image of the set in the setting Image of the set in the		
$\begin{array}{ c \hline Try the restring to the range of disable by changing indeg-time range of disable by changing indeg-time range plug time range plug indeg-time range plug indeg-ti$	2	
Time delay (s) Accuracy: 0 to -30 % 1.5 x lr 12.5 25 50 100 200 300 400 500 600 Accuracy: 0 to -20 % 6 x lr 0.7 (°) 1 2 4 8 12 16 20 24 Accuracy: 0 to -20 % 7.2 x lr 0.7 (°) 0.69 1.38 2.7 5.5 8.3 11 13.8 16.6 Thermal memory 20 minutes before and after tripping (1) to -40 % - (2) 0 to -60 % Short time 20 0.69 1.38 2.7 5.5 8.3 11 13.8 16.6 Short time 20 minutes before and after tripping (1) to -40 % - (2) 0 to -60 % Short time 20 30 4 5 6 8 10 Accuracy: ±10 % Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Ime delay (ms) at 10 x Ir tsd (max resettable time) 20 80 140 200 30.0 4 5 6 8 10 12 15 off Insetting tsd (s) Is d (max br	tr L ^{ft on}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tr ' <u>×</u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\LI [®] t off	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J Isd	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tsd ∧tsd	
Short time Pick-up (A) Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Pick-up (A) Settings I ² t Off 0 0 0 Time delay (ms) at 10 x Ir tsd (max resettable time) 20 80 140 230 350 Instantaneous Pick-up (A) II = In x 2 3 4 6 8 10 12 15 6 <th< td=""><td></td></th<>		
Distribute Isd = Ir x 1.5 2 2.5 3 4 5 6 8 10 Accuracy: $\pm 10 \%$ Time setting tsd (s) Settings I ² t Off 0 0.1 0.2 0.3 0.4 Time setting tsd (s) Settings I ² t Off 0 0.1 0.2 0.3 0.4 Time delay (ms) at 10 x Ir tsd (max resettable time) 20 80 140 230 350 Instantaneous Ii = In x 2 3 4 6 8 10 12 15 off Pick-up (A) Ii = In x 2 3 4 6 8 10 12 15 off Accuracy: $\pm 10 \%$ Ii = In x 2 3 4 6 8 10 12 15 off Earth fault Micrologic 6.0 E E E G H J J Pick-up (A) Ig = In x A B C D E F G H J Micrologic 6.0 E In < 400 A Q03		
Accuracy: $\pm 10 \%$ Time setting tsd (s) Settings I²t Off 0 0.1 0.2 0.3 0.4 Time setting tsd (s) I²t Off 0 0.1 0.2 0.3 0.4 Time delay (ms) at 10 x lr tsd (max resettable time) 20 80 140 230 350 (I²t Off or I²t On) tsd (max break time) 80 140 200 320 500 Instantaneous Ii = ln x 2 3 4 6 8 10 12 15 off Accuracy: $\pm 10 \%$ Ii = ln x 2 3 4 6 8 10 12 15 off Pick-up (A) Ii = ln x 2 3 4 6 8 10 12 15 off Time delay Max resettable time: 20 ms Max break time: 50 ms Max Image: 50 ms Image: 50 ms <t< td=""><td></td></t<>		
Time setting tsd (s) Settings I²t Off 0 0.1 0.2 0.3 0.4 Time delay (ms) at 10 x lr tsd (max resettable time) 20 80 140 230 350 (I²t Off or I²t On) tsd (max break time) 80 140 200 320 500 Instantaneous Ii = ln x 2 3 4 6 8 10 12 15 off Accuracy: ±10 % Ii = ln x 2 3 4 6 8 10 12 15 off Pick-up (A) Ii = ln x 2 3 4 6 8 10 12 15 off Max resettable time: 20 ms Max break time: 50 ms Max break time: 50 ms Max break time: 50 ms Instantaneous Instantaneous <td></td>		
$\frac{l^{2}t \text{ On } - 0.1 \ 0.2 \ 0.3 \ 0.4}{tsd (max resettable time)} 20 \ 80 \ 140 \ 230 \ 350 \\ tsd (max break time) 80 \ 140 \ 200 \ 320 \ 500 \\ \hline Instantaneous \\ Pick-up (A) & Ii = ln x 22 \ 3 \ 4 \ 6 \ 8 \ 10 \ 12 \ 15 \ off \\ Accuracy: \pm 10 \% \\ \hline Time delay \\ Max resettable time: 20 ms \\ Max break time: 50 ms \\ \hline Instantaneous \\ \hline Instantaneous \\ \hline Image delay \\ Accuracy: \pm 10 \% \\ \hline Image delay \\ Accuracy: \pm 10 \% \\ \hline Image delay \\ Accuracy: \pm 10 \% \\ \hline Image delay \\ Accuracy: \pm 10 \% \\ \hline Image delay \\ Accuracy: \pm 10 \% \\ \hline Image delay \\ \hline Image$		
Time delay (ms) at 10 x lr tsd (max resettable time) 20 80 140 230 350 Instantaneous Ii = ln x 2 3 4 6 8 10 12 15 off Pick-up (A) Ii = ln x 2 3 4 6 8 10 12 15 off Accuracy: $\pm 10 \%$ Ii = ln x 2 3 4 6 8 10 12 15 off Bactoracy: $\pm 10 \%$ Iii = ln x A B C D E F G H J If Instantaneous Instantaneous <thinstantaneous< th=""> Instantaneous Instan</thinstantaneous<>		
$\begin{tabular}{ c c c c c c c c c c c c c $		
Instantaneous Pick-up (A) II = ln x 2 3 4 6 8 10 Time delay Max resettable time: 20 ms Max break time: 50 ms Earth fault Micrologic 6.0 E Pick-up (A) Ig = ln x A B C D E F G H J Max break time: 10 ms Accuracy: ±10 % In < 400 A 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Accuracy: $\pm 10 \%$ Time delay Max resettable time: 20 ms Max break time: 50 ms Earth fault Micrologic 6.0 E Pick-up (A) Ig = ln x A B C D E F G H Pick-up (A) Ig = ln x A B C D E F G H J Accuracy: $\pm 10 \%$ Ig = ln x A B C D E F G H Accuracy: $\pm 10 \%$ Ig = ln x A B C D E F G H J Accuracy: $\pm 10 \%$ In $\leq 400 A$ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I <th c<="" td=""><td></td></th>	<td></td>	
Time delay Max resettable time: 20 ms Max break time: 50 ms Earth fault Micrologic 6.0 E Pick-up (A) Ig = ln x A B C D E F G H J Accuracy: $\pm 10 \%$ In $\leq 400 A$ 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		
Max break time: 50 ms Earth fault Micrologic 6.0 E F G H J Pick-up (A) $Ig = In x$ A B C D E F G H J Accuracy: ±10 % In < 400 A		
Accuracy: ±10 % In ≤ 400 A 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 400 A < In < 1250 A		
Accuracy: ±10 % In ≤ 400 A 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 400 A < In < 1250 A		
Accuracy: ±10 % In ≤ 400 A 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 400 A < In < 1250 A	L ∠ – I ² t on	
400 A < In < 1250 A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	' <u>×</u>	
	L I ² t off	
	tg	
Time setting tg (s) Settings I²t Off 0 0.1 0.2 0.3 0.4	\checkmark	
I ² t On - 0.1 0.2 0.3 0.4 0		
Time delay (ms) tg (max resettable time)2080140230350		
at In or 1200 A (l^2 t Off or l^2 t On) tg (max break time) 80 140 200 320 500		
Energy Micrologic 2.0 / 5.0 / 6.0 E	menu	
Instantaneous currents 11, 12, 13, 1N 0.2 x In to 1.2 x In ± 1.5 %		
$\frac{\log (6.0 \text{ E})}{(1 + 10 \text{ K})} = \frac{0.05 \text{ x ln to ln}}{0.2 \text{ x ln to 12 x ln}} + 15\%$		
Current maximeters of I1, I2, I3, IN 0.2 x In to 1.2 x In ± 1.5 % Demand currents of L4, I2, I3, IN 0.2 x In to 1.2 x In ± 1.5 %		
Demand currents of I1, I2, I3, Ig 0.2 x In to 1.2 x In ± 1.5 %		
Voltages V12, V23, V31, V1N, V2N, V3N 100 to 690 V ± 0.5 % Active resume 20 to 2020 kW + 0.0 %		
Active power P 30 to 2000 kW ± 2 %		
Power factor PF 0 to 1 ± 2 %		
Demand power P demand 30 to 2000 kW ± 2 %		
Active energy Ep -10 ¹⁰ GWh to 10 ¹⁰ GWh ± 2 % Note: all current-based protection functions require no auxiliary source.		

Note: all current-based protection functions require no auxiliary source. The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Micrologic control units

Micrologic P "power"

Micrologic P control units include all the functions offered by Micrologic A.

In addition, they measure voltages and calculate power and energy values.

They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection in real time.

1 Long-time current setting and tripping delay.

- 2 Overload signal (LED).
- 3 Short-time pick-up and tripping delay.
- 4 Instantaneous pick-up.
- 5 Earth-leakage or earth-fault pick-up and tripping delay.
- 6 Earth-leakage or earth-fault test button.7 Long-time rating plug screw.
- 8 Test connector.
- 9 Lamp + battery test and indications reset.
- 10 Indication of tripping cause.
- 11 High-resolution screen.
- 12 Measurement display.
- 13 Maintenance indicators.
- 14 Protection settings.
- 15 Navigation buttons.
- 16 Hole for settings lockout pin on cover.

Protection Protection settings

The adjustable protection functions are identical to those of Micrologic A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option (BCM ULP).

IDMTL (Inverse Definite Minimum Time lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option (BCM ULP), to one of four positions: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at 1r (4P 4d) and neutral protection at 1,6 Ir (4P 3d + 1,6N). Neutral protection at 1,6 Ir is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics).

On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d). Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.

Programmable alarms and other protection

Depending on the thresholds and time delays set using the keypad or remotely using the COM option (BCM ULP), the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option (BCM ULP). Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional M2C or M6C programmable contact (alarm), or both (protection and alarm).

Load shedding and reconnection

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option (BCM ULP) or by an M2C or M6C programmable contact.

M2C / M6C programmable contacts

The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option (BCM ULP).

Communication option (COM)

The communication option may be used to:

- remotely read and set parameters for the protection functions
- transmit all the calculated indicators and measurements
- signal the causes of tripping and alarms
- consult the history files and the maintenance-indicator register.
- maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option (BCM ULP).

Note: Micrologic P control units come with a non-transparent lead-seal cover as standard.

Production Micrologic 5.0 / 6.0 / 7.0 P Image: Constraint of the second se															* _ 🔊 _
Current setting (A) Ir = ln x 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.86 1.0 1.0 I <thi< th=""> I <thi< th=""></thi<></thi<>	Protection			Mic	rolo	gic 5	5.0/6.	0/7.) P					2	🔍 + 🖳
Imparting solution integers of statute by character b	Long time (rms)			Micro	ologic	5.0/6	.0/7.0 P						st/		
Imparting solution integers of statute by character b	Current setting (A)	lr = ln x		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1	10113	i 🚓 Ir	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tripping between 1.05 and 1.20 x	Ir		Othe	r range	es or di	sable by	changii	ng long	j-time r	ating p	lug	8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24	_	tr 🕺	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5	25	50	100	200	300	400	500	600	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Accuracy: 0 to -20 %	6 x Ir	0.7 ⁽¹⁾	1	2	4	8	12	16	20	24			1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Accuracy: 0 to -20 %	7.2 x lr	0.7 ⁽²⁾	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6			tsd
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IDMTL setting	Curve slope		SIT	VIT	EIT	HVFus	e DT							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Thermal memory			20 m	inutes	before	and afte	r trippin	g						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1) 0 to -40 % - (2) 0 to -60 %												0	1	I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Short time (rms)														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pick-up (A)	lsd = lr x		1.5	2	2.5	3	4	5	6	8	10			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Accuracy: ±10 %												_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time setting tsd (s)	Settings	I ² t Off	0	0.1			0.4							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			I ² t On	-	0.1		0.3	0.4					_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time delay (ms) at 10 Ir	tsd (max resettable tir	ne)	20	80	140	230	350							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(l ² t Off or l ² t On)	tsd (max break time)		80	140	200	320	500							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Instantaneous														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off	01128		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Accuracy: ±10 %												_≞t∤	L	· · · 2.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time delay													<mark>₄</mark> ⊌lg	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Earth fault			Micro	ologic	6.0 P								ta	∟ I ^² t off
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pick-up (A)	lg = ln x		А	В	С	D	Е	F	G	Н	J			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Accuracy: ±10 %	In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	-	×	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		400 A < In < 1250 A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		In ≥ 1250 A		500	640	720	800	880	960	1040	1120	1200			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					_		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		-	I ² t On	-	0.1	0.2	0.3	0.4							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Time delay (ms)	tg (max resettable tim	e)	20	80	140	230	350					_ ≊t		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	at In or 1200 A (I ² t Off or I ² t On)	tg (max break time)		80	140	200	320	500					DB10	T	
Accuracy: 0 to -20 % Settings 60 140 230 350 800 Time delay Δt (ms) Settings 60 140 230 350 800	Residual earth leakage (Vigi)			Micro	ologic	7.0 P									
Time delay ∆t (ms) Settings 60 140 230 350 800 ∆t (max resettable time) 60 140 230 350 800	Sensitivity (A)	l∆n		0.5	1	2	3	5	7	10	20	30			
$\frac{\text{Settings}}{\Delta t \text{ (max resettable time)}} = \frac{60 140 230 350 800}{60 140 230 350 800}$	Accuracy: 0 to -20 %													<u> </u>	►
	Time delay ∆t (ms)	Settings		60	140	230	350	800					- 0		1
Δt (max break time) 140 200 320 500 1000		∆t (max resettable tim	ie)	60	140	230	350	800							
		Δt (max break time)		140	200	320	500	1000					_		

Alarms and other	protection	Micrologic 5.0 /	6.0 / 7.0 P	
Current		Threshold	Delay	9 t ≬
Current unbalance	lunbalance	0.05 to 0.6 laverage	1 to 40 s	DB10145
Max. demand current	Imax demand : 11, 12, 13, 1N,	0.2 In to In	15 to 1500 s	threshold
Earth fault alarm				
	l∔	10 to 100 % In ⁽³⁾	1 to 10 s	threshold
Voltage				<u>A</u>
Voltage unbalance	Uunbalance	2 to 30 % x Uaverage	1 to 40 s	
Minimum voltage	Umin	100 to Umax between ph	nases 1.2 to 10 s	delay
Maximum voltage ⁽⁴⁾	Umax	Umin to 1200 between ph	nases 1.2 to 10 s	
Power				0 I/U/P/
Reverse power	rP	5 to 500 kW	0.2 to 20 s	
Frequency				
Minimum frequency	Fmin	45 to Fmax	1.2 to 5 s	
Maximum frequency	Fmax	Fmin to 440 Hz	1.2 to 5 s	
Phase sequence				
Sequence (alarm)	Ư	Ø1/2/3 or Ø1/3/2	0.3 s	

Load sheddin	g and reconnection	Micrologic 5.0 /	6.0 / 7.0 P	
Measured value		Threshold	Delay	se t ≬
Current	I	0.5 to 1 Ir per phases	20 % tr to 80 % tr	5
Power	Р	200 kW to 10 MW	10 to 3600 s	
(3) In ≤ 400 A 30 %				threshold

(3) $\ln \le 400 \text{ A} 30 \%$ $400 \text{ A} < \ln < 1250 \text{ A} 20 \%$ $\ln \ge 1250 \text{ A} 10 \%$ (4) For 690 V applications, a step-down transformer must be used if the voltage exceeds the nominal value of 690 V by more than 10 %.

Note: all current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

delay

0

delay

Micrologic control units

Micrologic P "power"

Default display.

Display of a voltage.

DB10113-

Pinst. **JB117042** P (kW)+2180 Q (kVAR) **-**65Ó S (kVA) +2280

Display of a power.

Display of a frequency.

Display of a demand power.

lon software.

Measurements

The Micrologic P control unit calculates in real time all the electrical values (V, A, W VAR, VA, Wh, VARh, VAh, Hz), power factors and cosp factors.

The Micrologic P control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter.

In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to displa vith the circuit breaker open or not supplied.

Instantaneous values

The value displayed on the screen is refreshed every second.

Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).

Currents					
l rms	А	1	2	3	Ν
	A	E-fault		E-leakage	
I max rms	A	1	2	3	N
	A	E-fault		E-leakage	
Voltages					
U rms	V	12	23	31	
Vrms	V	1N	2N	3N	
U average rms	V	(U12 + U2	3 + U31) / 3		
U unbalance	%				
Power, energy					
P active, Q reactive, S apparent	W, Var, VA	Totals			
E active, E reactive, E apparent	Wh, VARh, VAh	Totals cons Totals cons Totals supp		plied	
Power factor	PF	Total			
Frequencies					
F	Hz				

Demand metering

The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

Currents						
I demand	А	1	2	3	Ν	
	А	E-fault		E-leaka	age	
I max demand	А	1	2	3	Ν	
	А	E-fault		E-leaka	age	
Power						
P, Q, S demand	W, Var, VA	Totals				
P, Q, S max demand	W, Var, VA	Totals				

Minimeters and maximeters

Only the current and power maximeters may be displayed on the screen.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.

Additional measurements accessible with the COM option (BCM ULP) Some measured or calculated values are only accessible with the COM

- communication option:
- I peak / $\sqrt{2}$, (I1 + I2 + I3)/3, I unbalance
- load level in % Ir
- total power factor.

The maximeters and minimeters are available only via the COM option (BCM ULP) for use with a supervisor.

Additional info

Accuracy of measurements (including sensors):

- voltage (V) 0.5 %
- current (A) 1.5 %
- frequency (Hz) 0.1 %
- power (W) and energy (Wh) 2 %.

ay	the	val	ue	W

Display after tripping.

Display of a tripping history.

Wicrologic/Utilly/SSU	Dara/GOLMUCK	1944	
Micrologic 6.0 H 🔹 1	fue Out 67 18:19:22 2	000, page 1/0	
Service Basis	e prot. Amp. ;	prot. 🕅 Other prot. 🛃	M2c/M6c
Micrologic setup Language EnglishUS •	Power sign	System hequency 50400 Hz 💌	Com setup Com parameters address N/A
Breaker selection Standard	Y P.J		N/A •
Circuit breaker not del •	VT ratio Primary (M) (690 1		Renote access Acces pemit No •
type not del 💌	Secondary M 690 ±	PhContactWear	Renote control
Motering setup	Current demand	Power demand	Sign convention
System type 3 ph 4W 4CT 💌	Calculation resthod	Calculation method block interval	•
	Window typ sliding	• sking •	
	Interval (min)	1 Interval (min.)	

RSU configuration screen for a Micrologic.

Histories and maintenance indicators

The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen:

- tripping history:
- tripping nisto
- □ type of fault
 □ date and time
- $\hfill\square$ values measured at the time of tripping (interrupted current, etc.)
- alarm history:
- $\hfill\square$ type of alarm
- □ date and time
- □ values measured at the time of the alarm.

All the other events are recorded in a third history file which is only accessible through the communication network.

- Event log history (only accessible through the communication network)
- □ modifications to settings and parameters
- □ counter resets
- system faults:
- □ fallback position
- □ thermal self-protection
- □ loss of time
- □ overrun of wear indicators
- □ test-kit connections
- \Box etc.
- Note

All the events are time stampled: time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

Maintenance indicators with COM option (BCM ULP)

A number of maintenance indicators may be called up on the screen to better plan for device maintenance:

- contact wear
- operation counter:
- cumulative total
- □ total since last reset.

Additional maintenance indicators are also available through the COM network, and can be used as an aid in troubleshooting:

- highest current measured
- number of test-kit connections
- number of trips in operating mode and in test mode.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions. The high-accuracy measurement module operates independently of the protection module.

Simplicity and multi-language

Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc. Micrologic is also multi-language, including the following languages: English, Spanish, Portuguese, Russian, Chinese, French, German...

Intelligent measurement

Measurement-calculation mode:

energies are calculated on the basis of the instantaneous power values, in two manners:

□ the traditional mode where only positive (consumed) energies are considered □ the signed mode where the positive (consumed) and negative (supplied) energies are considered separately

■ measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Micrologic control units

Micrologic H "harmonics"

Micrologic H control units include all the functions offered by Micrologic P. Integrating significantly enhanced calculation and memory functions, the Micrologic H control unit offers in-depth analysis of power quality and detailed event diagnostics. It is intended for operation with a supervisor.

In addition to the Micrologic P functions, the Micrologic H control unit offers:

- in-depth analysis of power quality including calculation of harmonics and the
- fundamentals
- diagnostics aid and event analysis through waveform capture

enhanced alarm programming to analyse and track down a disturbance on the AC power system.

Measurements

The Micrologic H control unit offers all the measurements carried out by Micrologic P, with in addition:

- phase by phase measurements of:
- □ power, energy
- □ power factors
- calculation of:
- □ current and voltage total harmonic distortion (THD)
- □ current, voltage and power fundamentals
- current and voltage harmonics up to the 31st order.

Instantaneous values displayed on the screen

Currents						
l rms	A	1	2	3	Ν	
	A	E-fault		E-leaka	ge	
I max rms	A	1	2	3	N	
	A	E-fault		E-leaka	ge	
Voltages						
U rms	V	12	23	31		
V rms	V	1N	2N	3N		
U average rms	V	(U12 + U23	s + U31))/3		
U unbalance	%					
Power, energy						

P active, Q reactive, S apparent	W, Var, VA	Totals	1	2	3	
E active, E reactive, E apparent	Wh, VARh, VAh	Totals cor	nsumed	- supplied		
		Totals cor	nsumed			
		Totals sup	oplied			
Power factor	PF	Total	1	2	3	
Frequencies						

Hz **Power-quality indicators**

Total fundamentals UIPQS THD % υI U and Iharmonics Amplitude 3 5 7 9 11 13

Harmonics 3, 5, 7, 9, 11 and 13, monitored by electrical utilities, are displayed on the screen.

Demand measurements

Similar to the Micrologic P control unit, the demand values are calculated over a fixed or sliding time window that may be set from 5 to 60 minutes.

Currents						
Idemand	А	1	2	3	Ν	
	A	E-fault		E-leaka	age	
I max demand	A	1	2	3	N	
	A	E-fault		E-leaka	age	
Power						
P, Q, S demand	W, Var, VA	Totals				
P, Q, S max demand	W, Var, VA	Totals				

Maximeters

Only the current maximeters may be displayed on the screen.

Histories and maintenance indicators

These functions are identical to those of the Micrologic P.

Note: Micrologic H control units come with a non-transparent lead-seal cover as standard.

Display of harmonics up to 21th order.

With the communication option

Additional measurements, maximeters and minimeters

Certain measured or calculated values are only accessible with the COM communication option:

- I peak / $\sqrt{2}$ (I₁ + I₂ + I₃)/3, I_{unbalance}
- Ioad level in % Ir
 - power factor (total and per phase)
- voltage and current THD
- K factors of currents and average K factor
- crest factors of currents and voltages
- all the fundamentals per phase
- fundamental current and voltage phase displacement
- distortion power and distortion factor phase by phase

amplitude and displacement of current and voltage harmonics 3 to 31. The maximeters and minimeters are available only via the COM option (BCM ULP) for use with a supervisor.

Waveform capture

The Micrologic H control unit stores the last 4 cycles of each instantaneous current or voltage measurement. On request or automatically on programmed events, the control unit stores the waveforms. The waveforms may be displayed in the form of oscillograms by a supervisor via the COM option (BCM ULP). Definition is 64 points per cycle.

Pre-defined analogue alarms (1 to 53)

Each alarm can be compared to user-set high and low thresholds. Overrun of a threshold generates an alarm. An alarm or combinations of alarms can be linked to programmable action such as selective recording of measurements in a log, waveform capture, etc.

Event log and maintenance registers

The Micrologic H offers the same event log and maintenance register functions as the Micrologic P. In addition, it produces a log of the minimums and maximums for each "real-time" value.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions. The high-accuracy measurement module operates independently of the protection module.

Simplicity and multi-language

Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc. Micrologic is also multi-language, including the following languages: English, Spanish, Portuguese, Russian, Chinese, French, German;;;

Intelligent measurement

Measurement-calculation mode:

energies are calculated on the basis of the instantaneous power values, in two manners:

□ the traditional mode where only positive (consumed) energies are considered □ the signed mode where the positive (consumed) and negative (supplied) energies

are considered separately ■ measurement functions implement the new "zero blind time" concept which are considered separately

consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Power Meter functions Micrologic A/E/P/H control unit

with COM option (BCM ULP)

In addition to protection functions, Micrologic A/E/P/H control units offer all the functions of Power Meter products as well as operating-assistance for the circuit breaker.

FDM121 display: navigation.

64

DB112131

DB 112133

100 12

kWh

Current

Voltage. DB 11213 14397 kW 38 kVar 8325 kVarb 13035 kVAh 51 kVA

Power.

Consumption

Examples of measurement screens on the FDM121 display unit.

Micrologic A/E/P/H measurement functions are made possible by Micrologic intelligence and the accuracy of the sensors. They are handled by a microprocessor that operates independent of protection functions.

Display.....

• 🛴 •

FDM121 display unit

The FDM121 switchboard display unit can be connected to a Micrologic COM option (BCM ULP) using a breaker ULP cord to display all measurements on a screen. The result is a veritable 96 x 96 mm Power Meter.

In addition to the information displayed on the Micrologic LCD, the FDM121 screen shows demand, power quality and maximeter/minimeter values along with histories and maintenance indicators.

The FMD121 display unit requires a 24 V DC power supply. The COM option (BCM ULP) unit is supplied by the same power supply via the breaker ULP cord connecting it to the FDM121.

Measurements

Instantaneous rms measurements

The Micrologic continuously display the RMS value of the highest current of the three phases and neutral (Imax). The navigation buttons can be used to scroll through the main measurements.

In the event of a fault trip, the trip cause is displayed.

The Micrologic A measures phase, neutral, ground fault currents.

The Micrologic E offers voltage, power, Power Factor, measurements in addition to the measurements provided by Micrologic A.

The Micrologic P/H offer frequency, $\cos \varphi$ in addition to the measurements provided by Micrologic E.

Maximeters / minimeters

Every instantaneous measurement provided by Micrologic A or E can be associated with a maximeter/minimeter. The maximeters for the highest current of the 3 phases and neutral, the demand current and power can be reset via the FDM121 display unit or the communication system.

Energy metering

The Micrologic E/P/H also measures the energy consumed since the last reset of the meter. The active energy meter can be reset via Micrologic keypad or the FDM121 display unit or the communication system.

Demand and maximum demand values

Micrologic E/P/H also calculates demand current and power values. These calculations can be made using a block or sliding interval that can be set from 5 to 60 minutes in steps of 1 minute. The window can be synchronised with a signal sent via the communication system. Whatever the calculation method, the calculated values can be recovered on a PC via Modbus communication.

Ordinary spreadsheet software can be used to provide trend curves and forecasts based on this data. They will provide a basis for load shedding and reconnection operations used to adjust consumption to the subscribed power.

Power quality

Micrologic H calculates power quality indicators taking into account the presence of harmonics up to the 15th order, including the total harmonic distortion (THD) of current and voltage

Micrologic A/E/P	P/H integrated Power Meter fur	nctions	Тур	e Display		
interenegie / 12/1			A/E	P/H	Micrologic LCD	FDM12
Display of protection	n settings				LOD	display
Pick-ups (A) and delays	All settings can be displayed	Ir, tr, Isd, tsd, li, lg, tg	A/E	P/H		-
Measurements		., ., .,,,,,,,,			1-	
Instantaneous rms mea	asurements					
Currents (A)	Phases and neutral	11, 12, 13, IN	A/E	P/H		
	Average of phases	lavg = (11 + 12 + 13)/3	A/E	P/H	-	
	Highest current of the 3 phases and neutral	Imax of 11, 12, 13, IN	A/E	P/H	-	
	Ground fault (Micrologic 6)	% Ig (pick-up setting)	A/E	P/H	-	•
	Current unbalance between phases	% lavg	- /E	P/H	-	
Voltages (V)	Phase-to-phase	V12, V23, V31	- /E	P/H	•	•
	Phase-to-neutral	V1N, V2N, V3N	- /E	P/H	-	•
	Average of phase-to-phase voltages	Vavg = (V12 + V23 + V31) / 3	- /E	P/H	-	-
	Average of phase-to-neutral voltages	Vavg = (V1N + V2N + V3N) / 3	- /E	P/H	-	-
	Ph-Ph and Ph-N voltage unbalance	% Vavg and % Vavg	- /E	P/H	-	•
	Phase sequence	1-2-3, 1-3-2	-/-	P/H	-	-
Frequency (Hz)	Power system	f	-/-	P/H	-	•
Power	Active (kW)	P, total	- /E	P/H	-	•
		P, per phase	- /E	P/H	(2)	•
	Reactive (kVAR)	Q, total	- /E	P/H	•	•
		Q, per phase	-/-	P/H	(2)	-
	Apparent (kVA)	S, total	- /E	P/H	-	•
		S, per phase	-/-	P/H	(2)	•
	Power Factor	PF, total	- /E	P/H	-	•
		PF, per phase	-/-	P/H	■ ⁽²⁾	
	Cos.φ	Cos.φ, total	-/-	P/H	(2)	•
		$\cos \phi$, per phase	-/-	P/H	(2)	•
Maximeters / minimeter	rs	····		1		·
	Associated with instantaneous rms measurements	Reset via FDM121 display unit and Micrologic keypad	A/E	P/H	•	•
Energy metering						
Energy	Active (kW), reactive (kVARh), apparent (kVAh)	Total since last reset	- /E	P/H	-	-
Demand and maximum	demand values			1		
Demand current (A)	Phases and neutral	Present value on the selected window	- /E	P/H	•	-
		Maximum demand since last reset	- /E	P/H	(2)	-
Demand power	Active (kWh), reactive (kVAR),	Present value on the selected window	- /E	P/H	•	•
	apparent (kVA)	Maximum demand since last reset	- /E	P/H	(2)	-
Calculation window	Sliding, fixed or com-synchronised	Adjustable from 5 to 60 minutes in 1 minute steps ⁽¹⁾	- /E	P/H	-	-
Power quality						
Total harmonic	Of voltage with respect to rms value	THDU, THDV of the Ph-Ph and Ph-N voltage	-/-	н	•	•
distortion (%)	Of current with respect to rms value	THDI of the phase current	-/-	н		

(1) Available via the communication system only.
 (2) Available for Micrologic P/H only.

Additional technical characteristics

 Measurement accuracy

 Accuracies are those of the entire measurement system, including the sensors:

 current: class 1 as per IEC 61557-12

 voltage: 0.5 %

 power and energy: Class 2 as per IEC 61557-12

 frequency: 0.1 %.

Operating-assistance functions

Micrologic A/E/P/H control unit with COM option (BCM ULP)

Histories

- trip indications in clear text in a number of user-selectable languages
- time-stamping: date and time of trip.

Α

Maintenance indicators.....

Micrologic control unit have indicators for, among others, the number of operating cycles, contact wear P/H, load profile and operating times (operating hours counter) of the Masterpact circuit breaker.

It is possible to assign an alarm to the operating cycle counter to plan maintenance. The various indicators can be used together with the trip histories to analyse the level of stresses the device has been subjected to.

Management of installed devices

Each circuit breaker equipped with a COM option (BCM ULP) can be identified via the communication system:

- serial number
- firmware version
- hardware version
- device name assigned by the user.

This information together with the previously described indications provides a clear view of the installed devices.

Туре

Display

EDIMAN

Micrologic A/E/P/H operating assistance functions

			A/E	P/H	Micrologic LCD	FDM121 display
Operating ass	istance					
Trip history						
Trips	Cause of tripping	Ir, Isd, Ii, Ig, I∆n	- /E	P/H	-	•
Maintenance ind	licators					
Counter	Mechanical cycles	Assignable to an alarm	A/E	P/H	-	=
	Electrical cycles	Assignable to an alarm	A/E	P/H	-	•
	Hours	Total operating time (hours) ⁽¹⁾	A/E	P/H	-	-
Indicator	Contact wear	%	-/-	P/H	-	
Load profile	Hours at different load levels	% of hours in four current ranges: 0-49 % In, 50-79 % In, 80-89 % In and ≥ 90 % In	A/E	P/H	-	•

(1) Also available via the communication system.

Additional technical characteristics

Contact wear

Each time Masterpact opens, the Micrologic P/H trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory. Breaking under normal load conditions results in a very slight increment. The indicator value may be read on the FDM121 display. It provides an estimation of contact wear calculated on the basis of the cumulative forces affecting the circuit breaker. When the indicator reaches 100 %, it is advised to inspect the circuit breaker to ensure the availability of the protected equipment.

Circuit breaker load profile

Micrologic A/E/P/H calculates the load profile of the circuit breaker protecting a load circuit. The profile indicates the percentage of the total operating time at four current levels (% of breaker ln):

- 0 to 49 % In
- 50 to 79 % In
- 80 to 89 % In
- ≥ 90 % In.

This information can be used to optimise use of the protected equipment or to plan ahead for extensions.

Switchboard-display functions Micrologic A/E/P/H control unit

with COM option (BCM ULP)

Micrologic measurement capabilities come into full play with the FDM121 switchboard display. It connects to COM option (BCM ULP) via a breaker ULP cord and displays Micrologic information. The result is a true integrated unit combining a circuit breaker and a Power Meter. Additional operating assistance functions can also be displayed.

FDM121 switchboard display The FDM121 switchboard display unit can be connected to a Micrologic COM option (BCM ULP). It uses the sensors and processing capacity of the Micrologic control unit. It is easy to use and requires no special software or settings. It is immediately operational when connected to the COM option (BCM ULP) by a breaker ULP cord. The FDM121 is a large display, but requires very little depth. The anti-glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles.

Display of Micrologic measurements and trips

The FDM121 is intended to display Micrologic A/E/P/H measurements, trips and operating information. It cannot be used to modify the protection settings. Measurements may be easily accessed via a menu.

Trips are automatically displayed.

Apop-up window displays the time-stamped description of the trip and the orange LED flashes

Status indications

When the circuit breaker is equipped with the COM option (BCM ULP) (including its set of sensors) the FDM121 display can also be used to view circuit breaker status conditions:

- O/F: ON/OFF
- SDE: Fault-trip indication (overload, short-circuit, ground fault).
- PF: ready to close
- CH: charged (spring loaded).

Remote control

When the circuit breaker is equipped with the COM option (BCM ULP) (including its kit for connection to XF and MX1 communication voltage releases), the FDM121 display can also be used to control (open/close) the circuit breaker. Two operating mode are available.

■ local mode : open/close commands are enabled from FDM121 while disable from communication network

■ remote mode : open/close commands are disabled from FDM121 while, enabled from communication network.

Main characteristics

■ 96 x 96 x 30 mm screen requiring 10 mm behind the door (or 20 mm when the 24 volt power supply connector is used).

- White backlighting.
- Wide viewing angle: vertical ±60°, horizontal ±30°.
- High resolution: excellent reading of graphic symbols.

Alarm LED: flashing orange for alarm pick-up, steady orange after operator reset if alarm condition persists.

- Operating temperature range -10 °C to +55 °C.
- CE / UL / CSA marking (pending).

■ 24 V DC power supply, with tolerances 24 V -20 % (19.2 V) to 24 V +10 % (26.4 V). When the FDM121 is connected to the communication network, the 24 V DC can be supplied by the communication system wiring system (see paragraph "Connection"). ■ Consumption 40 mA.

The FDM121 is easily installed in a switchboard.

Standard door cut-out 92 x 92 mm.

To avoid a cut-out in the door, an accessory is available for surface mounting by drilling only two 22 mm diameter holes.

The FDM121 degree of protection is IP54 in front. IP54 is maintained after switchboard mounting by using the supplied gasket during installation.

Connection

The FDM121 is equipped with:

- a 24 V DC terminal block:
- □ plug-in type with 2 wire inputs per point for easy daisy-chaining

□ power supply range of 24 V DC -20 % (19.2 V) to 24 V DC +10 % (26.4 V). A 24 V DC type auxiliary power supply must be connected to a single point on the ULP system. The FDM121 display unit has a 2-point screw connector on the rear panel of the module for this purpose. The ULP module to which the auxiliary power supply is connected distributes the supply via the ULP cable to all the ULP modules connected to the system and therefore also to Micrologic.

two RJ45 jacks.

The Micrologic connects to the internal communication terminal block on the Masterpact via the breaker ULP cord. Connection to one of the RJ45 connectors on the FDM121 automatically establishes communication between the Micrologic and the FDM121 and supplies power to the Micrologic measurement functions. When the second connector is not used, it must be fitted with a line terminator.

Surface mount accessory.

Connection with FDM121 display unit.

Mounting

Attached using clips.

FDM121 display.

Switchboard-display functions

Micrologic A/E/P/H control unit with COM option (BCM ULP)

Micrologic control units

Accessories and test equipment

Rectangular sensor.

External sensor for source ground return protection.

Long time rating plug.

External 24 V DC power supply module.

External sensors

External sensor for earth-fault and neutral protection

The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for: neutral protection (with Micrologic P and H)

- residual type earth-fault protection (with Micrologic A, E, P and H).
- The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:
- NT06 to NT16: TC 400/1600
- NW08 to NW20: TC 400/2000
- NW25 to NW40: TC 1000/4000
- NW40b to NW63: TC 4000/6300.

For oversized neutral protection the sensor rating must be compatible with the measurement range: $1.6 \times IN$ (available up to NW 40 and NT 16).

Rectangular sensor for earth-leakage protection

The sensor is installed around the busbars (phases + neutral) to detect the zerophase sequence current required for the earth-leakage protection. Rectangular sensors are available in two sizes.

- Inside dimensions (mm)
- 280 x 115 up to 1600 Å for Masterpact NT and NW
- 470 x 160 up to 3200 A for Masterpact NW.

External sensor for source ground return protection

The sensor is installed around the connection of the transformer neutral point to earth and connects to the Micrologic 6.0 control unit via an MDGF module to provide the source ground return (SGR) protection.

Voltage measurement inputs

Voltage measurement inputs are required for power measurements (Micrologic P or H) and for earth-leakage protection (Micrologic 7...).

As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC. On request, it is possible to replace the internal voltage measurement inputs by an external voltage input (PTE option) which enables the control unit to draw power directly from the distribution system upstream of the circuit breaker. An 3 m cable with ferrite comes with this PTE option.

Long-time rating plug

Four interchangeable plugs may be used to limit the long-time threshold setting range for higher accuracy.

The time delay settings indicated on the plugs are for an overload of 6 Ir (for further details, see the characteristics on page A-13 and page A-15).

As standard, control units are equipped with the 0.4 to 1 plug.

Setting ranges										
Standard	lr = ln x	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1
Low-setting option	lr = ln x	0.4	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.8
High-setting option	lr = ln x	0.80	0.82	0.85	0.88	0.90	0.92	0.95	0.98	1
Off plug	plug No long-time protection (Ir = In for Isd setting)									

Important: long-time rating plugs must always be removed before carrying out insulation or dielectric withstand tests.

External 24 V DC power-supply module

The external power-supply module makes it possible to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue).

This module powers both the control unit (100 mA) and the M2C and M6C programmable contacts (100 mA).

If the COM communication option is used, the communication bus requires 24 V DC power supply. With the Micrologic A/E control unit, this module makes it possible to display currents of less than 20 % of In.

With the Micrologic P and H, it can be used to display fault currents after tripping.

Characteristics

- power supply:
- □ 110/130, 200/240, 380/415 V AC (+10 % -15 %)
- □ 24/30, 48/60, 100/125 V DC (+20 % -20 %)
- output voltage: 24 V DC ±5 %, 1 A.
- ripple < 1 %</p>
- dielectric withstand : 3.5 kV rms between input/output, for 1 minute
- overvoltage category: as per IEC 60947-1 cat. 4.

Micrologic control units

Accessories and test equipment

Battery module

M2C

M6C.

The battery module maintains display operation and communication with the supervisor if the power supply to the Micrologic control unit is interrupted. It is installed in series between the Micrologic control unit and the AD module. Characteristics

- battery run-time: 4 hours (approximately)
- mounted on vertical backplate or symmetrical rail.

M2C, M6C programmable contacts

These contacts are optional equipment for the Micrologic E, P and H control units. They are described with the indication contacts for the circuit breakers.

Micrologic			Туре Е	Types P, H
Characteristics			M2C	M2C/M6C
Minimum load			100 mA/24 V	100 mA/24 V
Breaking capacity (A) p.f.: 0.7	VAC 2	240	5	5
		380	3	3
	V DC	24	1.8	1.8
		48	1.5	1.5
		125	0.4	0.4
		250	0.15	0.15

M2C: 24 V DC power supplied by control unit (consumption 100 mA). M6C: external 24 V DC power supply required (consumption 100 mA).

Lead-seal cover.

Spare parts

Lead-seal covers

A lead-seal cover controls access to the adjustment dials.

When the cover is closed:

■ it is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed

■ the test connector remains accessible

the test button for the earth-fault and earth-leakage protection function remains accessible.

Characteristics

■ transparent cover for basic Micrologic and Micrologic A, E control units

non-transparent cover for Micrologic P and H control units.

Spare battery

A battery supplies power to the LEDs identifying the tripping causes. Battery service life is approximately ten years.

A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

Portable test kit.

Test equipment

Hand-held test kit

The hand-held mini test kit may be used to:

check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit

■ supply power to the control units for settings via the keypad when the circuitbreaker is open (Micrologic P and H control units).

Power source: standard LR6-AA battery.

Full function test kit

The test kit can be used alone or with a supporting personal computer.

- The test kit without PC may be used to check:
- the mechanical operation of the circuit breaker

■ the electrical continuity of the connection between the circuit breaker and the control unit

- operation of the control unit:
- □ display of settings
- □ automatic and manual tests on protection functions
- □ test on the zone-selective interlocking (ZSI) function
- □ inhibition of the earth-fault protection
- □ inhibition of the thermal memory.
- The test kit with PC offers in addition:
- the test report (software available on request).

Schneider

Portable data acquisition

Masterpact and GetnSet

GetnSet is a portable data acquisition and storage accessory that connects directly to the Micrologic control units of Masterpact circuit breakers to read important electrical installation operating data and Masterpact protection settings.

This information is stored in the GetnSet internal memory and can be transferred to a PC via USB or Bluetooth for monitoring and analysis.

Overview of Masterpact GetnSet functions

GetnSet⁽¹⁾ is a portable data acquisition and storage device that works like a USB drive, letting users manually transfer data to and from a Masterpact circuit breaker or PC.

GetnSet can download operating data from Masterpact and download or upload settings.

Downloadable operating data include measurements, the last 3 trip history records and contact wear status.

Accessible settings include protection thresholds, external relay assignment modes and pre-defined alarm configurations if applicable.

- On/Off 1 2
- batterie indicator Download settings
- 3 4 Download operating parameters
- 5 Upload settings
- 6 USB indicator
- Bluetooth indicator 7

Operating data functions

Electrical installation information such as energy measurements and contact wear status is increasingly important to help reduce operating expenses and increase the availability of electrical power. Such data is often available from devices within the installation, but needs to be gathered and aggregated to allow analysis and determine effective improvement actions.

With GetnSet, this operating data can be easily read and stored as .dgl files in the internal memory. It can then be transferred to a PC via a USB or Bluetooth link and imported in an Excel spreadsheet.

The provided Excel spreadsheet can be used to display the operating data from several breakers in order to:

- analyse changes in parameters such as energy, power factor and contact wear
- compare the values of parameters between circuit breakers
- create graphics and reports using standard Excel tools

GetnSet data accessible in the Excel spreadsheet

Type of data	Microl	ogic	
Current	A/E	Р	Н
Energy, voltages, frequency, power, power factor	E	Р	Н
Power quality: fundamental, harmonics	-	-	Н
Trip history	E	Р	Н
Contact wear	-	Р	Н

d Bartler & and here * TRIP Record Tel Lest Trip

1124

10.1 - 111 H H H - + x + 1

Sec. 102

144 202

DB 11744C

Protection setting functions

GetnSet can also be used to back up circuit breaker settings and restore them on the same device or, under certain conditions, copy them to any Masterpact circuit breaker equipped with the same type of Micrologic control unit. This concerns only advanced settings, as other parameters must be set manually using the dials on the Micrologic control unit.

■ When commissioning the installation, safeguard the configuration parameters of your electrical distribution system by creating a back-up of circuit breaker settings so that they can be restored at any time.

■ The settings read by GetnSet can be transferred to a PC and are compatible with RSU software (Remote Setting Utility). Protection configurations can also be created on a PC using this software, copied to GetnSet's internal memory and uploaded to a Masterpact circuit breaker with a compatible Micrologic trip unit and dial settings.

Operating procedure

The procedure includes several steps.

■ Plug GetnSet into the receptacle on the front of the Micrologic control unit of a Masterpact circuit breaker.

■ On the keypad, select the type of data (operating data or settings) and the transfer direction (download or upload). This operation can be done as many times as required for the entire set of Masterpact circuit breakers.

■ Downloaded data is transferred to the GetnSet internal memory and a file is created for each Masterpact device (either an .rsu file for settings or a.dgl file for operating data).

■ Data can be transferred between GetnSet and a PC via a USB or Bluetooth connection.

■ Operating data can be imported in an Excel spreadsheet and protection settings can be read with RSU (remote setting utility) software.

Features

■ Battery-powered to power a Micrologic control unit even if the breaker has been opened or tripped. This battery provides power for an average of 1 hour of use, enough for more than 100 download operations.

■ Can be used on Masterpact circuit breakers equipped or not equipped with a Modbus "device" communication module.

■ Portable, standalone accessory eliminating the need for a PC to connect to a Masterpact circuit breaker.

- No driver or software required for GetnSet connection to a PC.
- Can be used with many circuit breakers, one after the other.
- Embedded memory sized to hold data from more than 5000 circuit breakers.

■ Supplied with its battery, a cable for connection to Micrologic trip units, a USB cable for connection to a PC and a battery charger.

Compatibility

- Micrologic control units A, E, P, H
- PC with USB port or Bluetooth link and Excel software

Technical characteristics

Charger power supply	100 – 240 V; ∼1A; 50 – 60 Hz
Charger power consumption	Max 100 W
Battery	3.3 V DC; 9mAh; Li-Ion
Operating temperature	-20 to +60 °C
GetnSet dimensions	95 x 60 x 35 mm

Communication **COM** option in Masterpact

All the Masterpact devices can be fitted with the communication function thanks to the COM option. Masterpact uses the Modbus communications protocol for full compatibility with the supervision management systems. An external gateway is available for

communication on other networks:

Eco COM is limited to the transmission of metering data

Modbus BCM ULP "device"

communication module.

Modbus CCM "chassis" communication module.

DB402049

It is not used to communicate status and controls.

PR100802B-27

For fixed devices, the COM option is made up of:

■ a Modbus BCM ULP "device" communication module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE , PF and CH micro switches) its kit for connection to XF and MX1 communicating voltage releases and its COM terminal block (inputs E1 to E6).

For drawout devices, the COM option is made up of:

■ a Modbus BCM ULP "device" communication module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE, PF and CH micro switches) its kit for connection to XF and MX1 communicating voltage releases and its COM terminal block (inputs E1 to E6).

■ a "chassis" communication module supplied separately with its set of sensors (CE, CD and CT contacts) Modbus CCM.

Status indication by the COM option is independent of the device indication contacts. These contacts remain available for conventional uses.

Modbus BCM ULP "Device" communication module

This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.

Consumption: 30 mA, 24 V. Modbus CCM "chassis" communication module

This module is independent of the control unit. With Modbus "chassis" communication module, this module makes it possible to address the chassis and to maintain the address when the circuit breaker is in the disconnected position. Consumption: 30 mA, 24 V.

XF and MX1 communicating voltage releases

The XF and MX1 communicating voltage releases are equipped for connection to the "device" communication module.

The remote-tripping function (MX2 or MN) are independent of the communication option. They are not equipped for connection to the "device" communication module.

- 6 7
- COM terminal block (E1 to E6).

Schneider

A-30

3

5

Overview of functions

A: Micrologic with ammeter E: Micrologic "Energy" P: Micrologic "Power" H: Micrologic "Harmonics"

Note: see the description of the Micrologic control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators.

Four functional levels

The Masterpact can be integrated into a Modbus communication environment. There are four possible functional levels that can be combined.

	Switch- disconnectors	Circuit breaker		er	
Status indications					
ON/OFF (O/F)	•	А	Е	Р	Н
Spring charged CH	•	А	Е	Р	Н
Ready to close	•	А	Е	Ρ	Н
Fault-trip SDE	•	А	Е	Ρ	Н
Connected / disconnected / test position CE/CD/CT (CCM only)	•	A	Е	Ρ	н
Controls					
MX1 open	•	А	Е	Р	Н
XF close	•	А	Е	Ρ	н
Measurements					
Instantaneous measurement information	•	А	Е	Р	Н
Averaged measurement information			Е	Ρ	Н
Maximeter / minimeter	•	А	Е	Ρ	Н
Energy metering	•		Е	Ρ	Н
Demand for current and power	•		Е	Р	н
Power quality					Н
Operating assistance					
Protection and alarm settings				Р	н
Histories			Е	Р	н
Time stamped event tables				Р	н
Maintenance indicators		А	Е	Ρ	Н
O a second a still a Marallessa h					

Communication Modbus bus

The Modbus RS 485 (RTU protocol) system is an open bus on which communicating Modbus devices (Compact NS with Modbus COM, Power Meter PM700, PM800, Sepam, Vigilohm, Compact NSX, etc.) are installed. All types of PLCs and microcomputers may be connected to the bus.

Addresses

The Modbus communication parameters (address, baud rate, parity) are entered using the keypad on the Micrologic A, E, P, H. For a switch-disconnector, it is necessary to use the RSU (Remote Setting Utility) Micrologic utility.

Modbus addresse

mousus add		
@xx	Circuit breaker manager	(1 to 47)
@xx + 50	Chassis manager	(51 to 97)
@xx + 200	Measurement manager	(201 to 247)
@xx + 100	Protection manager	(101 to 147)

The manager addresses are automatically derived from the circuit breaker address @xx entered via the Micrologic control unit (the default address is 47).

Number of devices

The maximum number of devices that may be connected to the Modbus bus depends on the type of device (Compact with Modbus COM, PM700, PM800, Sepam, Vigilohm, Compact NSX, etc.), the baud rate (19200 is recommended), the volume of data exchanged and the desired response time. The RS 485 physical layer offers up to 32 connection points on the bus (1 master, 31 slaves). A fixed device requires only one connection point (communication module on the device). A drawout device uses two connection points (communication modules on the device and on the chassis).

The number must never exceed 31 fixed devices or 15 drawout devices.

Length of bus

The maximum recommended length for the Modbus bus is 1200 meters.

Bus power source

A 24 V DC power supply is required (less than 20 % ripple, insulation class II).

Masterpact communication

Networks and sofware

Micrologic utilities

■ Two utilities, RSU and RCU, presented on the next page, are available to assist in starting up a communicating installation. Intended for Masterpact, the software can be downloaded from the Schneider Electric internet site.

■ The "Live update" function enables immediate updating to obtain the most recent upgrades. These easy-to-use utilities include starting assistance and on-line help. They are compatible with Microsoft Windows 2000, XP and Windows 7.

RSU configuration screen for a Micrologic.

RCU mini-supervision screen for current measurements.

Gateway

>

The gateway has two functions:

 access to the company intranet (Ethernet) by converting Modbus frames to the TCP/IP/Modbus protocol

• optional web-page server for the information from the devices.

Examples include EGX300 and EGX100.

Masterpact communication RSU and RCU utilities

Two utilities, RSU and RCU, are available to assist in starting up a communicating installation. They can be downloaded from the Schneider Electric internet site and include a "Live update" function that enables immediate updating.

Histologic tetup Pover sign System licquercy English IS • Pover sign System licquercy Standard VT silo Standard Pot def VT silo Pinany Standard VT silo Pinany byse Sacoday PiContactivicer Noticotier Seconday PiContactivicer Noticotier Calculation Renote access Noticotier Calculation Motering setup System type Catenet demand Calculation Sign conversion Vindow type Vindow type IfEEE Interval (pini) Itit Itit Sign Itit

RSU: Micrologic Remote Setting Utility.

RCU: Remote Control Utility for communication tests

RSU (Remote Setting Utility)

This utility is used to set the protection functions and alarms for each Masterpact and Compact NSX device.

After connection to the network and entry of the circuit-breaker Modbus address, the software automatically detects the type of trip unit installed. There are two possible operating modes.

Off-line with the software disconnected from the communication network

For each selected circuit breaker, the user can do the following.

Determine the protection settings

The settings are carried out on a screen that shows the front of the trip unit. The Micrologic setting dials, keypad and screen are simulated for easy use of all Micrologic setting functions.

Save and duplicate the protection settings

Each configuration created can be saved for subsequent device programming. It can also be duplicated and used as the basis for programming another circuit breaker.

On-line with the software connected to the network

Similarly, for each selected circuit breaker, the user can do the following. **Display the current settings**

The software displays the trip unit and provides access to all settings.

View the corresponding protection curves

A graphic curve module in the software displays the protection curve corresponding to the settings. It is possible to lay a second curve over the first for discrimination studies.

Modify settings in a secure manner

There are different levels of security:

□ password: by default, it is the same for all devices, but can be differentiated for each device

□ locking of the Modbus interface module which must be unlocked before the corresponding device can be set remotely

maximum settings limited by the positions of the two dials on the trip unit. These dials, set by the user, determine the maximum settings that can be made via the communication system.

- Settings are modified by:
- □ either direct, on-line setting of the protection settings on the screen
- □ or by loading the settings prepared in off-line mode. This is possible only if the positions of the dials allow the new settings.
- All manual settings made subsequently on the device have priority.

Program alarms

- Up to 12 alarms can be linked to measurements or events.
- two alarms are predefined and activated automatically:
- □ Micrologic 5: overload (Ir)
- □ Micrologic 6: overload (Ir) and ground fault (Ig)

■ thresholds, priorities and time delays can be set for 10 other alarms. They may be selected from a list of 91 alarms

Set the outputs of the SDx relays

This is required when the user wants to change the standard configuration and assign different signals to the 2 outputs of the SDx relay.

RCU (Remote Control Utility)

The RCU utility can be used to test communication for all the devices connected to the Modbus network. It is designed for use with Masterpact, Compact NSX, Advantys OTB and Power Meter devices. It offers a number of functions.

Mini supervisor

- Display of I, U, f, P, E and THD measurements for each device, via navigation.
- Display of ON/OFF status.

Open and close commands for each device

A common or individual password must first be entered.

When all functions have been tested, this utility is replaced by the supervision software selected for the installation.

This is required when the us assign different signals to the

Supervision software

Schneider Electric electrical installation supervision, management and expert system software integrates Masterpact, Compact and Compact NSX identification modules.

EGX300

iRIO RTU

ION-E

Types of software

Masterpact, Compact and Compact NSX communication functions are designed to interface with software dedicated to electrical installations:

- switchboard supervision
- electrical installation supervision
- power system management: electrical engineering expert systems
- process control

SCADA (Supervisory Control & Data Acquisition), EMS (Enterprise Management System) or BMS (Building Management System) type software.

Schneider Electric solutions

Electrical switchboard supervision via EGX300 Web servers

A simple solution for customers who want to consult the main electrical parameters of switchboard devices without dedicated software.

Up to 16 switchboard devices are connected via Modbus interfaces to an EGX300 Ethernet gateway integrating the functions of a web page server. The embedded Web pages can be easily configured with just a few mouse clicks. The information they provide is updated in real time.

The Web pages can be consulted using a standard Web browser on a PC connected via Ethernet to the company Intranet or remotely via a modem. Automatic notification of alarms and threshold overruns is possible via e-mail or SMS (Short Message Service).

Electrical installation supervision via iRIO RTU

The iRIO RTU(remote terminal unit) can be used as Ethernet coupler for the PowerLogic System devices and for any other communicating devices operating under Modbus RS485 protocol. Data is viewable via a standard web browser.

ION-E electrical engineering expert system software

ION-E is a family of web-enabled software products for high-end power-monitoring applications. It is designed for large power systems.

ION-E offer detailed analysis of electrical events, long-duration data logging and extensive, economical report-building capabilities (e.g. consumption monitoring and tariff management).

A wide variety of screens can be displayed in real time, including more than 50 tables, analogue meters, bargraphs, alarms logs with links to display waveforms and predefined reports on energy quality and service costs.

Other software

Masterpact, Compact and Compact NSX devices can forward their measurement and operating information to special software integrating the electrical installation and other technical facilities:

SCADA process control software: Vijeo CITECT

BMS Building Management System software: Vista. Please consult us.

Schneider

A-35

Masterpact communication

Communication wiring system

Wiring system UPP

The wiring system is designed for low-voltage power switchboards. Installation requires no tools or special skills.

The prefabricated wiring ensures both data transmission (ModBus protocol) and 24 V DC power distribution for the communications modules on the Micrologic control units.

A-36

Connections

Overview of solutions

Three types of connection are available: • vertical or horizontal rear connection

- front connection
- mixed connection.

The solutions presented are similar in principle for all Masterpact NT and NW fixed and drawout devices.

Rear connection

Simply turn a horizontal rear connector 90° to make it a vertical connector. For the 6300 A circuit breaker, only vertical connection is available.

OVODEDID OVODEDID

Front connection is available for NW fixed and drawout versions up to 3200 A.

Note: Masterpact circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors, requiring no particular treatment.

Connections

Accessories

Type of accessory	Masterpact NT06 to NT16					W08 to NW63			
	Fixed		Drawout		Fixed		Drawout		
	Front connection	Rear connection	Front connection	Rear connection	Front connection	Rear connection	Front connection	Rear connection	
/ertical connection adapters	BEILINE CONTRECTION	connection	Contraction of the second seco	Connection	connection	connection	connection	connection	
able lug dapters									
nterphase arriers	DB101148			67110180		6F110180 (2)		DB101149	
preaders	DB101150		DB101150						
Disconnectable ront-connection dapter					1211121				
Safety shutters vith padlocking			DB101162				DB101153		
Shutter position ndication and ocking			standard				standard	Ser Contraction	
Arc chute screen	(3)	DB101155							

(1) Mandatory for voltages > 500 V, not compatible with

spreaders.

(2) Except for an NW40 equipped for horizontal rear

connection, and for fixed NW40b-NW63.

(3) Mandatory for fixed NT front-connection versions with vertical-connection adapters oriented towards the front.

Masterpact M replacement kit

A set of connection parts is available to allow replacement of a Masterpact M08 to M32 circuit breaker by a Masterpact NW without modifying the busbars (please consult us).

Mounting on a switchboard backplate using special brackets

Masterpact NT and NW fixed front-connected circuit breakers can be installed on a backplate without any additional accessories.

Masterpact NW circuit breakers require a set of special brackets.

Connections

Accessories

Disconnectable front-connection adapter (option)

Mounted on a fixed front-connected device, the adapter simplifies replacement of a fixed device by enabling fast disconnection from the front.

Safety shutters (VO standard)

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible.

The shutter-locking system is made up of a moving block that can be padlocked (padlock not supplied). The block:

- prevents connection of the device
- locks the shutters in the closed position.

For Masterpact NW08 to NW63

A support at the back of the chassis is used to store the blocks when they are not used:

■ 2 blocks for NW08 to NW40

■ 4 blocks for NW40b to NW63.

Shutter position indication and locking on front face (VIVC, NW only)

This option located on the chassis front plate indicates that the shutters are closed. It is possible to independently or separately padlock the two shutters using one to three padlocks (not supplied).

Locking On the device

Access to pushbuttons protected by transparent cover.

Pushbutton locking using a padlock.

OFF position locking using a padlock.

OFF position locking using a keylock.

Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.

It is possible to independently lock the opening button and the closing button. The locking device is often combined with a remote operating mechanism.

The pushbuttons may be locked using either:

- three padlocks (not supplied)
- lead seal
- two screws.

Device locking in the OFF position VCPO by padlocks, VSPO by keylocks

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:

- using padlocks (one to three padlocks, not supplied), shackle diameter: 5 to 8 mm ■ using keylocks (one or two different keylocks, supplied).
- Keys may be removed only when locking is effective (Profalux or Ronis type locks). The keylocks are available in any of the following configurations:
- one keylock
- one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device
- two different key locks for double locking.

Profalux and Ronis keylocks are compatible with each other.

A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Accessory-compatibility

For Masterpact NT: 3 padlocks or 1 keylock For Masterpact NW: 3 padlocks and/or 2 keylocks

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.

For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker

With this interlock installed, the source changeover function cannot be implemented.

A-41

Locking On the chassis

"Disconnected" position locking by padlocks.

Door interlock.

Racking interlock.

Mismatch protection

"Disconnected" position locking by keylocks.

"Disconnected" position locking by padlocks (standard) or keylocks (VSPD option)

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:

- using padlocks (standard), up to three padlocks (not supplied)
- using keylocks (optional), one or two different keylocks are available.
- Profalux and Ronis keylocks are available in different options:
- one keylock
- two different keylocks for double locking

one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately for interlocking with another device.

A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

"Connected", "disconnected" and "test" position locking

The "connected", "disconnected" and "test" positions are shown by an indicator and are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.

As standard, the circuit breaker can be locked only in "disconnected position". On request, the locking system may be modified to lock the circuit breaker in any of the three positions: "connected", "disconnected" or "test".

Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock VPOC

This device prevents insertion of the racking handle when the cubicle door is open.

Cable-type door interlock IPA

This option is identical for fixed and drawout versions.

Racking interlock between crank and OFF pushbutton IBPO (for NW only)

This option makes it necessary to press the OFF pushbutton in order to insert the racking handle and holds the device open until the handle is removed.

Automatic spring discharge before breaker removal DAE (for NW only)

This option discharges the springs before the breaker is removed from the chassis.

Mismatch protection VDC

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

Indication contacts

Indication contacts are available:

■ in the standard version for relay applications ■ in a low-level version for control of PLCs and electronic circuits.

M2C and M6C contacts may be programmed via the Micrologic E, P and H control units.

ON/OFF indication contacts (OF) (micro switch type).

Additional "fault-trip' indication contacts (SDE).

Combined contacts.

ON/OFF indication contacts OF

Two types of contacts indicate the ON or OFF position of the circuit breaker:

micro switch type changeover contacts for Masterpact NT

■ rotary type changeover contacts directly driven by the mechanism for Masterpact NW. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached.

0 Su

OF				NT	NW
Supplied as standard				4	4
Maximum number				4	12
Breaking capacity (A) p.f.: 0.3 AC12/DC12	Standard			Minimum	oad: 100 mA/24 V
		VAC	240/380	6	10/6 (1)
			480	6	10/6 (1)
			690	6	6
		V DC	24/48	2.5	10/6 (1)
			125	0.5	10/6 (1)
			250	0.3	3
	Low-level			Minimum	oad: 2 mA/15 V
		VAC	24/48	5	6
			240	5	6
			380	5	3
		V DC	24/48	5/2.5	6
			125	0.5	6
			250	0.3	3

(1) Standard contacts: 10 A; optional contacts: 6 A.

"Fault-trip" indication contacts SDE

Circuit-breaker tripping due to a fault is signalled by:

- a red mechanical fault indicator (reset)
- one changeover contact SDE.

Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. One SDE is supplied as standard. An optimal SDE may be added. This latter is incompatible with the electrical reset after fault-trip option (RES).

SDE				NT/NW
Supplied as standard				1
Maximum number				2
Breaking capacity (A)	Standard	Standard		Minimum load: 100 mA/24 V
p.f.: 0.3		VAC	240/380	5
AC12/DC12			480	5
			690	3
		V DC	24/48	3
			125	0.3
			250	0.15
	Low-level			Minimum load: 2 mA/15 V
		VAC	24/48	3
			240	3
			380	3
		V DC	24/48	3
			125	0.3
			250	0.15

Combined "connected/closed" contacts EF

The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information. Supplied as an option for Masterpact NW, it is mounted in place of the connector of an additional OF contact.

EF				NW
Maximum number				8
Breaking capacity (A)	Standard	Standard		Minimum load: 100 mA/24 V
p.f.: 0.3		VAC	240/380	6
AC12/DC12			480	6
			690	6
		V DC	24/48	2.5
			125	0.8
			250	0.3
	Low-level			Minimum load: 2 mA/15 V
		VAC	24/48	5
			240	5
			380	5
		V DC	24/48	2.5
			125	0.8
			250	0.3

A-43

Indication contacts

CE, CD and CT "connected/disconnected/test" position carriage switches.

M2C programmable contacts: circuit-breaker internal relay with two contacts.

M6C programmable contacts:

circuit-breaker external relay with six independent changeover contacts controlled from the circuit breaker via a three-wire connection. (maximum length is 10 meters).

"Connected", "disconnected" and "test" position carriage switches

Three series of optional auxiliary contacts are available for the chassis:

- changeover contacts to indicate the "connected" position CE
- changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached

■ changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Additional actuators

A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.

			NT	NW	
Contacts			CE/CD/CT	CE/CD/CT	
Maximum number	Standard		3 2 1	3 3 3	
	with additional act	uators		9 0 0	
				6 3 0	
				6 0 3	
Breaking capacity (A)	Standard		Minimum I	oad: 100 mA/24 V	
p.f.: 0.3	VAC	240	8	8	
AC12/DC12		380	8	8	
		480	8	8	
		690	6	6	
	V DC	24/48	2.5	2.5	
		125	0.8	0.8	
		250	0.3	0.3	
	Low-level		Minimum load: 2 mA/15 V		
	VAC	24/48	5	5	
		240	5	5	
		380	5	5	
	V DC	24/48	2.5	2.5	
		125	0.8	0.8	
		250	0.3	0.3	

M2C / M6C programmable contacts

These contacts, used with the Micrologic E, P and H control units, may be programmed via the control unit keypad or via a supervisory station with the COM communication option. They require an external power supply module. The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option (BCM ULP).

Micrologic			Type E	Types P, H
Characteristics			M2C	M2C/M6C
Minimum load			100 mA/24 V	100 mA/24 V
Breaking capacity (A)	VAC	240	5	5
p.f.: 0.7		380	3	3
	V DC	24	1.8	1.8
		48	1.5	1.5
		125	0.4	0.4
		250	0.15	0.15

Remote operation Remote ON / OFF

Two solutions are available for remote operation of Masterpact devices:

- a point-to-point solution
- a bus solution with the COM communication option.

Note: an opening order always takes priority over a closing order.

If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).

In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.

Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.

When the automatic reset after fault trip (RAR) option is installed, to avoid pumping following a fault trip, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or blocking the circuit breaker in the open position (information on the type of fault, e.g. overload, short-time fault, earth fault, earth leakage, short-circuit, etc.).

Note: MX communicating releases are of the impulse type only and cannot be used to lock a circuit breaker in OFF position. For locking in OFF position, use the remote tripping function (2nd MX or MN).

When MX or XF communicating releases are used, the third wire (C3, A3) must be connected even if the communication module is not installed. When the control voltage (C3-C1 or A3-A1) is applied to the MX or XF releases, it is necessary to wait 1.5 seconds before issuing an order. Consequently, it is advised to use standard MX or XF releases for applications such as source-changeover systems. The remote ON / OFF function is used to remotely open and close the circuit breaker. It is made up of:

- an electric motor MCH equipped with a "springs charged" limit switch contact CH
- two voltage releases:
- □ a closing release XF
- □ an opening release MX.

Optionally, other functions may be added:

- a "ready to close" contact PF
- an electrical closing pushbutton BPFE
- remote RES following a fault.

A remote-operation function is generally combined with:

- device ON / OFF indication OF
- "fault-trip" indication SDE.

Wiring diagram of a point-to-point remote ON / OFF function

Wiring diagram of a bus-type remote ON / OFF function

Remote operation Remote ON / OFF

Electric motor MCH for Masterpact NT.

Electric motor MCH for Masterpact NW.

XF and MX voltage releases.

"Ready to close" contacts PF.

Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.

The electric motor MCH is equipped as standard with a limit switch contact CH that signals the "charged" position of the mechanism (springs charged).

Characteristics

Power supply VAC 50/60 Hz		48/60 - 100/130 - 200/240 - 277- 380/415 - 400/440 - 480			
	V DC	24/30 - 48/60 - 100/125 - 200/250			
Operating thres	hold	0.85 to 1.1 Un			
Consumption (VA or W)		180			
Motor overcurre	ent	2 to 3 In for 0.1 s			
Charging time		maximum 3 s for Masterpact NT			
		maximum 4 s for Masterpact NW			
Operating frequ	ency	maximum 3 cycles per minute			
CH contact		10 A at 240 V			

Voltage releases XF and MX

Their supply can be maintained or automatically disconnected. **Closing release XF**

The XF release remotely closes the circuit breaker if the spring mechanism is charged.

Opening release MX

The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained (except for MX "communicating" releases).

Note: whether the operating order is maintened or automatically disconnected (pulse-type), XF or MX "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

Characteristics		XF	MX		
Power supply	V AC 50/60 Hz	24 - 48 - 100/130 - 200/250 - 277 - 380/480			
	V DC	12 - 24/30 - 48/60 - 100/130 -	200/250		
Operating threshold		0.85 to 1.1 Un	0.7 to 1.1 Un		
Consumption (VA or W)		Hold: 4.5	Hold: 4.5		
		Pick-up: 200 (200 ms)	Pick-up: 200 (200 ms)		
Circuit-breaker response time at Un		55 ms ±10 (Masterpact NT)	50 ms ±10		
		70 ms ±10 (NW ≤ 4000 A)			
		80 ms ±10 (NW > 4000 A)			

"Ready to close" contact PF

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:

- the circuit breaker is in the OFF position
- the spring mechanism is charged
- a maintained opening order is not present:
- □ MX energised
- □ fault trip
- □ remote tripping second MX or MN
- □ device not completely racked in
- □ device locked in OFF position
- □ device interlocked with a second device.

Characteristi	C
---------------	---

Characteristics				NT/NW
Maximum number				1
Breaking capacity (A)	Standard			Minimum load: 100 mA/24 V
p.f.: 0.3		VAC	240/380	5
AC12/DC12			480	5
			690	3
		V DC	24/48	3
			125	0.3
			250	0.15
	Low-level			Minimum load: 2 mA/15 V
		VAC	24/48	3
			240	3
			380	3
		V DC	24/48	3
			125	0.3
			250	0.15

Electrical closing pushbutton BPFE.

Electrical closing pushbutton BPFE

Located on the front panel, this pushbutton carries out electrical closing of the circuit breaker. It is generally associated with the transparent cover that protects access to the closing pushbutton.

Electrical closing via the BPFE pushbutton takes into account all the safety functions that are part of the control/monitoring system of the installation.

The BPFE connects to the closing release (XF com) in place of the COM module. The COM module is incompatible with this option.

Different types of voltage exist and the XF electromagnet is compulsary if the BPFE option is selected.

Remote reset after fault trip

Electrical reset after fault trip RES

Following tripping, this function resets the "fault trip" indication contacts SDE and the mechanical indicator and enables circuit breaker closing. Power supply: 110 / 130 V AC and 200 / 240 V AC.

The use of XF closing release is compulsory with this option.

The additional "Fault Trip" indication contact SDE2 is not compatible with RES.

Automatic reset after fault trip RAR

Following tripping, a reset of the mechanical indicator (reset button) is no longer required to enable circuit-breaker closing. The mechanical (reset button) and electrical SDE indications remain in fault position until the reset button is pressed. The use of XF closing release is compulsory with this option.

Remote operation Remote tripping

This function opens the circuit breaker via an electrical order. It is made up of:

- a shunt release second MX
- or an undervoltage release MN

or a delayed undervoltage release MNR: MN + delay unit.

These releases (2nd MX or MN) cannot be operated by the communication bus. The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.

Wiring diagram for the remote-tripping function

Voltage releases second MX

When energised, the MX voltage release instantaneously opens the circuit breaker. A continuous supply of power to the second MX locks the circuit breaker in the OFF position.

Characteristics				
Power supply	VAC 50/60Hz	24 - 48 - 100/130 - 200/250 -	277-380/480	
	V DC	12 - 24/30 - 48/60 - 100/130 -	- 200/250	
Operating threshold		0.7 to 1.1 Un		
Permanent locking function		0.85 to 1.1 Un		
Consumption (VA or	W)	Pick-up: 200 (80 ms)	Hold: 4.5	
Circuit-breaker respo	onse time at Un	50 ms ±10		

Instantaneous voltage releases MN

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35 % and 70 % of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit-breaker closing is enabled again when the supply voltage of the release returns to 85 % of its rated value.

Characteristics			
Power supply	V AC 50/60 Hz V DC	24 - 48 - 100/130 - 200/250 - 24/30 - 48/60 - 100/130 - 20	
Operating threshold	Opening Closing	0.35 to 0.7 Un 0.85 Un	
Consumption (VA or	W)	Pick-up: 200 (200 ms)	Hold: 4.5
MN consumption with delay unit (VA or	W)	Pick-up: 200 (200 ms)	Hold: 4.5
Circuit-breaker respo	onse time at Un	40 ms ±5 for NT	
		90 ms ±5 for NW	

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

-		
Characteristics		
Power supply	Non-adjustable	100/130 - 200/250
V AC 50-60 Hz /DC	Adjustable	48/60 - 100/130 - 200/250 - 380/480
Operating threshold	Opening	0.35 to 0.7 Un
	Closing	0.85 Un
Delay unit consumption	Pick-up: 200 (200	ms) Hold: 4.5
Circuit-breaker response time at Un	Non-adjustable	0.25 s
	Adjustable	0.5 s - 0.9 s - 1.5 s - 3 s

Accessories

Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions. This option is compulsory for all the source-changeover systems.

Escutcheon CDP

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP 40 (circuit breaker installed free standing: IP30). It is available in fixed and drawout versions.

Blanking plate OP for escutcheon

Used with the escutcheon, this option closes off the door cut-out of a cubicle not yet equipped with a device. It may be used with the escutcheon for both fixed and drawout devices.

Transparent cover CCP for escutcheon

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54, IK10. It adapts to drawout devices.

Escutcheon CDP with blanking plate.

Transparent cover CCP for escutcheon.

Source-changeover systems

Presentation

- Commercial and service sector:
- operating rooms in hospitals
- safety systems for tall buildings
- computer rooms (banks, insurance companies, etc.)
- lighting systems in shopping centres.

Industry.

- assembly lines engine rooms on ships
- critical auxiliaries in thermal power stations...

Infrastructures:

- port and railway installations
- runway lighting systems
- control systems on military sites...

Schneider Gelectric

Manual source-changeover system

This is the most simple type. It is controlled manually by an operator and consequently the time required to switch from the normal to the replacement source can varv.

A manual source-changeover system is made up of two or three mechanically interlocked manually-operated circuit breakers or switch-disconnectors. The interlocks prevent any paralleling, even transient, of the two sources.

Remote-operated source-changeover system

This is the most commonly employed system for devices with high ratings (above 400 A). No human intervention is required. Transfer from the normal to the replacement source is controlled electrically.

A remote-controlled source-changeover system is made up of two or three circuit breakers or switch-disconnectors linked by an electrical interlocking system that may have different configurations. In addition, a mechanical interlocking system protects against electrical malfunctions or incorrect manual operations.

Automatic source-changeover systems

An automatic controller may be added to a remote-operated source-changeover system for automatic source control according to programmable operating modes. This solution ensures optimum energy management:

- transfer to a replacement source according to external requirements
- management of power sources
- regulation
- emergency source replacement, etc.

The automatic controller may be fitted with an option for communication with a supervisor.

Communication option

The communication option must not be used to control the opening or closing of source-changeover system circuit breakers. It should be used only to transmit measurement data or circuit-breaker status.

The eco COM option is perfectly suited to these equipments.

Mechanical interlocking

Interlocking of two Masterpact NT or NW circuit breakers using connecting rods.

Interlocking of two Compact NS630b to 1600 or two Masterpact NT and NW devices using connecting rods

The two devices must be mounted one above the other (either 2 fixed or 2 withdrawable/drawout devices).

Combinations are possible between Compact NS630b to NS1600 devices and between Masterpact NT and Masterpact NW devices.

Installation

This function requires:

an adaptation fixture on the right side of each circuit breaker or switchdisconnector

 a set of connecting rods with no-slip adjustments.
 The adaptation fixtures, connecting rods and circuit breakers or switchdisconnectors are supplied separately, ready for assembly by the customer. The maximum vertical distance between the fixing planes is 900 mm.

Possible combinations of "Normal" and "Replacement" source circuit breakers

"Normal N"	"Replacement" R							
	NS630b to NS1600	NT06 to NT16	NW08 to NW40	NW40b to NW63				
NS630b to NS1600								
Ratings 250 1600 A	=							
NT06 to NT16								
Ratings 250 1600 A		•	•					
NW08 to NW40								
Ratings 320 4000 A		=	=					
NW40b to NW63								
Ratings 4000 6300 A		-	-					

Source-changeover systems

Mechanical interlocking

Interlocking of two Masterpact circuit breakers using cable.

Interlocking of two Masterpact NT/NW or up to three Masterpact NW devices using cables

For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.

The interlocked devices may be fixed or drawout, three-pole or four-pole, and have different ratings and sizes.

Interlocking between two devices (Masterpact NT and NW)

This function requires:

- \blacksquare an adaptation fixture on the right side of each device
- a set of cables with no-slip adjustments
- the use of a mechanical operation counter CDM is compulsory.

The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm.

Interlocking between three devices (Masterpact NW only) This function requires:

a specific adaptation fixture for each type of interlocking, installed on the right side of each device

■ two or three sets of cables with no-slip adjustments

■ the use of a mechanical operation counter CDM is compulsory.

The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm. Installation

The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.

Installation conditions for cable interlocking systems:

- cable length: 2.5 m
- radius of curvature: 100 mm
- maximum number of curves: 3.

Possible combinations of "Normal" and "Replacement" source circuit breakers

"Normal N"	"Replacement" R							
	NT06 to NT16	NW08 to NW40	NW40b to NW63					
NT06 to NT16								
Ratings 250 1600 A	-	•	-					
NW08 to NW40								
Ratings 320 4000 A	•	•	•					
NW40b to NW63								
Ratings 4000 6300 A								

All combinations of two Masterpact NT and Masterpact NW devices are possible, whatever the rating or size of the devices.

Possible combinations of three device

	NT06 to NT16	NW08 to NW40	NW40b to NW63
NT06 to NT16			-
Ratings 250 1600 A			
NW08 to NW40			
Ratings 320 4000 A			•
NW40b to NW63			
Ratings 4000 6300 A			

Only Masterpact NW may be used for three-device combinations.

Types of mechanical interlocking and combinations See catalogue "Source changeover systems", réf. LVPED208007EN.

Electrical interlocking

Electrical interlocking is used with the mechanical interlocking system.

An automatic controller may be added to take into account information from the distribution system.

Moreover, the relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands. Electrical interlocking is carried out by an electrical control device. For Masterpact, this function can be implemented in one of two ways:

■ using the IVE unit

by an electrician in accordance with the chapter "electrical diagrams" of the catalogue "source-changeover systems".

Characteristics of the IVE unit

external connection terminal block:

□ inputs: circuit breaker control signals

outputs: status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers

- 2 connectors for the two "Normal" and "Replacement" source circuit breakers: □ inputs:
- status of the OF contacts on each circuit breaker (ON or OFF)

- status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers

□ outputs: power supply for operating mechanisms

- control voltage:
- □ 24 to 250 V DC

□ 48 to 415 V 50/60 Hz - 440 V 60 Hz.

The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.

Necessary equipment

For Masterpact NT and NW, each circuit breaker must be equipped with:

a remote-operation system made up of:

- MCH gear motor
- □ MX or MN opening release
- □ XF closing release
- □ PF "ready to close" contact
- CDM mechanical operation counter
- an available OF contact
- one to three CE connected-position contacts (carriage switches) on drawout circuit

Source-changeover systems Standard configuration

Types of mechanical interlocking	Poss	ible con	nbinations	Typical electrical diagrams	Diagram no
2 devices	QN 0 1 0	QR 0 1	-	Masterpact NT and NW: e electrical interlocking with lockout after fault: permanent replacement source (without IVE) with EPO by MX (without IVE) permanent replacement source (with IVE) with EPO by MX (with IVE) with EPO by MX (with IVE) with EPO by MN (with IVE) with EPO by MN (with IVE) automatic control without lockout after fault: permanent replacement source (without IVE) engine generator set (without IVE) automatic control with lockout after fault: permanent replacement source (with IVE) automatic control with lockout after fault: permanent replacement source (with IVE) automatic control with lockout after fault: permanent replacement source (with IVE) automatic control with lockout after fault: permanent replacement source (with IVE) BA/UA controller (with IVE)	51201140 51201141 51201142 51201143 51201144
Masterpact NW only	Deee	ible com	hinationa	Trained electrical discussion	Disgram p
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source		ible con	idinations	Typical electrical diagrams	Diagram no
$ \begin{array}{c} _{QN1} \\ _{QN2} \\ _{QR} \\ _{QR} _{QR} $	QN1 0 1 0	QN2 0 1 0	QR 0 0 1	 electrical interlocking: without lockout after fault with lockout after fault 	51156906 51156907
3 devices: 2 "Normal" sources and 1 "Replacement" source	with sou	urce seleo	ction		
$ \begin{array}{c} $	QN1 0 1 0 1 0	QN2 0 0 1 1	QR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) 	51156908 51156909
3 devices: 3 sources, only one device					
$\underbrace{_{QS1}}_{\overline{\nabla}\overline{\nabla}\overline{\nabla}\overline{\nabla}}\underbrace{_{QS2}}_{+QS3}$	QS1 0 1 0 0	QS2 0 1 0	QS3 0 0 0 1	 electrical interlocking: without lockout after fault with lockout after fault 	51156910 51156911
3 devices: 2 sources + 1 coupling				1	
$\begin{array}{c} \underbrace{}_{QS1} \\ \underbrace{}_{QS1} \\ _{QS2} \\ _{$	QS1 0 1 1 0 1	QC 0 1 1 0	QS2 0 1 0 1 0 (1)	 electrical interlocking: without lockout after fault with lockout after fault automatic control with lockout after fault 	51156912 51156913 51156914

"Lockout after fault" option. This option makes it necessary to manually reset the device following fault tripping.

Associated automatic controllers

By combining a remote-operated source-changeover system with an integrated BA

or UA automatic controller, it is possible to

automatically control source transfer according to userselected sequences.

These controllers can be used on source-changeover systems comprising 2 circuit breakers. For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

UA controller.

Controller				DA			
				BA		UA	
Compatible circuit breakers				All Ma break	asterpac ers	a circuit	
4-position switch							
Automatic operation							
Forced operation on "Normal" source	e						
Forced operation on "Replacement"	source						
Stop (both "Normal" and "Replacem	ent" sources of	f)					
Automatic operation							
Monitoring of the "Normal" source an	nd automatic tr	ansfer					
Generator set startup control							
Delayed shutdown (adjustable) of ge							
Load shedding and reconnection of							
Transfer to the "Replacement" source of the "Normal" phase is absent	e if one of the	ohases				•	
Test							
By opening the P25M circuit breaker	supplying the	controll	or				
By pressing the test button on the fro				-			
Indications		oliei				-	
Circuit breaker status indication on t	he front of the (controlle	۹r.			•	
on, off, fault trip		Jointi Ulle	<i>.</i>	-		-	
Automatic mode indicating contact							
Other functions							
Selection of type of "Normal" source (s	single-phase or	three-pl	nase) (1)				
Voluntary transfer to "Replacement"			,				
management commands)							
During peak-tariff periods (energy m						-	
forced operation on "Normal" source	if "Replaceme	nt" sour	ce not				
operational Additional contact (not part of contro	llor)			_		_	
Transfer to "Replacement" source of		closed	(e a	-		-	
used to test the frequency of UR).			(5.				
Setting of maximum startup time for	the replaceme	nt sourc	e				
Options							
Communication option							
Power supply							
Control voltages ⁽²⁾	110 V			•		•	
	220 to 240 V			-		-	
	380 to 415 V		lz	-		-	
On emotion with we also be date	and 440 V 60) HZ					
Operating thresholds	0.0511.4		0.711.				
Undervoltage	0.35 Un ≤ vo	•		•		-	
Phase failure	0.5 Un ≤ volt	0	.7 Un	_			
Voltage presence	voltage ≥ 0.8						
IP degree of protection (EN 6 external mechanical impacts		t degre	e or p	rotecti	on aga	anst	
Front	IP40			-		-	
Side	IP40 IP30			-		-	
Connectors	IP20			-		-	
Front	IK07			-		-	
Characteristics of output cor		olt-fre	e cont	acts		-	
Rated thermal current (A)	8		2.2011				
Minimum load	10 mA at 12	V					
Output contacts:							
Position of the Auto/Stop switch							
Load shedding and reconnection or	der						
Generator set start order.							
		AC				DC	
Utilisation category (IEC 947-5-1)		AC12	AC13	AC14	AC15	DC12	DC13
Operational current (A)	24 V	8	7	5	5	8	2
	48 V	8	7	5	5	2	-
	110 V	8	6	4	4	0.6	-
	220/240 V	8	6	4	3	-	-
	250 V	-	-	-	-	0.4	-
	380/415 V	5	-	-	-	-	-
	440 V	4	-	-	-	-	-

For example, 220 V single-phase or 220 V three-phase.
 The controller is powered by the ACP control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

660/690 V

Schneider Gelectric

A-55

Masterpact NW with corrosion protection 800-4000 A

PB106363A5C

Masterpact NW circuit breakers with corrosion protection are designed for use in industrial environments with high concentrations of sulphur compounds. Examples include paper mills, oil refineries, steel works and water treatment plants, all of which produce large quantities of sulphur dioxide (SO2) or hydrogen sulphate (H2S). Under such conditions, silver-plated parts rapidly turn black due to the formation of silver sulphate (AgS) on the surface, an insulating material that can lead to abnormal temperature rise in electrical contacts. This phenomenon can have serious consequences on all equipment installed inside a switchboard. Circuit breakers used in such environments generally require frequent maintenance and therefore a large number of replacement devices on the site. Furthermore, problems are often encountered even with intensive maintenance. Masterpact NW circuit breakers with corrosion protection receive special surface treatment on all parts exposed to corrosion and critical with respect to electrical continuity. In this way, the availability of electrical power and operating safety are ensured without special maintenance for the following environmental condition classes as defined by standard IEC 721-3-3:

- 3C3 for H2S (concentrations from 2.1 to 7.1 x 10⁻⁶)
- 3C4 for SO2 (concentrations from 4.8 to 14.8 x 10⁻⁶).

The Masterpact NW range of power circuit breakers with corrosion protection offers the following features:

- rated current from 800 A to 4000 A
- 3 and 4-pole models
- drawout circuit breaker
- operational voltage up to 690 V AC
- Ics breaking capacity of 100 kA at 220/415 V AC
- reverse feed possible
- stored-energy mechanism for instantaneous closing (source coupling).
- 3 types of RMS electronic protection
- adjustable long-time settings from 0.4 to 1 In, with fine adjustment via local keypad or remote supervisor
- electronic functions dedicated to energy management and power-quality analysis.

The Masterpact NW range complies with the main standards and certifications:

- IEC 60947-1 and 60947-2
- IEC 68230 (damp heat) and IEC 68252 severity level 2 (salt mist)
- IEC 60068-2-42 and IEC 60068-2-43 for corrosive environments:
- □ SO2 : tested to IEC 60068-2-42 in a 3C4 environment as defined by
- IEC 60721-3-3

□ H2S: tested to IEC 60068-2-43 in a 3C3 environment as defined IEC 60721-3-3.

A complete range of electrical accessories and auxiliaries:

- motor mechanism (MCH)
- undervoltage release (MN, MNR)
- shunt trip unit (MX)
- closing release (XF)
- auxiliary contacts (OF)
- low-level indication contacts (SDE, PF, CD, CT, CE and EF)
- electrical closing button (BPFE)
- Iocking by padlocks and/or keylocks.
- source-changeover systems for 2 or 3 devices

Maximum safety

The Masterpact NW range with corrosion protection offers the same safety features as the standard version:

- positive contact indication
- high impulse withstand voltage (12 kV)
- suitable for isolation in compliance with IEC 60947-2, as indicated by the disconnector symbol on the front face: →

Front face insulation class 2, allowing class 2 installations with breaker control from outside.

Characteristics according to IEC 60 947-2											
				NW08H2	NW10H2	NW12H2	NW16H2	NW20H2	NW25H2	NW32H2	NW40bH2
Number of poles				3, 4							
Rated insulation voltage		Ui (V)		1000							
Rated operational voltage		Ue (V)		690							
Closing time (ms)				< 50							
Rated current	In (A)	Vertical connection	40 °C	800	1000	1250	1600	2000	2500	3200	4000
			45 °C	800	1000	1250	1600	2000	2500	3200	4000
			50 °C	800	1000	1250	1600	2000	2500	3200	4000
			55 °C	800	1000	1250	1550	1900	2500	3150	4000
			60 °C	800	1000	1250	1500	1800	2500	3000	4000
		Horizontal connection	40 °C	800	1000	1250	1600	2000	2500	-	4000
			45 °C	800	1000	1250	1550	1900	2500	-	4000
			50 °C	800	1000	1250	1500	1800	2500	-	4000
			55 °C	800	1000	1250	1450	1700	2400	-	4000
			60 °C	800	1000	1250	1400	1600	2300	-	3900
4 th pole rating				800	1000	1250	1600	2000	2500	3200	4000
Rated utlimate breaking capacity	lcu (kArms)CA 50/60 Hz		220/440 V	100	100	100	100	100	100	100	100
			690 V	85	85	85	85	85	85	85	85
Rated service breaking capacity	Ics = Icu x		100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	
Break time (ms)			Total maxi	25 to 30 v	vith no inte	ntional del	ay				

Masterpact NW08 to NW32 with corrosion protection.

Dimensions and connection

Masterpact NW40b with corrosion protection.

Drawout device	L (mm)		H (mm)	P (mm)	
	3P	4P			
800 to 3200 A	441	556	439	395	
4000 A	786	1016	479	395	

Connections

Power circuits:

Power circuits.
 vertical rear connections as standard
 possibility of conversion to horizontal rear connections on-site by rotating the connectors, except for NW32, available with vertical rear connections only.
 Auxiliaries connected to terminal block on circuit breaker front face.

Earthing switch Masterpact

The Masterpact Earthing Switch can be racked into any compatible Masterpact NW chassis in place of a Masterpact circuit breaker. It is used to interconnect and earth the phase and neutral conductors of an electrical installation to ensure the safety of personnel during servicing. It can be locked in earthed position.

Main characteristic

Main characteristics	
Rated insulation voltage	1000 V
Rated operational voltage	690 V
Rated current	800 to 4000 A
Latching capacity	135 kA peak
Rated short-time withstand	60 kA/1s
current	50 kA/3s
Compatibility	Compatible with drawout NW08 to NW40 circuit breakers, types N1/H1/NA/HA, 3-pole and 4-pole rear connected versions
Remote indication	12 ON/OFF indication contacts that can be used according to the chassis auxiliary wiring

The Earthing Switch is compatible with Masterpact NW08 to NW40 type N1, H1, NA and HA circuit breakers in both 3-pole and 4-pole versions. It has two parts: ■ a chassis earthing kit for installation on the Masterpact NW chassis. Two different versions are available for 3-pole and 4-pole chassis.

■ the Earthing Switch itself, which is a specific Masterpact NW device that can be racked into any chassis equipped with an earthing kit, in place of the circuit breaker. Two versions are available (3-pole and 4-pole).

An earthing kit must be installed on the chassis of each circuit breaker protecting a circuit that may require earthing while work is being carried out. However, a single earthing switch is often sufficient for an entire installation if only one circuit is to be serviced at any given time.

The standard Earthing Switch comes with the short-circuit bar installed across the bottom (downstream) connections for earthing of the upstream portion of the circuit. The user can easily move the short-circuit bar to the top connections if the downstream portion of the circuit needs to be earthed.

DR125556

Earthing switch (rear view)

(front view)

Earthing switch

With short-circuit bar on the top connections.

With short-circuit bar on the bottom connections.

Phase short-circuit bar

Locking in earthed position by 3 padlocks

Phase connections

The standard Earthing Switch can be locked in earthed position by one to three padlocks as long as the following conditions are satisfied:

■ the Earthing Switch must be in "connected" position in a chassis equipped with an earthing kit

- the Earthing Switch must be in "ON" position.
- Under these conditions, the installation is earthed.

When the Earthing Switch is locked in earthed position:

- it cannot be moved to "disconnected" position (a shutter prevents insertion of the racking handle)
- it cannot be turned "OFF" (a shutter prevents access to the "OFF" pushbutton).

Typical applications The earthing switch is used to protect maintenance personnel working on an installation against the risk of accidental connection of a parallel source or energisation by reverse power. Protection is provided by earthing the part of the installation that is to be worked on.

Application n°1

Earthing of one section of a coupled busbar arrangement B120865 Α

When working on section **B**, the bus coupler is normally open. To protect personnel in the event of accidental closing of this device, an earthing switch with the upstream terminals earthed is installed in place of the circuit breaker at B. In this way section B will remain at earth potential under all circumstances and the personnel can work in complete safety.

Application n°2

When working on outgoer C, installation of an earthing switch with the upstream terminals earthed (in place of the circuit breaker at C) ensures complete safety even if all the other devices on the installation are closed.

Application n°3

When working on an MV/LV transformer, upstream earthing is carried out by means of the usual medium voltage and high voltage procedures. Installation of an earthing switch with the downstream terminals earthed (in place of the circuit breaker at B) maintains the part of the installation between the upstream MV circuit breaker and the downstream LV circuit breaker at earth potential. In this way, the personnel can work in complete safety even if the rest of the installation is energised.

Earthing switch Masterpact

207E2510.indd

Schneider Gelectric

Remote-operated source-changeover systems Mechanical interlocking

Compact NS or Masterpact NT/NW

Mechanical interlocking of two or three devices is used to create a remote-operated source-changeover system. A basic mechanical interlocking system enhances the reliability of system operation.

Interlocking of two electrically-operated Compact NS circuit breakers using a base plate.

Interlocking of two Masterpact NT or NW circuit breakers using connecting rods.

Interlocking of two Compact NS100 to 630 devices using a base plate

A base plate designed for two Compact circuit breakers can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the breakers. Access to the circuit breaker controls and trip units is conserved. Circuit breakers must be fixed or plug-in versions, with or without earth-leakage protection or measurement modules. The base plate and the circuit breakers are supplied separately.

- Base plate for Compact NS100 to 250 devices
- This base plate is intended for two Compact NS100 to 250 devices.
- Base plate for Compact NS400 to 630 devices

This base plate is intended for two Compact NS400 to 630 devices. It may also be used, without any modifications, to interlock a fixed Compact NS100 to 250 with a Compact NS400 or 630 device.

An adapter kit is required for plug-in versions of the Compact NS100 to 250 devices. Compact NS100 to 250 devices, in both fixed and plug-in versions, may be equipped with spreaders.

Possible combinations of "Normal" and "Replacement" Compact source circuit breakers

"Normal N"	"Replacer	nent" R			
	NS100	NS160	NS250	NS400	NS630
NS100		<u></u>	•		
Ratings 12,5 100 A	=		-		•
NS160					
Ratings 12,5160 A	-	-	-	-	-
NS250					
Ratings 12,5250 A	-	-	-	-	•
NS400					
Ratings 160 400 A	=		-		•
NS630					
Ratings 250 630 A	=		-		•

Interlocking of two Compact NS630b to 1600 or two Masterpact NT and NW devices using connecting rods

The two devices must be mounted one above the other (either 2 fixed or 2 withdrawable/drawout devices).

Combinations are possible between Compact NS630b to NS1600 devices and between Masterpact NT and Masterpact NW devices.

Installation

This function requires:

an adaptation fixture on the right side of each circuit breaker or switchdisconnector

■ a set of connecting rods with no-slip adjustments.

The adaptation fixtures, connecting rods and circuit breakers or switchdisconnectors are supplied separately, ready for assembly by the customer. The maximum vertical distance between the fixing planes is 900 mm.

Possible combinations of "Normal" and "Replacement" source circuit breakers

"Normal N"	"Replacemen	nt" R		
	NS630b to NS1600	NT06 to NT16	NW08 to NW40	NW40b to NW63
NS630b to NS1600				-
Ratings 250 1600 A	-			
NT06 to NT16				
Ratings 250 1600 A		-	-	-
NW08 to NW40				
Ratings 320 4000 A		-	-	-
NW40b to NW63				
Ratings 4000 6300 A		-	-	-

Mechanical interlocking Compact NS or Masterpact NT/NW

Interlocking of two Masterpact circuit breakers using cables.

Interlocking of two Compact NS630b to 1600 or two Masterpact NT/NW or up to three Masterpact NW devices using cables

For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.

The interlocked devices may be fixed or drawout, three-pole or four-pole, and have different ratings and sizes.

Interlocking between two devices (Compact NS630b to 1600 or Masterpact NT and NW) $% \left({{\left({{{\rm{NN}}} \right)}_{\rm{A}}} \right)$

This function requires:

- an adaptation fixture on the right side of each device
- a set of cables with no-slip adjustments.

The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm.

Interlocking between three devices (Masterpact NW only) This function requires:

a specific adaptation fixture for each type of interlocking, installed on the right side of each device

two or three sets of cables with no-slip adjustments.

The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm. Installation

Installatio

The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.

Installation conditions for cable interlocking systems:

- cable length: 2.5 m
- radius of curvature: 100 mm
- maximum number of curves: 3.

Possible combinations of "Normal" and "Replacement" source circuit breakers

"Normal N"	"Replacemer	nt" R		
	NS630b to NS1600	NT06 to NT16	NW08 to NW40	NW40b to NW63
NS630b to NS1600				
Ratings 250 1600 A	-			
NT06 to NT16				
Ratings 250 1600 A		-	-	-
NW08 to NW40				
Ratings 320 4000 A		-	-	-
NW40b to NW63				
Ratings 4000 6300 A		-	-	-

It is not possible to combine Compact NS630b to 1600 and Masterpact NT (or Masterpact NW) devices.

All combinations of two Masterpact NT and Masterpact NW devices are possible, whatever the rating or size of the devices.

Possible combinations of three device

"Normal N"	"Replaceme	ent" R		
	NS630b to NS1600	NT06 to NT16	NW08 to NW40	NW40b to NW63
NS630b to NS1600		*	•	*
Ratings 250 1600 A				
NT06 to NT16				
Ratings 250 1600 A				
NW08 to NW40		•		•
Ratings 320 4000 A			-	-
NW40b to NW63				
Ratings 4000 6300 A			-	=

Only Masterpact NW may be used for three-device combinations.

Types of mechanical interlocking and combinations

See page A-4 to page A-9.

Remote-operated source-changeover systems General characteristics

Compact NS

D					
Range			Compact		
Types of devices			NS100 to NS250	NS400 to NS630	
Types of circuit b			N/H/L	N/H/L	
Switch-disconne			NA	NA	
Mixing possibiliti	ies		all devices	all devices	
			NS100 to NS250	NS100 to NS630	
			N/H/L/NA	N/H/L/NA	
			fixed or plug-in	fixed or plug-in	
Electrical ch	aracteristics				
Rating			15 to 250 A	15 to 630 A	
Insulating voltag			750	750	
Positive break in					
Number of poles		ame number of poles)	3, 4		
Electrical durabi			See page A-66		
Operating tempe			-25 °C to +70 °C (50 °C for 440 V - 60		
Control char				112)	
Control voltage	acteristics	AC	48 to 415 V - 50/60 Hz		
Control voltage		A0	440 V - 60 Hz		
		DC	24-250 V		
Maximum consu	Imption	AC	500 VA	500 VA	
	mpuon	DC	500 W	500 W	
Minimum switch	ing time		800 ms	800 ms	
Interlocking	J				
Mechanical (see	e page A-62)				
Electrical	by diagram (wi	ithout IVE)			
	with IVE unit	,			
		cts used by circuit breaker	1 OF + 1 SDE	1 OF + 1 SDE	
Protection a	nd measureme	-			
Overload protect	tion	long time	•		
Short-circuit prof	tection	short time			
		instantaneous	•	•	
Earth-fault prote	ction				
Zone selective in	nterlocking (ZSI)			•	
Earth-leakage p	rotection	by Vigi module	•	•	
		by control unit			
		by add-on Vigirex relay			
Current measure					
	icy, power measur				
	nd control auxi				
Voltage releases	ry indication conta	MX shunt	OF + SD (+ SDV)	2 OF + SD (+ SDV)	
vollage releases	5		•		
Voltago procono	o indicator	MN undervoltage			
Voltage presenc			-		
Ammeter module			•		
Insulation monitor					
	ngeover contro	llor	-	-	
	replacement sour		BA controller		
With standby ge			■ UA controller		
	munication via	abus			
Device status in			•	•	
Device remote c					
Transmission of					
		tection status and alarms			
Transmission of					
Installation a	and connection	1			
Fixed front conn					
Fixed rear conne	ected		 (long rear connections) 	 (long rear connections) 	
Withdrawable, p	lug-in or drawout		 (plug-in on base) 	■ (plug-in on base)	
	and connection	n accessories			
Downstream cou	upling accessory				
Bare-cable conn	nectors				·
Terminal extensi	ions				
Terminal shields	and inter-phase b	parriers			
Locking		by padlock	•		
		by keylock	8		
Front panel escu	utcheons				

General characteristics Compact NS, Masterpact NT/NW

Compact	Masterpact	
NS630b to NS1600	NT06 to 16	NW08 to 63
N/H/L	N1/H1/H2/H3/L1	N1/H1/H2/H3/L1
NA	NA/HA/HF	NA/HA/HF
all devices	all mixing possibilities	all mixing possibilities
NS630b to 1600	(fixed, drawout or fixed + drawout)	(fixed, drawout or fixed + drawou
N/H/L/NA	N1/H1/H2/H3/L1/NA/HA/HF	N1/H1/H2/H3/L1/NA/HA/HF
fixed or plug-in		
250 to 1600 A	600 to 1600 A	800 to 6300 A
750	1000	1000
750		
	■ 3, 4	
	3,4	
See page A-66		
	–25 °C to +70 °C (50 °C for 440 V - 60 H	z)
	48 to 415 V - 50/60 Hz	
	440 V - 60 Hz	
	24-250 V	
180 VA	180 VA	180 VA
180 W	180 W	180 W
800 ms	800 ms	800 ms
•	•	
•	only with UA or BA	only with UA or BA
1 OF + 1 CE (+ SDE)	1 OF + 1 CE + 1 PF	1 OF + 1 CE + 1 PF
-	•	
	_	
_	_	_
•	•	•
	•	
•	•	•
	•	•
2 OF + SD	2 OF + SD	2 OF + SD
•	•	•
	■	
	•	
	BA controller	
	 UA controller 	
•	•	•
 (vertical or barizontal) 	 (vertical or horizontal) 	 (vertical or horizontal)
 (vertical or horizontal) 	■ (drawout)	■ (drawout)
(venical of honzontal)		
 ■ (drawout) ■ 		
 (drawout) 		
 ■ (drawout) ■ 		

Remote-operated source-changeover systems

Mech. and elect. durability Interpact INS, Compact NS, Masterpact NT/NW

			Interpa	ct INS s	witch-di	sconneo	ctors			
			INS250	0-100	INS250	0-160	INS25	0-200	INS25	D
Number of poles			3, 4		3, 4		3, 4		3, 4	
Conventional thermal current (A)	lth	at 60 °C	100		160		200		250	
Rated operational current (A)	le	Electrical AC, 50/60 Hz	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
		440-480 V	100	100	160	160	200	200	250	250
		660-690 V	100	100	160	160	200	200	250	250
Durability (category A)		Mechanical	15000		15000		15000		15000	
$(O_N - C_R - O_R - C_N \text{ cycles})$		Electrical AC, 50/60 Hz	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
		440-480 V	1500	1500	1500	1500	1500	1500	1500	1500
		660-690 V	1500	1500	1500	1500	1500	1500	1500	1500

			INS320)	INS400)	INS500)	INS630)
Number of poles			3, 4		3, 4		3, 4		3, 4	
Conventional thermal current (A)	lth	at 60 °C	320		400		500		630	
Rated operational current (A)	le	Electrical AC, 50/60 Hz	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
		440-480 V	320	320	400	400	500	500	630	630
		660-690 V	320	320	400	400	500	500	630	630
Durability (category A)		Mechanical	10000		10000		10000		10000	
$(O_N - C_R - O_R - C_N \text{ cycles})$		Electrical AC, 50/60 Hz	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
		440-480 V	1500	1500	1500	1500	1500	1500	1500	1500
		660-690 V	1500	1500	1500	1500	1500	1500	1500	1500

Compact NS100-NS1600

	NS100-250	NS400-630	NS630b- NS1600
Number of poles	3, 4	3, 4	3, 4
Rated current In (A)	100 to 250	400 to 630	630 to 1600
Mechanical durability $(O_N - C_R - O_R - C_N \text{ cycles})$	10000	8000	8000
Electrical durability at In $(O_N - C_R - O_R - C_N \text{ cycles})$ for $\leq 440 \text{ V}$ and 480 V NEMA ⁽²⁾	10000	3000	2000
Electrical durability at In (O_N - C_R - O_R - C_N cycles) for U = 500 V to 690 V ⁽²⁾		1500	1500

Masterpact NT06-NT16/NW08-NW63 (1)

		NT12- NT16	NW08- NW16	NW20	NW25- NW40	NW50- NW63
Number of poles	3, 4	3, 4	3, 4	3, 4	3, 4	3, 4
Rated current In (A)	630 to 1600	1250 to 1600	800 to 1600	2000	2500 to 4000	5000 to 6300
Mechanical durability $(O_N - C_R - O_R - C_N \text{ cycles})$	8000	8000	10000	10000	10000	5000
Electrical durability at In $(O_N - C_R - O_R - C_N \text{ cycles})$ for $\leq 440 \text{ V}$ and 480 V NEMA ⁽²⁾	6000	6000 NT16: 3000	10000	8000	5000	1500
Electrical durability at In $(O_N - C_R - O_R - C_N \text{ cycles})$ for U = 500 V to 690 V ⁽²⁾	3000	2000 NT16: 1000	10000	6000	2500	1500

Mechanical and electrical durability not applicable to Masterpact H3 and L versions.
 Electrical durability tests carried out with a power factor of 0.8 as per IEC 947-2.

Note:

ON: opening of Normal source

CR: closing of Replacement source OR: opening of Replacement source CN: closing of Normal source

Remote-operated

Connection and insulation accessories for Compact NS and INS \leq 630 A

Downstream coupling accessory

This accessory simplifies connection to bars and cables with lugs. It may be used to couple two circuit breakers (Compact NS100 to 630) or switchdisconnectors (Interpact INS/INV100 to 630) of the same size. Pitch between outgoing terminals:

- Interpact INS250 and INV100 to 250: 35 mm
- Interpact INS/INV320 to 630: 52.5 mm
- Compact NS100 to 250: 35 mm
- Compact NS400 to 630: 52.5 mm.

For Compact NS circuit breakers, the downstream coupling accessory can be used only with **fixed versions**.

Connection and insulation accessories

The coupling accessory can be fitted with the same connection and insulation accessories as the circuit breakers and switch-disconnectors.

Possible uses	Downstream	n coupling
	Possible	Outgoing pitch (mm)
Manual source-changeover systems		
INS250 (100 to 250 A) with rotary handle	•	35
NS100/250 with rotary handle		35
NS100/250 on base plate with toggle control		35
INS400/630 (320 to 630 A) with rotary handle		52.5
NS400/630 with rotary handle		52.5
NS400/630 on base plate with toggle control	•	52.5
Complete source-changeover assembly		
INS250 (100 to 250 A)	•	35
INS400/630 (320 to 630 A)		52.5
Remote-operated source-changeover system	s	
NS100/250	•	35
NS400/630		52.5

Remote-operated source-changeover systems Electrical interlocking

Electrical interlocking is used with the mechanical interlocking system.

An automatic controller may be added to take into account information from the distribution system.

Moreover, the relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands. Electrical interlocking is carried out by an electrical control device. For Compact NS up to 630 A, electrical interlocking is implemented by the IVE unit

integrating control circuits and an external terminal block in accordance with the pages C-2 to C-5 of the chapter "Electric diagrams" of this catalogue. The integrated control circuits implement the time delays required for correct source transfer.

For Compact NS630b to 1600 and Masterpact, this function can be implemented in one of two ways:

using the IVE unit

■ by an electrician based on the diagrams in accordance with the pages C-9 to C-19 of the chapter "Electric diagrams" of this catalogue..

Characteristics of the IVE unit

- external connection terminal block:
- inputs: circuit breaker control signals

□ outputs: status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers

■ 2 connectors for the two "Normal" and "Replacement" source circuit breakers:

- status of the OF contacts on each circuit breaker (ON or OFF)

- status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers

- $\hfill\square$ outputs: power supply for operating mechanisms
- control voltage:
- □ 24 to 250 V DC

 $\hfill\square$ 48 to 415 V 50/60 Hz - 440 V 60 Hz.

The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.

Necessary equipment

For Compact NS100 to 630, each circuit breaker must be equipped with:

- a motor mechanism
- an OF contact
- an SDE contact.

The components are supplied ready for assembly and the circuit breakers prewired. The prewiring must not be modified.

For Compact NS630b to 1600, each circuit breaker must be equipped with:

- a motor mechanism
- an available OF contact
- a CE connected-position contact (carriage switch) on withdrawable circuit breakers
 an SDE contact.

For Masterpact NT and NW, each circuit breaker must be equipped with:

- a remote-operation system made up of:
- $\hfill\square$ MCH gear motor
- $\hfill\square$ MX or MN opening release
- XF closing release
- $\hfill\square$ PF "ready to close" contact
- an available OF contact

 one to three CE connected-position contacts (carriage switches) on drawout circuit breakers (depending on the installation).

Compact NS, Masterpact NT and NW Types of mechanical interlocking	Possil	ole combinations	Typical electrical diagrams	Diagram no
2 devices	1 0001		Typical clocklical diagramo	Diagramm
.TT.	QN	QR	Compact NS100 to 630:	
,±QN ,±QR \	0	0	 electrical interlocking without emergency power off (EPO) auxiliaries: 	51201177
$ \overline{\nabla}$	1	0	□ with EPO by MN	51201177
	0	1		
\checkmark			□ with EPO by MX Compact NS630b to 1600:	51201179
			 electrical interlocking with lockout after fault: 	
			 permanent replacement source (without IVE) 	51201180
			□ with EPO by MX (without IVE)	51201181
			□ with EPO by MN (without IVE)	51201182
			permanent replacement source (with IVE)	51201183
			with EPO by MX (with IVE)	51201184
			with EPO by MN (with IVE)	51201185
			automatic control without lockout after fault:	
			□ permanent replacement source (without IVE)	
			□ engine generator set (without IVE)	51201187
			Masterpact NT and NW:	
			 electrical interlocking with lockout after fault: permanent replacement source (without IVE) 	51201139
			□ permanent replacement source (without IVE) □ with EPO by MX (without IVE)	51201139
			□ with EPO by MN (without IVE)	51201140
			□ permanent replacement source (with IVE)	51201142
			□ with EPO by MX (with IVE)	51201143
			□ with EPO by MN (with IVE)	51201144
			automatic control without lockout after fault:	
			□ permanent replacement source (without IVE)	51156226
			engine generator set (without IVE)	51156227
			automatic control with lockout after fault:	
			□ permanent replacement source (with IVE)	51156904
			engine generator set (with IVE)	51156905
			BAULA controller (with IVE)	E44 EC002
Mastorpact NW only			BA/UA controller (with IVE)	51156903
Masterpact NW only Types of mechanical interlocking	Possil	ole combinations		
Masterpact NW only Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source	Possil	ole combinations	BA/UA controller (with IVE) Typical electrical diagrams	51156903 Diagram r
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source	QN1	QN2 QR	Typical electrical diagrams electrical interlocking:	
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source	QN1 0	QN2 QR 0 0	Typical electrical diagrams electrical interlocking: without lockout after fault	Diagram r 51156906
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source	QN1 0 1	QN2 QR 0 0 1 0	Typical electrical diagrams electrical interlocking:	Diagram r
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source	QN1 0	QN2 QR 0 0	Typical electrical diagrams electrical interlocking: without lockout after fault	Diagram r 51156906
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source	QN1 0 1	QN2 QR 0 0 1 0	Typical electrical diagrams electrical interlocking: without lockout after fault	Diagram r 51156906
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source \downarrow QN1 \downarrow QN2 \downarrow QN2 \downarrow QR	QN1 0 1 0	QN2 QR 0 0 1 0 0 1	Typical electrical diagrams electrical interlocking: without lockout after fault	Diagram r 51156906
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source Y Y	QN1 0 1 0	QN2 QR 0 0 1 0 0 1	Typical electrical diagrams electrical interlocking: without lockout after fault	Diagram r 51156906
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source Image: Constraint of the second secon	QN1 0 1 0 with sour	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault 	Diagram 1 51156906
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source \downarrow QN1 \downarrow QN2 \downarrow QR \downarrow QR	QN1 0 1 0 with sour	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: 	Diagram 1 51156906 51156907
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source Image: Constraint of the second secon	QN1 0 1 0 with sour QN1 0 1 0	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) 	Diagram 1 51156906 51156907 51156908
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source Image: Constraint of the second secon	QN1 0 1 0 with sour QN1 0 1 0 1	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) 	Diagram 1 51156906 51156907 51156908
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source Image: Constraint of the second secon	QN1 0 1 0 with sour QN1 0 1 0	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) 	Diagram 1 51156906 51156907 51156908
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\downarrow QN1$ $\downarrow QN2$ $\downarrow QR$ 3 devices: 2 "Normal" sources and 1 "Replacement" source with a source of the s	QN1 0 1 0 with sour QN1 0 1 0 1	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) 	Diagram 1 51156906 51156907 51156908
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source Image: Constraint of the second secon	QN1 0 1 0 0 QN1 0 1 0 1 0	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) 	Diagram 1 51156906 51156907 51156908
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} & & \\ & &$	QN1 0 1 0 QN1 0 1 0 1 0 0 2 0 0 2 0 2 0 0 2 0	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: 	Diagram 1 51156906 51156907 51156908 51156909
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\downarrow QN1$ $\downarrow QN2$ $\downarrow QR$ 3 devices: 2 "Normal" sources and 1 "Replacement" source with a source of the s	QN1 0 1 0 0 QN1 0 1 0 1 0	QN2 QR 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) 	Diagram 1 51156906 51156907 51156908
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} & & \\ & &$	QN1 0 1 0 QN1 0 1 0 1 0 1 0 0 2 0 0 0 0 0	QN2 QR 0 0 1 0 0 1 rce selection QN2 QR 0 0 QN2 QR 0 0 0 1 1 0 1 0 1 0 2 QS3 0 0	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault without lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault 	Diagram r 51156906 51156907 51156908 51156909 51156910
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} & & \\ & &$	QN1 0 1 0 0 2 0 1 0 1 0 0 1 0 1 0 1 0 1	QN2 QR 0 0 1 0 0 1 rce selection QN2 QR 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault without lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault 	Diagram r 51156906 51156907 51156908 51156909 51156910
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} & & \\ & &$	QN1 0 1 0 2 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0	QN2 QR 0 0 1 0 0 1 rce selection QN2 QR 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault without lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} & & \\ & &$	QN1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0	QN2 QR 0 0 1 0 0 1 Presentation QN2 QR QN0 Q QN2 QR Q0 0 QN1 Q QN2 QR QN3 Q QN4 Q QN5 Q QN5 <t< td=""><td> Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault without lockout after fault </td><td>Diagram 1 51156906 51156907 51156908 51156909 51156910</td></t<>	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault without lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source \downarrow QN1 \downarrow QN2 \downarrow QR 3 devices: 2 "Normal" sources and 1 "Replacement" source with a source of the s	QN1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0	QN2 QR 0 0 1 0 0 1 rce selection	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault with lockout after fault electrical interlocking: with lockout after fault electrical interlocking: with lockout after fault electrical interlocking: with lockout after fault electrical interlocking: electrical interlocking: 	Diagram 1 51156906 51156907 51156908 51156909 51156910 51156911
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source \downarrow QN1 \downarrow QN2 \downarrow QR 3 devices: 2 "Normal" sources and 1 "Replacement" source with the source of the	QN1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0	QN2 QR 0 0 1 0 0 1 rce selection QN2 QR 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault with lockout after fault with lockout after fault electrical interlocking: with lockout after fault with lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910 51156911 51156912
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source \downarrow QN1 \downarrow QN2 \downarrow QR 3 devices: 2 "Normal" sources and 1 "Replacement" source with a source of the s	QN1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0	QN2 QR 0 0 1 0 0 1 rce selection QN2 QR 0 0 QN2 QR 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault without lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault with lockout after fault with lockout after fault with lockout after fault with lockout after fault without lockout after fault without lockout after fault without lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910 51156911 51156911 51156912 51156913
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} QN1 \\ \hline QN2 \\ \hline QN2 \\ \hline QR \\ \hline QR \\ \hline QR \\ \hline QN1 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QQ2 \\ $	QN1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1	QN2 QR 0 0 1 0 0 1 Cree selection QR QN2 QR 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault with lockout after fault with lockout after fault electrical interlocking: with lockout after fault with lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910 51156911 51156912
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} QN1 \\ \hline QN2 \\ \hline QN2 \\ \hline QR \\ \hline QR \\ \hline QR \\ \hline QN1 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QQ2 \\ $	QN1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0	QN2 QR 0 0 1 0 0 1 Cree selection QR QN2 QR 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault without lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) without lockout after fault without lockout after fault with lockout after fault with lockout after fault with lockout after fault without lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910 51156911 51156911
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source $\begin{array}{c} QN1 \\ \hline QN2 \\ \hline QN2 \\ \hline QR \\ \hline QR \\ \hline QR \\ \hline QN1 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QN2 \\ \hline QN1 \\ \hline QN2 \\ \hline QQ2 \\ $	QN1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0	QN2 QR 0 0 1 0 0 1 0 1 0 1 0 1 QN2 QR 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault with lockout after fault with lockout after fault with lockout after fault without lockout after fault without lockout after fault automatic control with lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910 51156911 51156911
Types of mechanical interlocking 3 devices: 2 "Normal" sources and 1 "Replacement" source \downarrow QN1 \downarrow QN2 \downarrow QR 3 devices: 2 "Normal" sources and 1 "Replacement" source with a source of the s	QN1 0 1 0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	QN2 QR 0 0 1 0 0 1 0 1 0 1 0 1 QN2 QR 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0	 Typical electrical diagrams electrical interlocking: without lockout after fault with lockout after fault automatic control with engine generator set: without lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) with lockout after fault (with MN) electrical interlocking: without lockout after fault with lockout after fault with lockout after fault with lockout after fault without lockout after fault without lockout after fault automatic control with lockout after fault 	Diagram 1 51156906 51156907 51156908 51156909 51156910 51156911 51156911

Associated controllers

Controller selection

system with an integrated BA	Controller				BA		UA	
or UA automatic controller, it is possible to	Compatible circuit breakers					mpact l erpact ci	VS and rcuit bre	akers
automatically control source transfer according to user-	4-position switch							
selected sequences.	Automatic operation							
hese controllers can be used on source-changeover	Forced operation on "Normal" source							
ystems comprising 2 circuit breakers.	Forced operation on "Replacement"							
for source-changeover systems comprising 3 circuit	Stop (both "Normal" and "Replacem	ent" sources off))		•		•	
reakers, the automatic control diagram must be repared by the installer as a complement to to	Automatic operation							
liagrams provided in the "electrical diagrams" section	Monitoring of the "Normal" source a	nd automatic tra	nster				-	
f this catalogue.	· · · · · · · · · · · · · · · · · · ·	Generator set startup control Delayed shutdown (adjustable) of generator set						
, in the second s	Load shedding and reconnection of		uits				-	
	Transfer to the "Replacement" source of the "Normal" phase is absent Test	· · ·					•	
	By opening the P25M circuit breake	r supplying the c	ontroller					
and the second sec	By pressing the test button on the free	ont of the control	ller					
Comment of the second s	Indications							
Superior B	Circuit breaker status indication on the front of the controller: on, off, fault trip				•		•	
	Automatic mode indicating contact				•		•	
	Other functions Selection of type of "Normal" source						-	
	(single-phase or three-phase) (1)							
	Voluntary transfer to "Replacement" source (e.g. energy management commands)							
	During peak-tariff periods (energy management commands) forced operation on "Normal" sourceif "Replacement" source not operational						•	
	Additional contact (not part of contro Transfer to "Replacement" source o (e.g. used to test the frequency of U	nly if contact is c	losed.					
BA controller.	Setting of maximum startup time for		t source					
	Options							
Construction of the second sec	Communication option							
Cia de la compañía de	Power supply							
Seguritarian 18	Control voltages ⁽²⁾	110 V 220 to 240 V 5 380 to 415 V 5 and 440 V 60	50/60 Hz		:		:	
· · · · · · · · · · · · · · · · · · ·	Operating thresholds							
Second Se	Undervoltage	0.35 Un ≤ volt	aqe ≤ 0.7	7 Un				
	Phase failure	0.5 Un ≤ volta	-				•	
	Voltage presence	voltage≥0.85						
() - ()	IP degree of protection (EN 6		degree	of pr	otecti	on aga	ainst	
	external mechanical impacts	•						
	Front	IP40						
	Side Connectors	IP30			-		-	
UA controller.	Front	IP20 IK07			-		-	
		-	olt_free	conta	=		-	
IA controller.	Characteristics of output co			001111	1010)			
IA controller.	Characteristics of output con Rated thermal current (A)							
IA controller.	Characteristics of output con Rated thermal current (A) Minimum load	8 10 mA at 12 V						
A controller.	Rated thermal current (A)	8						
A controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch	8 10 mA at 12 V						
A controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch Load shedding and reconnection on	8 10 mA at 12 V						
A controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch	8 10 mA at 12 V der	,		•		•	
A controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch Load shedding and reconnection or Generator set start order.	8 10 mA at 12 V der	AC			A045	DC	
IA controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch Load shedding and reconnection on	8 10 mA at 12 V der 24 V 48 V	AC AC12 A 8 7 8 7	7		5 5	■ DC DC12 8 2	DC 2 -
IA controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch Load shedding and reconnection or Generator set start order. Utilisation category (IEC 947-5-1)	8 10 mA at 12 V der 24 V 48 V 110 V 220/240 V	AC AC12 <i>A</i> 8 7	, ,)	AC14 5	5	■ DC DC12 8 2 0.6 -	-
IA controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch Load shedding and reconnection or Generator set start order. Utilisation category (IEC 947-5-1)	8 10 mA at 12 V der 24 V 48 V 110 V 220/240 V 250 V	AC AC12 4 8 7 8 7 8 6 8 6 	, ,)	AC14 5 5 4	5 5 4	■ DC DC12 8 2	-
IA controller.	Rated thermal current (A) Minimum load Output contacts: Position of the Auto/Stop switch Load shedding and reconnection or Generator set start order. Utilisation category (IEC 947-5-1)	8 10 mA at 12 V der 24 V 48 V 110 V 220/240 V 250 V 380/415 V	AC AC12 A 8 7 8 7 8 6	, ,)	AC14 5 5 4	5 5 4	■ DC DC12 8 2 0.6 -	-

 (1) For example, 220 V single-phase or 220 V three-phase.
 (2) The controller is powered by the ACP control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Controller installation

ACP control plate.

ACP control plate

The control plate provides in a single unit:

■ protection for the BA or UA controller with two highly limiting P25M circuit breakers infinite breaking capacity) for power drawn from the AC source
 control of circuit-breaker ON and OFF functions via two relay contactors

connection of the circuit breakers to the BA or UA controller via a built-in terminal block.

Control voltages

- 110 V 50/60 Hz.
- 220 to 240 V 50/60 Hz.
- 380 to 415 V 50/60 Hz and 440 V 60 Hz.

The same voltage must be used for the ACP control plate, the controller and the circuit breaker operating mechanisms.

Installation

Connection between the ACP control plate and the IVE unit may use:

- wiring done by the installer
- prefabricated wiring (optional).

Installation of the BA and UA controllers

- The BA and UA controllers may be installed in one of two manners:
- directly mounted on the ACP control plate
- mounted on the front panel of the switchboard

■ if the length of the connection between the controller and the control plate (ACP) is less than or equal to 1 m, the connecting cable ref. 29368 can be ordered as an optional extra. Cables longer than 1 m, but not longer than 2 m will be the responsibility of the installer.

Mounting on the ACP control plate.

Mounting on the front panel of the switchboard.

Associated controllers

BA controller

The BA controller is used to create simple sourcechangeover systems that switch from one source to another depending on the presence of voltage UN on the "Normal" source.

It is generally used to manage two permanent sources and can control Compact NS and Masterpact NT/NW circuit breakers and switch-disconnectors.

Operating modes

A four-position switch may be used to select:

- automatic operation
- forced operation on the "Normal" source
- forced operation on the "Replacement" source
- stop (both "Normal" and "Replacement" sources off).

Setting the time delays

Time delays are set on the front of the controller.

t1. delay between detection that the "Normal" source has failed and the transmission of the order to open the "Normal" source circuit breaker (adjustable from 0.1 to 30 seconds)

t2. delay between detection that the "Normal" source has returned and the transmission of the order to open the "Replacement" source circuit breaker (adjustable from 0.1 to 240 seconds).

Circuit breaker commands and status indications

The status of the circuit breakers is indicated on the front of the controller. ON, OFF, fault.

A built-in terminal block may be used to connect the following input/output signals: ■ inputs:

voluntary order to transfer to source R (e.g. for special tariffs, etc.)

additional control contact (not part of the controller). Transfer to the "Replacement" source takes place only if the contact is closed (e.g. used to test the frequency of UR, etc.)

outputs:

indication of operation in automatic or stop mode via changeover contacts.

Test

It is possible to test the operation of the BA controller by turning OFF (opening) the P25M circuit breaker for the "Normal" source and thus simulating a failure of voltage U_N.

Front of the BA controller.

DB126266

BA controller operating sequences

A-73

schneider-electric.com

CAD software and tools

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.

Last but not least, they optimise use of our products while also complying with standards and proper procedures.

2011	and the second second	
	- 1000	Street Street Street
interest interest	- 18 E	and an other states of the state of the stat
-	100 10	The second second
and the state of t	Inc. Inc.	Distantion.
		Contradiction of the
a	1000	

Installation recommendations

Presentation Functions and characteristics	3 A-1
Operating conditions	B-2
Installation in switchboard	B-4
Door interlock catch	B-6
Control wiring	B-7
Power connection	B-8
Recommended busbars drilling	
Masterpact NT06 to NT16	B-10
Masterpact NW08 to NW63	B-11
Busbar sizing	B-12
Temperature derating Power dissipation and input / output resistance	B-14
Derating in switchboards	B-15
Substitution kit	
Fixed / drawout devices 800 to 3200 A	B-22
Dimensions and connection Electrical diagrams Additional characteristics Catalogue numbers and order form	C-1 D-1 E-1 F-1

Installation recommendations

Operating conditions

Masterpact circuit breakers have been tested for operation in industrial atmospheres. It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust.

Ambient temperature

Masterpact devices can operate under the following temperature conditions: ■ the electrical and mechanical characteristics are stipulated for an ambient temperature of -5 °C to +70 °C

- circuit-breaker closing is guaranteed down to -35 °C.
- Storage conditions are as follows:
- -40 to +85 °C for a Masterpact device without its control unit
- -25 °C to +85 °C for the control unit.

Extreme atmospheric conditions

Masterpact devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:

- IEC 60068-2-1: dry cold at -55 °C
- IEC 60068-2-2: dry heat at +85 °C
- IEC 60068-2-30: damp heat (temperature +55 °C, relative humidity 95 %)
- IEC 60068-2-52 level 2: salt mist.

Masterpact devices can operate in the industrial environments defined by standard IEC 60947 (pollution degree up to 4).

It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Vibrations

Masterpact devices have successfully passed testing in compliance with IEC 60068-2-6 for the following vibration levels:

■ 2 to 13.2 Hz: amplitude +/- 1 mm

■ 13.2 to 100 Hz: constant acceleration 0.7 g.

Vibration testing to these levels is required by merchant marine inspection organisations (Veritas, Lloyd's, etc).

Some applications have vibration profiles outside of this standard and require special attention during application design, installation, and use. Excessive vibration may cause unexpected tripping, damage to connections or to other mechanical parts. Please refer to the Masterpact maintenance guide (causes of accelerated ageing / operating conditions / vibrations) for additional information. Examples of applications with high vibration profiles could include:

wind turbines

power frequency converters that are installed in the same switchboard or close proximity to the Masterpact circuit breaker

emergency generators

high vibration marine applications such as thrusters, anchor positioning systems, etc.

Altitude

At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics as follows:

Altitude (m)		2000	3000	4000	5000
Impulse withstand voltage Uimp (kV)		12	11	10	8
Rated insulation voltage (Ui)		1000	900	780	700
Maximum rated operationnal	NT, NW except H10	690	690	630	560
voltage 50/60 Hz Ue (V)	NW H10	1000	890	795	700
Rated current 40 °C		1 x ln	0.99 x In	0.96 x In	0.94 x In

Intermediate values may be obtained by interpolation.

Electromagnetic disturbances

Masterpact devices are protected against:

- overvoltages caused by devices that generate electromagnetic disturbances • overvoltages caused by atmospheric disturbances or by a distribution-system
- overvorages eaused by unnopheno distangunete or by a distribution outage (e.g. failure of a lighting system)
 devices emitting radio waves (radios, walkie-talkies, radar, etc.)

electrostatic discharges produced by users.

Masterpact devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:

- IEC 60947-2, appendix F
 IEC 60947-2, appendix B (trip units with earth-leakage function).
- The above tests guarantee that:
- no nuisance tripping occurs
- tripping times are respected.

Installation recommendations

Installation in switchboard

Possible positions

Power supply

Masterpact devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.

Mounting the circuit-breaker

It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.

This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm). This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker.

Masterpact devices can also be mounted on a vertical plane using the special brackets.

Mounting on rails.

Mounting with vertical brackets.

Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.

For high currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material **A**. Metal barriers through which a conductor passes must not form a magnetic loop.

A : non magnetic material.

Busbars (NT, NW)

The mechanical connection must be exclude the possibility of formation of a magnetic loop around a conductor.

Busbars (NT)

For live busbars installed immediately above the circuit breaker (respecting the 100 mm safety clearance), the distance between bars must be 65 mm minimum. In a 1000 V system, the bars must be insulated.

Interphase barrier

If the insulation distance between phases is not sufficient (\leq 14 mm), it is advised to install phase barriers (taking into account the safety clearances). Mandatory for a Masterpact NT > 500 V.

Schneider Electric

B-4

Door interlock VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)

Туре	(1)	(2)
NT08-16 (3P)	135	168
NT08-16 (4P)	205	168
NW08-40 (3P)	215	215
NW08-40 (4P)	330	215
NW40b-63 (3P)	660	215
NW40b-63 (4P)	775	215

Breaker in "connected" or "test" position Door cannot be opened

Breaker in "disconnected" position Door can be opened

Dimensions	(mm)
_	

Туре	(1)	(2)	
NT	5	23	
NW	83	103	

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.

For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker. With this interlock installed, the source changeover function cannot be implemented.

Note: the door interlock can either be mounted on the right side or the left side of the breaker. **F**: datum.

DB101445

Control wiring

Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control voltages (12, 24, 48 V), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.

Recommended maximum cable lengths (meter).

		12 V 24 V			48 V		
		2,5 mm ²	1,5 mm ²	2,5 mm ²	1,5 mm ²	2,5 mm ²	1,5 mm ²
MN	U source 100 %	-	-	58	35	280	165
	U source 85 %	-	-	16	10	75	45
MX-XF	U source 100 %	21	12	115	70	550	330
	U source 85 %	10	6	75	44	350	210

Note: the indicated length is that of each of the two wires.

24 V DC power-supply module

External 24 V DC power-supply module for Micrologic (F1-, F2+)

■ do not connect the positive terminal (F2+) to earth

■ the negative terminal (F1-) can be connected to earth, except in IT systems

■ a number of Micrologic control units and M6C modules can be connected to the same 24 V DC power supply (the consumption of a Micrologic control unit or an M6C module is approximately 100 mA)

■ do not connect any devices other than a Micrologic control unit or an M6C module if voltage > 480 V AC or in an environment with a high level of electromagnetic disturbance

■ the maximum length for each conductor is ten metres. For greater distances, it is advised to twist the supply wires together

■ the 24 V DC supply wires must cross the power cables perpendicularly. If this is difficult, it is advised to twist the supply wires together

■ the technical characteristics of the external 24 V DC power-supply module for Micrologic control units are indicated on page A-27.

Communication bus

■ do not connect the positive terminal (E1) to earth

■ the negative terminal (E2) can be connected to earth

■ a number of "device" or "chassis" communication modules can be connected to the same 24 V DC power supply (the consumption of each module is approximately 30 mA).

Note: wiring of ZSI: it is recommended to use twisted shielded cable. The shield must be connected to earth at both ends.

Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals. For this, make the connections as follows:

- extend the circuit breaker terminals using short bars designed and installed according to the
- recommendations for bar-type power connections:
- $\hfill\square$ for a single cable, use solution ${\pmb B}$ opposite
- \Box for multiple cables, use solution **C** opposite
- in all cases, follow the general rules for connections to busbars:
- □ position the cable lugs before inserting the bolts
- □ the cables should firmly secured to the framework E.

the connection points are positioned on the terminals before the bolts are inserted **B**.

The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight \mathbf{C} . (This support should be placed close to the terminals).

Electrodynamic stresses

The first busbar support or spacer shall be situated within a maximum distance from the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.

Maximum distance A between busbar to circuit breaker connection and the first busbar support or spacer with respect to the value of the prospective short-circuit current.						
lsc (kA)	30	50	65	80	100	150
Distance A (mm)	350	300	250	150	150	150

Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.

For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.

These values are for use with copper busbars and steel nuts and bolts, class 8.8. The same torques can be used with AGS-T52 quality aluminium bars (French standard NFA 02-104 or American National Standard H-35-1).

Examples

B101

- Terminal screw factory-tightened to 16 Nm (NW), 13 Nm (NT). 1
- 2
- Busbar. Bolt.
- Washer.

- 3 4 5 6 Nut.

Tightening torques Ø (mm) Ø (mm) **Tightening torques (Nm)** Tightening torques (Nm) Nominal Drilling with grower or flat washers with contact or corrugatec washers 10 11 37.5 50

Busbar drilling

Examples

Isolation distance

Dimensions (mm)

Ui	X min
600 V	8 mm
1000 V	14 mm

Busbar bending

When bending busbars maintain the radius indicated below(a smaller radius would cause cracks).

Dimensions (mm)

e	Radius of curvature r Min	Recommended
5	5	7.5
10	15	18 to 20

B-8

Recommended busbars drilling

Masterpact NT06 to NT16

Masterpact NW08 to NW63

Vertical rear connection NW08 to NW32, NW40b to NW50

Front connection NW08 to NW32

Installation recommendations

Busbar sizing

Basis of tables:

- maximum permissible busbars temperature: 100 °C
 Ti: temperature around the circuit breaker and its
- connection
- busbar material is unpainted copper.

Front or rear horizontal connection

Masterpact	Maximum	Ti : 40 °C		Ti : 50 °C		Ti : 60 °C	
	service current	No. of 5 mm thick bars	No. of 10 mm thick bars	No. of 5 mm thick bars	No. of 10 mm thick bars	No. of 5 mm thick bars	No. of 10 mm thick bars
NT06	400	2b.30 x 5	1b.30 x 10	2b.30 x 5	1b.30 x 10	2b.30 x 5	1b.30 x 10
NT06	630	2b.40 x 5	1b.40 x 10	2b.40 x 5	1b.40 x 10	2b.40 x 5	1b.40 x 10
NT08 ou NW08	800	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.63 x 10
NT10 ou NW10	1000	3b.50 x 5	1b.63 x 10	3b.50 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10
NT12 ou NW12	1250	3b.50 x 5	2b.40 x 10	3b.50 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10
		2b.80 x 5	2b.40 x 10	2b.80 x 5			
NT16 ou NW16	1400	3b.63 x 5	2b.40 x 10	3b.63 x 5	2b.50 x 10	3b.80 x 5	2b.63 x 10
NT16 ou NW16	1600	3b.80 x 5	2b.63 x 10	3b.80 x 5	2b.63 x 10	3b.80 x 5	3b.50 x 10
NW20	1800	3b.80 x 5	2b.63 x 10	3b.80 x 5	2b.63 x 10	3b.100 x 5	2b.80 x 10
NW20	2000	3b.100 x 5	2b.80 x 10	3b.100 x 5	2b.80 x 10	3b.100 x 5	3b.63 x 10
NW25	2200	4b.100 x 5	2b.80 x 10	4b.100 x 5	2b.80 x 10	4b.100 x 5	2b.100 x 10
NW25	2500	4b.100 x 5	2b.100 x 10	4b.100 x 5	2b.100 x 10	4b.100 x 5	3b.80 x 10
NW32	2800	4b.100 x 5	3b.80 x 10	4b.100 x 5	3b.80 x 10	5b.100 x 5	3b.100 x 10
NW32	3000	5b.100 x 5	3b.80 x 10	6b.100 x 5	3b.100 x 10	8b.100 x 5	4b.80 x 10
NW32	3200	6b.100 x 5	3b.100 x 10	8b.100 x 5	3b.100 x 10		4b.100 x 10
NW40	3800		4b.100 x 10		5b.100 x 10		5b.100 x 10
NW40	4000		5b.100 x 10		5b.100 x 10		6b.100 x 10
NW50	4500		6b.100 x 10		6b.100 x 10		7b.100 x 10
NW50	5000		7b.100 x 10		7b.100 x 10		

With Masterpact NT, it is recommanded to use 50 mm wideness bars (see "Recommended busbars drilling").

Example

- Conditions:
- drawout version
- horizontal busbars
- T_i: 50 °C
- service current: 1800 A.

Solution:

For $T_i = 50$ °C, use an NW20 which can be connected with three 80 x 5 mm bars or two 63 x 10 mm bars.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Basis of tables:

maximum permissible busbars temperature: 100 °C
 Ti: temperature around the circuit breaker and its

connection

■ busbar material is unpainted copper.

Rear vertical connection

Masterpact	Maximum	Ti : 40 °C		Ti : 50 °C		Ti : 60 °C		
	service current	No. of 5 mm thick bars	No. of 10 mm thick bars	No. of 5 mm thick bars	No. of 10 mm thick bars	No. of 5 mm thick bars	No. of 10 mm thick bars	
NT06	06 400 2b.30 x 5 1b.30 x 10		2b.30 x 5	1b.30 x 10	2b.30 x 5	1b.30 x 10		
NT06	630	2b.40 x 5	1b.40 x 10	2b.40 x 5	1b.40 x 10	2b.40 x 5	1b.40 x 10	
NT08 ou NW08	800	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10	
NT10 ou NW10	1000	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10	2b.63 x 5	1b.63 x 10	
NT12 ou NW12	1250	2b.63 x 5	1b.63 x 10	3b.50 x 5	2b.40 x 10	3b.50 x 5	2b.40 x 10	
NT16 ou NW16	1400	2b.80 x 5	1b.80 x 10	2b.80 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10	
NT16 ou NW16	1600	3b.63 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10	3b.80 x 5	2b.63 x 10	
NW20	1800	2b.100 x 5	1b.80 x 10	2b.100 x 5	2b.50 x 10	3b.80 x 5	2b.63 x 10	
NW20	2000	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.80 x 10	
NW25	2200	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.80 x 10	
NW25	2500	4b.100 x 5	2b.80 x 10	4b.100 x 5	2b.80 x 10	4b.100 x 5	3b.80 x 10	
NW32	2800	4b.100 x 5	2b.100 x 10	4b.100 x 5	2b.100 x 10	4b.100 x 5	3b.80 x 10	
NW32	3000	5b.100 x 5	3b.80 x 10	6b.100 x 5	3b.100 x 10	5b.100 x 5	4b.80 x 10	
NW32	3200	6b.100 x 5	3b.100 x 10	6b.100 x 5	3b.100 x 10		4b.100 x 10	
NW40	3800		4b.100 x 10		4b.100 x 10		4b.100 x 10	
NW40	4000		4b.100 x 10		4b.100 x 10		4b.100 x 10	
NW50	4500		5b.100 x 10		5b.100 x 10		6b.100 x 10	
NW50	5000		5b.100 x 10		6b.100 x 10		7b.100 x 10	
NW63	5700		7b.100 x 10		7b.100 x 10		8b.100 x 10	
NW63	6300		8b.100 x 10		8b.100 x 10			

Example

Conditions:

- drawout version
- vertical connections
- T_i: 40 °C
- service current: 1100 A.

Solution :

For T_i = 40 °C use an NT12 or NW12 which can be connected with two 63 x 5 mm bars or with one 63 x 10 mm bar.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Installation recommendations

Temperature derating Power dissipation and input / output resistance

Temperature derating

connection.

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the circuit breaker and the busbars. Circuit breakers with mixed connections have the same derating as horizontally connected breakers. For Ti greater than 60 °C, consult us. Ti: temperature around the circuit breaker and its

Version Drawout Fixed Connection Rear vertical **Rear vertical** Front or rear horizontal Front or rear horizontal Temp. Ti NT06 H1/H2/L1 NT08 H1/H2/L1 NT10 H1/H2/L1 NT12 H1/H2 NT16 H1/H2 1520 1480 1430 1560 1510 NW08 N/H/L NW10 N/H/L NW12 N/H/L NW16 N/H/L NW20 H1/H2/H3 1980 1890 NW20 L1 1900 1850 1800 _ NW25 H1/H2/H3 NW32 H1/H2/H3 3100 3000 2900 NW40 H1/H2/H3 3900 3800 NW40b H1/H2 NW50 H1/H2 NW63 H1/H2

Power dissipation and input / output resistance

Total power dissipation is the value measured at I_{N} , 50/60 Hz, for a 3 pole or 4 pole breaker (values above the power P = 3RI²).

The resistance between input / output is the value measured per pole (cold state).

Version	Drawout		Fixed				
	Power dissipation (Watts)	Input/output resistance (µohm)	Power dissipation (Watts)	Input/output resistance (µohm)			
NT06 H1/H2/L1	55/115 (H1/L1)	38/72	30/45	26/39			
NT08 H1/H2/L1	90/140 (H1/L1)	38/72	50/80	26/39			
NT10 H1/H2/L1	150/230 (H1/L1)	38/72	80/110	26/39			
NT12 H1/H2	250	36	130	26			
NT16 H1/H2	460	36	220	26			
NW08 N1	137	42	62	19			
NW08 H/L	100	30	42	13			
NW10 N1	220	42	100	19			
NW10 H/L	150	30	70	13			
NW12 N1	330	42	150	19			
NW12 H/L	230	27	100	13			
NW16 N1	480	37	220	19			
NW16 H/L	390	27	170	13			
NW20 H/L	470	27	250	13			
NW25 H1/H2/H3	600	19	260	8			
NW32 H1/H2/H3	670	13	420	8			
NW40 H1/H2/H3	900	11	650	8			
NW40b H1/H2	550	7	390	5			
NW50 H1/H2	950	7	660	5			
NW63 H1/H2	1200	7	1050	5			

Derating in switchboards

Factors affecting switchboard design

The temperature around the circuit breaker and its connections:

This is used to define the type of circuit breaker to be used and its connection arrangement.

Vents at the top and bottom of the cubicles:

Vents considerably reduce the temperature inside the switchboard, but must be designed so as to respect the degree of protection provided by the enclosure. For weatherproof heavy-duty cubicles, a forced ventilation system may be required.

The heat dissipated by the devices installed in the switchboard:

This is the heat dissipated by the circuit breakers under normal conditions (service current).

The size of the enclosure:

This determines the volume for cooling calculations.

Switchboard installation mode:

Free-standing, against a wall, etc.

Horizontal partitions:

Partitions can obstruct air circulation within the enclosure.

Basis of tables

- switchboard dimensions
- number of circuit-breakers installed
- type of breaker connections
- drawout versions
- \blacksquare ambient temperature outside of the switchboard: T_a (IEC 60439-1).

Masterpact NT06-16 H1/H2/L1 (switchboard 2000 x 400 x 400) - area of outlet vents: 150 cm²

630 800 800 1000/910 1000/980 1220 1250 1260 1330 630 3 T_a = 45 °C 20'00 1 630 800 800 630 1000/860 1000/930 1150 1230 1200 1260 3 T_ = 55 °C 2 ₄₀₀-/-1

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Switchboard composition 5 4 2 1	Туре		NT06	H1/H2/L	.1				NT08 H1/H2/L1	
Busbar dimensions (mm) $2b.40 \times 5$ $2b.50 \times 5$ Ventilated switchboard (= IP31) 5 630 630 630 800		ition	5 4 3 2							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Connection type		Ξ					111	≡	
$ T_{a} = 35 ^{\circ} C $ $ T_{a} = 55 ^{\circ} C $	Busbar dimensions (r	nm)	2b. 40 x							
$ T_{x} = 35 ^{\circ} C $ $ T_{x} = 45 ^{\circ} C $ $ T_{x} = 55 ^{\circ} C $ $ T_{$	Ventilated switchboar	d (➡ IP31)					630	630		800
$T_{a} = 35 \ ^{\circ}C$ $2 \ 630 \ 6$			4			630	630	630	800	80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		T - 25 °C			630	630	630	630	800 800	80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 _a = 55 C	2 630	630	630	630	630	630	800 800 800 800	80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1					630		
$T_{a} = 45 \ ^{\circ}C = \frac{3}{2} \ \frac{630}{630} \ \frac{630}{630}$			5				630	630		80
$ \begin{array}{c} \begin{array}{c} 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2300		4			630	630	630	800	80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		T _a = 45 °C	3		630	630	630	630	800 800	80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2 630	630	630	630	630	630	800 800 800 800	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1					630		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5				630	630		80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4			630	630	630	800	80
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2) -200	T = 55 °C	3		630	630	630	630	800 800	80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	300+-	a	2 630	630	630	630	630	630	800 800 800 800	80
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	500		1					630		
$ (= 1P54) $ $ T_{a} = 35 ^{\circ}C $ $ T_{a} = 35 ^{\circ}C $ $ T_{a} = 45 ^{\circ}C $ $ T_{a} = 45 ^{\circ}C $ $ T_{a} = 55 ^{\circ$										
$T_{a} = 35 ^{\circ}C$ $T_{a} = 35 ^{\circ}C$ $T_{a} = 45 ^{\circ}C$ $T_{a} = 55 $	Non ventilated switch	board	5				630	630		80
$ T_{a} = 45 \ ^{\circ}C $ $ T_{a} = 45 \ ^{\circ}C $ $ T_{a} = 55 \ ^{\circ}C $	(➡ IP54)		4			630	630	630	800	80
$ T_{a} = 45 \ ^{\circ}C $ $ T_{a} = 45 \ ^{\circ}C $ $ T_{a} = 55 \ ^{\circ}C $	<u> </u>	T = 35 °C	3		630	630	630	630	800 800	80
$ T_{a} = 45 \ ^{\circ}C $		a		630						80
$ T_{a} = 45 ^{\circ}\text{C} \begin{bmatrix} 5 & & 630 & 630 \\ 4 & & 630 & 630 & 630 \\ 2 & 630 & 630 & 630 & 630 \\ 2 & 630 & 630 & 630 & 630 & 800 & 800 \\ 2 & 630 & 630 & 630 & 630 & 630 & 800 & 800 \\ 1 & & & 630 \\ 1 & & & 630 \\ 1 & & & 630 \\ 1 & & & 630 \\ 1 & & & 630 & 630 \\ 1 & & & & 630 \\ 1 & & & & 630 \\ 1 & & & & 630 \\ 1 & & & & & 630 \\ 1 & & & & & & & & \\ 1 & & & & & & & &$										
$ T_{a} = 45 \ ^{\circ}C $ $ T_{a} = 55 \ ^{\circ}C $							630			80
$T_{a} = 45 \ ^{\circ}C$ $T_{a} = 45 \ ^{\circ}C$ $T_{a} = 55 \ ^{\circ}C$ $T_{a} =$	2300		_			630			800	80
$ T_{a} = 55 ^{\circ}C $		T = 45 °C			630					80
$T_{a} = 55 ^{\circ}C $ $1 $ $F_{a} = 55 ^{\circ}C $ $1 $ $1 $ $1 $ $1 $ $1 $ $1 $ $1 $ 1		1 _a -45 C		630						80
$ T_{a} = 55 ^{\circ}C $ $ \begin{array}{c} 5 \\ 4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$			-	000	000	000	000			00
$\mathbf{T}_{a} = 55 \ ^{\circ}\mathbf{C}$ $\frac{4}{2} \qquad 630 630 630 630 800$							630			80
$T_{a} = 55 \text{ °C} \qquad \begin{array}{c} 3 & 630 & 630 & 630 & 630 \\ 2 & 630 & 630 & 630 & 630 & 800 \\ \end{array} \qquad \qquad \begin{array}{c} 800 & 800 \\ 800 & 800 & 800 \end{array}$			-			630			800	80
2 630 630 630 630 630 630 630 630	200	T - 55 °C	-		630					80
	300 - 600	$I_a = 55 - C$		630						80
			2 030 1	030	030	030	030	630	000 000 800 800	00

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test. The values indicated for the cross-sectional area of the vents should be considered as general

Masterpact NT10-16 H1/H2/L1 (switchboard 2300 x 1100 x 500) - area of outlet vents: 300 cm²

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Installation recommendations

Type Switchboard composition		NW20 H1/H2/H3			NW20	NW20 L1			NW25 H1/2/3		NW32 H1/2/3		NW40 H1/2/3	
		4 3 2 1												
onnection type		Ξ			Ξ			Ξ		Ξ		Ξ		
sbar dimensions	(mm)	3b. 100 x 5		3b. 100	3b. 100 x 5			4b. 100 x 5		3b. 100 x 10		4b. 100 x 10		
entilated switchboa	ard (⇒ IP31)	4 3												
				2000			1830							
	T _a = 35 °C	2 2000	2000	2000	2000	2000	2000	2375	2500	3040	3200	3320	3700	
E	-	1												
		4												
	₀ T _a = 45 °C	3		2000			1750							
230		2 2000	2000	2000	1810	1960	1920	2250	2380	2880	3100	3160	3500	
A DEF		1												
		4		2000			1010							
	T_ = 55 °C	3 2 2000	2000	2000	1700	1050	1640	2100	2250	2600	2000	2060	2200	
900 (2)	a	2 2000	2000	2000	1700	1850	1800	2100	2250	2690	2900	2960	3280	
800 800		1												
) Area of outlet vents) Area of intlet vents														
on ventilated switc		4												
► IP54)		3		2000			1750							
	T _a = 35 °C	2 2000	2000	2000	1800	1900	1890	2125	2275	2650	2850	3040	3320	
		1												
		4												
	T _a = 45 °C	3		1900			1660							
	a	2 1900	1960	1960	1680	1810	1800	2000	2150	2550	2700	2880	3120	
230	····	1												
		4												
	T, = 55 °C	3		1780			1550							
	'a - 00 0	2 1800 1	1920	1920	1590	1700	1700	1900	2020	2370	2530	2720	2960	

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test. The values indicated for the cross-sectional area of the vents should be considered as general

Masterpact NW40b-63 H1/H2 (switchboard 2300 x 1400 x 1500) - area of outlet vents: 500 cm²

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Substitution kit Fixed / drawout devices 800 to 3200 A

It is possible to replace a **Masterpact (M08 to M32)** with a new **Masterpact (NW08 to NW32)** with the same power rating.

Substitution is possible for the following types of circuit breakers:

- N1, H1, H2 for both fixed and drawout versions
- L1 for drawout versions up to 2000 A.

_____ : Masterpact M

: Masterpact NW

Fixing points are identical for Masterpact (M08 to M32) and Masterpact (NW08 to NW32), except for the four-pole chassis.

without an escutcheon, the cut-out is identical (270 x 325 mm)
 with the former escutcheon, the cut-out is identical (270 x 325 mm)

Door cut-out

Fixed version

with the new escutcheon, the cut-out is different. Drawout version

Power connection

Select a set of retrofit connectors to replace the standard connectors and avoid any modifications to the busbars (see the retrofit section in "orders and quotations").

Note:

(1) Without escutcheon.(2) With escutcheon.

References X and Y represent the symmetry planes for threepole devices.

Electrical diagrams

schneider-electric.com

Training

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.

The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations to give but a few examples.

Dimensions and connection

Presentation Functions and characteristics Installation recommendations	3 A-1 B-1
NT06 to NT16 circuit breakers	
Fixed 3/4-poles device	C-2
Drawout 3/4-poles device	C-6
NW08 to NW32 circuit breakers	
Fixed 3/4-poles device	C-10
Drawout 3/4-poles device	C-12
NW40 circuit breakers	
Fixed 3/4-poles device	C-14
Drawout 3/4-poles device	C-16
NW40b to NW63 circuit breakers	
Fixed 3/4-poles device	C-18
Drawout 3/4-poles device	C-20
NT/NW accessories	C-22
NT/NW external modules	C-24
Electrical diagrams Additional characteristics Catalogue numbers and order form	D-1 E-1 F-1

NT06 to NT16 circuit breakers

Fixed 3/4-poles device

Bottom mounting (on base plate or rails)

Rear mounting detail (on upright or backplate)

Safety clearances

A (*)

DB101191

v

4 194 (1) → 97 (1) 244 (2) → 122 (2)

Rear panel cutout

For voltages < 690 V

	Parts		
	Insulated	Metal	Energised
Α	0	0	100
В	0	0	60

F : datum.

(1) Without escutcheon.

(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device. A(*) An overhead clearance of 50 mm is required to remove the arc chutes. An overhead clearance of 20 mm is required to remove the terminal block.

108 **(1)** 133 **(2)**

Horizontal rear connection

Detail

12,5

Vertical rear connection

2 Ø11

Front connection

Detail

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

NT06 to NT16 circuit breakers

Fixed 3/4-poles device

View A detail.

F : datum.

Note: X and Y are the symmetry planes for a 3-pole device.

Front connection via vertical connection adapters

 $\frac{1}{12,5}$

Detail

Front connection via vertical connection adapters fitted with cable-lug adapters Detail

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

(1) 2 connection possibilities on vertical connection adapters (21 mm between centres).

Dimensions and connection

NT06 to NT16 circuit breakers

Drawout 3/4-poles device

Horizontal rear connection

Vertical rear connection

Detail

Detail

Front connection

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

NT06 to NT16 circuit breakers

Drawout 3/4-poles device

Connections

Spreader detail

Middle left or middle right spreader for 4P.

Middle spreader for 3P.

Left or right spreader for 4P.

Left or right spreader for 3P.

: datum.

version: 7.4

Front connection via vertical connection adapters fitted with cable-lug adapters

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

Dimensions and connection

NW08 to NW32 circuit breakers

Fixed 3/4-poles device

Dimensions

Mounting on base plate or rails

Safety clearances

			Insulated parts	Metal parts	Energised parts
	Α		0	0	100
	В		0	0	60
F		: dat	um.		

(1) Without escutcheon.
 (2) With escutcheon.
 Note: X and Y are the symmetry planes for a 3-pole device.
 A(*) An overhead clearance of 50 mm is required to remove the arc chutes.

An overhead clearance of 20 mm is required to remove the terminal block.

Horizontal rear connection

Vertical rear connection

Detail

Detail

DB101277

DB101278

Front connection

Detail

0 - /---- 0 0

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

Dimensions and connection

NW08 to NW32 circuit breakers

Drawout 3/4-poles device

Vertical rear connection

Detail

Detail

Front connection

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

> Schneider Blectric

NW40 circuit breakers

Fixed 3/4-poles device

15 mini -60 maxi 162 218,5 F

			Insulated parts	Metal parts	Energised parts
	Α		0	0	100
	в		0	0	60
F		: dat	um.		

(1) Without escutcheon. (2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
A(*) An overhead clearance of 110 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.

Schneider Electric

C-13

Horizontal rear connection

Detail

Vertical rear connection

Detail

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

14,5 -1<u>2,5</u> 12,5

ľ ۷

125

Dimensions and connection

NW40 circuit breakers

Drawout 3/4-poles device

Horizontal rear connection

Detail

-20

View A

Vertical rear connection

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

¦Υ

Ν

Dimensions and connection

NW40b to NW63 circuit breakers

Fixed 3/4-poles device

207E3100.indd

Schneider Electric

Vertical rear connection (NW40b - NW50)

Detail

Vertical rear connection (NW63)

Detail

Note: recommended connection screws: M10 s/s class A4 80. Tightening torque: 50 Nm with contact washer.

Dimensions and connection

NW40b to NW63 circuit breakers

Drawout 3/4-poles device

Detail

Detail

Vertical rear connection (NW40b - NW50)

Vertical rear connection (NW63)

Note: recommended connection screws: **M10** s/s class A4 80. Tightening torque: **50 Nm** with contact washer.

Disconnectable front-connection adapter (Masterpact NW08 to 32 fixed)

DB101356

Horizontal rear connection

67

000

231

220

0 0 9

Vertical rear connection

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

F : datum.

←F

253,5

Detail

C-21

Rear panel cutout (drawout devices)

NW40b to NW63

Escutcheon

Masterpact NT

317

←27

Drawout device

DB101366

-27

Х

18 *** * 4**5 ***** 45

L₂₅

25-

372

387

-314

F

: datum.

C-22

F

M6C relay module

External power supply module (AD)

Battery module (BAT) Mounting

C-23

Delay unit for MN release

"Chassis" communication module ModBUS

External sensor for source ground return (SGR) protection

Sensor

"MGDF summer" module

NT/NW external modules

External sensor for external neutral

1024 4 Ø14 L au H1 H2 vc \oplus \oplus T4 T3 T1 44 102

400/2000 A (NW08 to NW20)

(+)

Т2

174 206

 \oplus

1

High: 168 mm.

400/2000 A (NW08 to NW20)

4000/6300 A (NW40b to NW63)

Installation 400/1600 A (NT06 to NT16)

1000/4000 A (NW025 to NW40)

Rectangular sensor for earth leakage protection (Vigi)

 $\begin{array}{c} & & & \\ & &$

Busbars	l ≤ 1600 A	l ≤ 3200	
Window (mm)	280 x 115	470 x 160	
Weight (kg)	14	18	

Busbars path

280 x 115 window

Busbars spaced 70 mm centre-to-centre

2 bars 50 x 10.

2 bars 100 x 5.

470 x 160 window

Busbars spaced 115 mm centre-to-centre

4 bars 100 x 5.

schneider-electric.com

Ce site international vous permet d'accéder à tous les produits Schneider Electric en 2 clics via des fiches gammes synthétiques, et des liens directs vers :

• une librairie riche en documents techniques, catalogues, FAQ brochures...

• les guides de choix interactifs du e-catalogue.

• des sites pour découvrir les nouveautés, avec de nombreuses animations Flash.

Vous y trouverez également des panoramas illustrés, des news auxquelles vous abonner, les contacts de votre pays...

Le guide de l'installation électrique

Conforme à la norme CEI 60364

Ce guide, élément essentiel de l'offre Schneider ELectric, est l'outil indispensable pour vous guider à tout instant dans vos activités :

- bureaux d'études, consultants
- installateurs, tableautiers
- enseignants.

Informations exhaustives et pratiques sur :

- toutes les nouvelles solutions techniques
- toutes les composantes

d'une installation avec une vision globale

- toutes les évolutions normatives CEI
- toutes les connaissances
- électrotechniques fondamentales
- toutes les étapes de conception de la moyenne à la basse tension.

2

Electrical diagrams

Presentation Functions and characteristics Installation recommendations Dimensions and connection	3 A-1 B-1 C-1
Masterpact NT06 to NT16	D-2
Fixed and drawout devices	D-2
Masterpact NW08 to NW63	D-4
Fixed and drawout devices	D-4
Earth-fault and earth-leakage protection	
Neutral protection - Zone selective interlocking	D-6
Masterpact NT and NW	D-8
Communication	D-8
Fixed, electrically operated Masterpact NT and NW	D-10
Wiring of the COM option (with BCM ULP)	D-10
Withdrawable Masterpact NT and NW	D-11
Wiring of the COM option (with CCM)	D-11
Masterpact NT and NW	D-12
24 V DC external power supply AD module	D-12
Additional characteristics	E-1
Catalogue numbers and order form	F-1

Remote-operated source-changeover systems

2 Compact NSX100/630, NS630b/1600 or Masterpact NT/NW devices

Electrical interlocking by the IVE unit

 See section "IMPORTANT" here after.
 Operating diagram: the SDE "fault-trip" signals are transmitted to the IVE unit. The SDE auxiliary contacts are mounted in the circuit breakers.

IMPORTANT

The relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Legends ON "Nor

- "Normal" source opening order
- OR "Replacement" source opening order
- FN "Normal" source closing order
- FR "Replacement" source closing order
- L1 "Normal" source "fault-trip" signal
- "Replacement" source "fault-trip" signal "Normal" source auxiliary wiring connector L2 Ν
- R "Replacement" source auxiliary wiring connector

Note:

diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

2 Compact NSX100/630 devices Diagram no. 51201177

Legends

D-2

- "Normal" source Compact NSX equipped with motor mechanism "Replacement" source Compact NSX equipped with motor QŇ
- QR
- mechanism
- SDE "fault-trip" indication contact IVE electrical interlocking and terminal block unit
- ΜТ motor mechanism
- OF2 breaker ON/OFF indication contact RN reset order for breaker QN
- RR reset order for breaker QR

States permitted by mechanical interlocking system

Replacement
0
0
1
-

diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

Remote-operated source-changeover systems 2 Compact NSX100/630 devices

Diagram no. 51201178

(1) Prefabricated wiring supplied.(2) Independent auxiliary source.

Legends

- **QN** "Normal" source Compact NSX equipped with motormechanism
- **QR** "Replacement" source Compact NSX equipped with motor mechanism
- MN undervoltage release
- **OF2** breaker ON/OFF indication contact **SDE** "fault-trip" indication contact
- MT motor mechanism
- IVE electrical interlocking and terminal block unit
- BP emergency off button with latching
- KA3 auxiliary relay
- F1 auxiliary power supply circuit breaker

States permitted by mechanical interlocking system Normal Replacement

0	0	
1	0	
0	1	
Note:		

after a fault trip, the breaker must be reset manually by pressing

its reset button. Diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

2 Compact NSX100/630 devices Diagram no. 51201179

- (1) Prefabricated wiring supplied
- (2) This source can be: ■ the source present in the case of voltage monitoring
 - an independent source.
- In this case, the MX release must be protected.
- (3) The reset orders must be delayed by 0.3 seconds.

Legends

- QÑ "Normal" source Compact NSX equipped with motor mechanism
- QR "Replacement" source Compact NSX equipped with motor mechanism
- SDE "fault-trip" indication contact
- OF2 breaker ON/OFF indication contact
- MX shunt release ΜТ motor mechanism
- IVE electrical interlocking and terminal block unit KA1 time-delayed auxiliary relays
- KA2 time-delayed auxiliary relays
- F1 auxiliary power supply circuit breaker
- F2 auxiliary power supply circuit breaker

- States permitted by mechanical interlocking system
- Normal Replacement 0 0 0 1 0 1

Note:

after a fault trip, the breaker must be reset manually by pressing its reset button.

Diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices

Diagram no. 51201180

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with **switch-disconnectors, connect the SDE to terminals 81 and 84.**

		State	s permitted by mechanical	interlocking system
		Norma	I Replacement	
Legen	ds	0	0	
QŇ	"Normal" source Compact NS630b to 1600		0	
QR	"Replacement" source Compact NS630b to 1600	1	0	
OF	breaker ON/OFF indication contact	0	1	
SDE1	"fault-trip" indication contact	Note:		
CE1	"connected-position" indication contact (carriage switch)	after a f	fault trip, the breaker must be rese	et manually by pressing
F1	auxiliary power supply circuit breaker	its rese	t button.	
ON	"Normal" source opening order	Diagrar	m shown with circuit breakers in c	onnected position, open,
ÔR	"Replacement" source opening order	charge	d, and ready to close.	
FN	"Normal" source closing order (0.25 second delay)	Auxiliar	ry power supply = supply voltage of	of auxiliarv relavs (KA)
FR	"Replacement" source closing order (0.25 second delay)		ly voltage of electrical auxiliaries (
MT	Motor Mechanism		MX, MN).	

2 Compact NS630b/1600 devices Diagram no. 51201181

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends

- QŇ "Normal" source Compact NS630b to 1600
- QR "Replacement" source Compact NS630b to 1600
- OF. breaker ON/OFF indication contact
- "fault-trip" indication contact
- "connected-position" indication contact (carriage switch)
- SDE1 CE1 F1 auxiliary power supply circuit breaker shunt release
- MХ
- BP emergency off button with latching
- KA3 auxiliary relay
- ON OR "Normal" source opening order
- "Replacement" source opening order
- FN
- "Normal" source closing order (0.25 second delay) "Replacement" source closing order (0.25 second delay) FR
- ΜΤ Motor Mechanism

States permitted by mechanical interlocking system Normal Replacement

0	0			
1	0			
0	1			
Note:		 		

after a fault trip, the breaker must be reset manually by pressing its reset button.

Diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices

Diagram no. 51201182

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends

- "Normal" source Compact NS630b to 1600 QN
- "Replacement" source Compact NS0500 to 1000 breaker ON/OFF indication contact ÖR
- OF...
- SDE1 "fault-trip" indication contact
- CE1 "connected-position" indication contact (carriage switch) F1
- auxiliary power supply circuit breaker ΜN
- undervoltage release emergency off button with latching RP
- КАЗ auxiliary relay
- "Normal" source opening order ON
- "Replacement" source opening order OR
- FN "Normal" source closing order (0.25 second delay)
- FR "Replacement" source closing order (0.25 second delay)
- МТ Motor Mechanism

Wiring colour codes

	ing colo	u. 00u.						
RD	GN	BK	VT	YE	GY	WH	BN	
red	green	black	violet	yellow	grey	white	brown	

States permitted by mechanical interlocking system Replacement Normal

0	1	
1	0	
0	0	

Note:

after a fault trip, the breaker must be reset manually by pressing its reset button.

Diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Compact NS630b/1600 devices Diagram no. 51201183

Electrical interlocking by IVE unit

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

IMPORTANT

The relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

- (1) Not to be wired on fixed version.
- (2) Prefabricated wiring supplied.
- (3) See section "IMPORTANT" here after.

Legends

D-8

- QŇ "Normal" source Compact NS630b to 1600
- QR
- OF...
- SDE1
- "Replacement" source Compact NS630b to 1600 breaker ON/OFF indication contact "fault-trip" indication contact "connected-position" indication contact (carriage switch) CE1
- F1 auxiliary power supply circuit breaker IVE electrical interlocking and terminal block unit
- "Normal" source opening order
- ON
- OR "Replacement" source opening order FN
- "Normal" source closing order (0.25 second delay) "Replacement" source closing order (0.25 second delay) FR
- ΜΤ Motor Mechanism

vviri	ng colo	ur coae	es				
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

1 0 0 1 Note: after a fault trip, the breaker must be reset manually by pressing			

Diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201184

Electrical interlocking by IVE unit with emergency off by shunt release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

IMPORTANT

The relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

(1) Not to be wired on fixed version. (2) Prefabricated wiring supplied. (3) See section "IMPORTANT" here after.

Legends

- QŇ "Normal" source Compact NS630b to 1600
- QR "Replacement" source Compact NS630b to 1600 OF. breaker ON/OFF indication contact
- SDE1
- "fault-trip" indication contact "connected-position" indication contact (carriage switch) CE1
- F1
- auxiliary power supply circuit breaker electrical interlocking and terminal block unit IVE
- ΜХ shunt release
- BP emergency off button with latching
- КАЗ auxiliary relay
- ON "Normal" source opening order
- "Replacement" source opening order "Normal" source closing order (0.25 second delay) OR
- FN FR "Replacement" source closing order (0.25 second delay)
- ΜТ Motor Mechanism

Wiring colour codes

RD GN BK VT YE GY WH BN red green black violet yellow grey white browned	VVII II	ing colo		55					
red green black violet yellow grey white bro	RD	GN	BK	VT	YE	GY	WH	BN	
	red	green	black	violet	yellow	grey	white	brown	

States p	permitted by mechanical interlocking system
Normal	Replacement

<u> </u>		
0	1	
1	0	
0	0	

Note

after a fault trip, the breaker must be reset manually by pressing its reset button.

Diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Compact NS630b/1600 devices Diagram no. 51201185

CN1 へ . CN1 + ---Auxiliary power supply CN2 ∼ . CN2 - --DB401813 KA3 E1 Ν IVE R 1 2 3 4 5 6 7 8 9 10 Transfer to replacement source CE CE1 Transfer to normal source (3) OF QN Ď SD QF OF ΜΤ KA MN мт MN КАЗ

Electrical interlocking by IVE unit with emergency off by undervoltage release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

IMPORTANT

The relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Legends

- QŇ "Normal" source Compact NS630b to 1600
- QR "Replacement" source Compact NS630b to 1600
- **MCH** spring-charging motor
- MX XF standard opening release
- standard closing release breaker ON/OFF indication contact OF..
- SDE1 "fault-trip" indication contact
- CE1 "connected-position" indication contact (carriage switch)
- F1 auxiliary power supply circuit breaker
- IVE electrical interlocking and terminal block unit MN
- undervoltage release emergency off button with latching BP
- КАЗ auxiliary relay
- ON "Normal" source opening order
- ÔR "Replacement" source opening order
- FΝ "Normal" source closing order (0.25 second delay)
- FR "Replacement" source closing order (0.25 second delay)
- МТ Motor Mechanism

Wiring colour codes

D-10

RD	•	вк		YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

- (1) Not to be wired on fixed version. (2) Prefabricated wiring supplied.
- (3) See section "IMPORTANT" here after.

States p	States permitted by mechanical interlocking system					
Normal	Replacement					
0	0					

•	0	
1	0	
0	1	
Note:		

after a fault trip, the breaker must be reset manually by pressing its reset button.

Diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201186

Automatic-control system without IVE unit for permanent replacement source

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

Legends

- Normal" source Compact NS630b to 1600 QN
- "Replacement" source Compact NS630b to 1600 breaker ON/OFF indication contact QR
- ÕF..
- SDE1 "fault-trip" indication contact
- "connected-position" indication contact (carriage switch) CE1
- F1 auxiliary power supply circuit breaker
- F2/F3 circuit breaker (high breaking capacity) **S1**
- control switches KA1
- auxiliary relays UN presence detection auxiliary relays UR presence detection KA2
- KM1 contactors with 0.25 second delay (for transfer
- to "Replacement" source)
- KM2 contactors with 0.25 second delay (for transfer to "Normal" source)
- ΜΤ Motor Mechanism

States permitted by mechanical interlocking system Normal Replacement

0	1	
1	0	
0	0	

Note

after a fault trip, the breaker must be reset manually by pressing its reset button.

Diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Compact NS630b/1600 devices Diagram no. 51201187

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with **switch-disconnectors, connect** the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends QN "∧

- "Normal" source Compact NS630b to 1600 "Replacement" source Compact NS630b to 1600 breaker ON/OFF indication contact
- QR
- OF... SDE1 "fault-trip" indication contact
- CE1 "connected-position" indication contact (carriage switch)
- F1 auxiliary power supply circuit breaker F2/F3 circuit breaker (high breaking capacity) S1 control switches
- KA1 auxiliary relays - UN presence detection
- KA2 auxiliary relays - UR presence detection
- KA3
- auxiliary relays generator set startup if UN absent contactors with 0.25 second delay (for transfer KM1
- to "Replacement" source) contactors with 0.25 second delay (for transfer to "Normal" KM2
- source) Motor Mechanism ΜТ

Wiring colour codes

RD	GN	вк	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States p	ermitted by mechanical interlocking system
Normal	Replacement
0	0
1	0
0	1
its reset but Diagram sh charged, ar Auxiliary po	own with circuit breakers in connected position, open, nd ready to close. wer supply = supply voltage of auxiliary relays (KA) Itage of electrical auxiliaries (electrical operation,

2 Masterpact NT or NW devices Diagram no. 51201139

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends

- "Normal" source Masterpact NT or NW QŇ QR
- "Replacement" source Masterpact NT or NW МСН
- spring-charging motor
- standard opening voltage release standard closing voltage release MХ XF
- OF. breaker ON/OFF indication contact
- SDE1 "fault-trip" indication contact
- PF "ready-to-close" contact
- CE1 CH "connected-position" indication contact (carriage switch) "springs charged" indication contact auxiliary power supply circuit breaker
- F1
- ON "Normal" source opening order
- OR "Replacement" source opening order
- FN "Normal" source closing order (0.25 second delay)
- FR "Replacement" source closing order (0.25 second delay)

States permitted by mechanical interlocking system Replacement Normal

Normai	Replacement								
0	0								
1	0								
0	1								

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Masterpact NT or NW devices Diagram no. 51201140

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends

КĂЗ	time delay for genset startup order to avoid starting	
	the genset for transient UN disturbances	

- QN
- "Normal" source Masterpact NT or NW "Replacement" source Masterpact NT or NW QR
- МСН
- MХ
- XF
- spring-charging motor standard opening voltage release standard closing voltage release breaker ON/OFF indication contact OF.
- SDE1 PF "fault-trip" indication contact
- "ready-to-close" contact "connected-position" indication contact (carriage switch) "springs charged" indication contact auxiliary power supply circuit breaker CE1 CH
- F1
- MX2 shunt release
- emergency off button with latching BP
- "Normal" source opening order
- ON OR FN "Replacement" source opening order
- "Normal" source closing order (0.25 second delay) "Replacement" source closing order (0.25 second delay)
- FR
- BP emergency off button with latching

States permitted by mechanical interlocking system Poplaco 121

Normai	Replacement						
0	0						
1	0						
0	1						

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

D-14

Remote-operated source-changeover systems 2 Masterpact NT or NW devices

Diagram no. 51201141

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends

- "Normal" source Masterpact NT or NW "Replacement" source Masterpact NT or NW QN
- QR
- МСН spring-charging motor
- ΜХ standard opening voltage release
- XF standard closing voltage release
- ΜN undervoltage release
- OF. breaker ON/OFF indication contact
- SDE1 "fault-trip" indication contact
- "ready-to-close" contact PF CE1
- "connected-position" indication contact (carriage switch) СН "springs charged" indication contact
- F1 auxiliary power supply circuit breaker
- BP emergency off button with latching
- **S1** control switches
- KA3
- auxiliary relay "Normal" source opening order "Replacement" source opening order ON
- OR
- FN "Normal" source closing order (0.25 second delay)
- FR "Replacement" source closing order (0.25 second delay)

States permitted by mechanical interlocking system Replacement Normal

nonnai	Replacement							
0	0							
1	0							
0	1							

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Masterpact NT or NW devices Diagram no. 51201142

Electrical interlocking by IVE unit with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

IMPORTANT

The relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Legends

- QŇ "Normal" source Masterpact NT or NW QR "Replacement" source Masterpact NT or NW
- МСН spring-charging motor
- MХ
- standard opening voltage release standard closing voltage release breaker ON/OFF indication contact XF
- OF...
- SDE1 "fault-trip" indication contact
- PF CE1 "ready-to-close" contact
- "connected-position" indication contact (carriage switch)
- "springs charged" indication contact electrical interlocking and terminal block unit auxiliary power supply circuit breaker CH IVE
- F1
- ON "Normal" source opening order
- OR "Replacement" source opening order
- FN "Normal" source closing order (0.25 second delay)
- FR "Replacement" source closing order (0.25 second delay)

Wiring colour codes

RD	GN	BK	VT	YE	GY	WH	BN	
red	green	black	violet	yellow	grey	white	brown	

(1) Not to be wired for the "without lockout after a fault" solution.

(2) Not to be wired on fixed version.

(3) Prefabricated wiring supplied.
 (4) See section "IMPORTANT" here after.

States permitted by mechanical interlocking system Normal Replacement

0

1

0

0
0
1

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

D-16

2 Masterpact NT or NW devices Diagram no. 51201143

Electrical interlocking by IVE unit with lockout after a fault and emergency off by shunt release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

IMPORTANT

The relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Leg QN QR MCI MX XF OF.. SDE

Miring colour codes RD GN BK VT YE GY WH BN red green black violet yellow grey white brown	Legen QN QR MCH MX SDE1 PF CE1 CH CE1 CH EF1 BP KA3 ON FN FR	"Norma "Replac spring- standai breaken "fault-tr "ready- "connee "spring: electric auxiliar emerge auxiliar "Norma "Replac "Norma	cement" charging d openin d closing o ON/OF ip" indica to-close s charge al interlo y power ency off b y relay l" source cement" " source cement"	source N motor ng voltage F indicat ation con- " contact ition" indica cking an source of outton wi e openin source c e closing source of	lication c ation cont ad termina ircuit bre ith latchir	ct NT or e act ontact (act al block aker ng order .25 secc	carriage unit ond delay	/)
		•			YE	GY	WH	BN
	red	green	black	violet	yellow		white	brown

(1) Not to be wired for the "without lockout after a fault" soluti	(1	((1)) /	lot	to	be	wi	red	for	the	"и	vith	out	loc	ko	ut	afte	er a	ı fa	ult"	sol	utio	n.
--	----	---	-----	-----	-----	----	----	----	-----	-----	-----	----	------	-----	-----	----	----	------	------	------	------	-----	------	----

- (2) Not to be wired on fixed version.
- (3) Prefabricated wiring supplied.
 (4) See section "IMPORTANT" here after.

States permitted by mechanical interlocking system									
Normal	Replacement								
0	0								
1	0								

1	0	
0	1	
Note:		

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Masterpact NT or NW devices Diagram no. 51201144

CN1 🔨 . CN1 + 🛲 Auxiliary power supply CN2 🔨 . CN2 - 📅 R401822 КАЗ Ν χg IVE μß 1 2 3 4 5 6 7 8 9 10 Transfer to replacement source ⊧ L CE1 Transfer to normal source (4) OF2 OF3 QN Þ SDE OF1 OF2 OF3 QR 0 SDE KA3 MCH PF MX XF MN MCH MX XF MN

Electrical interlocking by IVE unit with lockout after a fault and emergency off by undervoltage release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

IMPORTANT

The relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Legends QN "N

- "Normal" source Masterpact NT or NW
- "Replacement" source Masterpact NT or NW QR
- мсн spring-charging motor
- ΜХ standard opening voltage release XF standard closing voltage release
- МN undervoltage release
- breaker ON/OFF indication contact OF.
- SDE1 *"fault-trip" indication contact "ready-to-close" contact*
- PF
- CE1 "connected-position" indication contact (carriage switch) "springs charged" indication contact
- СН IVE electrical interlocking and terminal block unit
- F1 auxiliary power supply circuit breaker
- BP emergency off button with latching
- S1 KA3 control switches
- auxiliary relay
- ON "Normal" source opening order
- ÔR "Replacement" source opening order
- FN "Normal" source closing order (0.25 second delay) FR "Replacement" source closing order (0.25 second delay)
- Wiring colour codes

	ing colo		55				
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

(1) Not to be wired for the "without lockout after a factor.	ault" solution.
(2) Not to be wired on fixed version.	

- (3) Prefabricated wiring supplied.
- (4) See section "IMPORTANT" here after.

States permitted by mechanical interlocking system Normal Replacement

0	1		
1	0		
0	0		

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Remote-operated source-changeover systems 2 Masterpact NT or NW devices

Diagram no. 51156226

Automatic-control system without IVE unit for permanent replacement source with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends

- QŇ "Normal" source Masterpact NT or NW
- "Replacement" source Masterpact NT or NW QR
- МСН spring-charging motor
- MХ XF
- standard opening voltage release standard closing voltage release breaker ON/OFF indication contact OF..
- SDE1 "fault-trip" indication contact
- PF "ready-to-close" contact
- CE1
- "connected-position" indication contact (carriage switch) "springs charged" indication contact
- CH F1 auxiliary power supply circuit breaker
- F2/F3 circuit breaker (high breaking capacity)
- control switches **S1**
- KA1 auxiliary relays - UN presence detection
- KA2 auxiliary relays - UR presence detection contactors with 0.25 second delay (for transfer to
- KM1 "Replacement" source)
- KM2 contactors with 0.25 second delay (for transfer to "Normal" source)

States	permitted by mechanical interlocking system
Normal	Replacement

0	0	
1	0	
0	1	

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Masterpact NT or NW devices Diagram no. 51156227

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

(1) Not to be wired on fixed version.

Legends

- QŇ "Normal" source Masterpact NT or NW
- QR "Replacement" source Masterpact NT or NW
- МСН МХ spring-charging motor
- XF
- standard opening voltage release standard closing voltage release breaker ON/OFF indication contact OF..
- SDE1 "fault-trip" indication contact
- "ready-to-close" contact
- "connected-position" indication contact (carriage switch) "springs charged" indication contact auxiliary power supply circuit breaker circuit breaker (high breaking capacity)
- PF CE1 CH
- F1
- F2/F3
- S1 control switches

D-20

- KA1 auxiliary relays - UN presence detection
- KA2 auxiliary relays - UR presence detection KA3
- auxiliary relays generator set startup if UN absent contactors with 0.25 second delay (for transfer to KM1
- "Replacement" source)
- KM2 contactors with 0.25 second delay (for transfer to "Normal" source)

States permitted by mechanical interlocking system Normal Replacement

0	0	
1	0	
0	1	

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Masterpact NT or NW devices Diagram no. 51156904

Automatic-control system for permanent replacement source with lockout after a fault (with MN)

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

Legends

- QŇ "Normal" source Masterpact NT or NW
- QR "Replacement" source Masterpact NT or NW МСН
- spring-charging motor XF
- standard closing voltage release undervoltage release МN
- breaker ON/OFF indication contact OF...
- SDE1 "fault-trip" indication contact
- PF "ready-to-close" contact
- CE1 "connected-position" indication contact (carriage switch)
- СН "springs charged" indication contact
- electrical interlocking and terminal block unit auxiliary power supply circuit breaker IVE F1
- F2 circuit breaker (high breaking capacity)
- **S1** control switches
- KA1 auxiliary relays
- KA2 auxiliary relays
- KA3 auxiliary relays

Wiring colour codes

RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

Normal	Replacement
0	0
1	0
0	1

(1) Not to be wired for the "without lockout after a fault" solution.

(2) Not to be wired on fixed version.

(3) Prefabricated wiring supplied.

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

2 Masterpact NT or NW devices Diagram no. 51156905

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

Leaends

- QŇ "Normal" source Masterpact NT or NW
- QR "Replacement" source Masterpact NT or NW
- МСН spring-charging motor
- XF standard closing voltage release undervoltage release breaker ON/OFF indication contact
- MN
- OF... SDE1 "fault-trip" indication contact
- PF "ready-to-close" contact
- CE1 "connected-position" indication contact (carriage switch)
- "springs charged" indication contact (can "springs charged" indication contact electrical interlocking and terminal block unit auxiliary power supply circuit breaker circuit breaker (high breaking capacity) CH IVE
- F1
- F2
- S1 control switches
- KA1 auxiliary relay
- KA2 time delay for genset startup order to avoid starting
- the genset for transient UN disturbances
- КАЗ auxiliary relay

Wiring colour codes

RD	GN	вк	VT	YE	GY	WН	BN	
red	green	black	violet	yellow	grey	white	brown	_

(3) Prefabricated wiring supplied.	

(2) Not to be wired on fixed version.

States permitted by mechanical interlocking system				
Normal	Replacement			
0	0			

0	-			
0				
1				

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.

1

0

3 Masterpact NW devices Diagram no. 51156906

Legen		States pe	rmitted by r	mechanical interlocking system	
QN	"Normal" source Masterpact NW	Normal 1	Normal 2	Replacement	
R NCH	"Replacement" source Masterpact NW spring-charging motor	0	0	0	
X	standard opening voltage release	1	1	0	
F	standard closing voltage release	0	0	1	
F	breaker ON/OFF indication contact	1	0	0	
F	"ready-to-close" contact	<u>.</u>	1	0	
E	"connected-position" indication contact (carriage switch)	0	1	0	
н	"springs charged" indication contact	Note: diagram shown with circuit breakers in connected position, open,			
1	auxiliary power supply circuit breaker				
	order for transfer from "R" to "N1 + N2"	charged, and ready to close.			
	(QN1 and QN2 closing time delay = 0.25 sec. minimum)	Auxiliary power supply = supply voltage of auxiliary relays (KA			
2	order for transfer from "N1 + N2" to "R"	= supply vol	tage of electric	al auxiliaries (electrical operation,	
	(QR closing time delay = 0.25 sec. minimum)	MCH, MX, N	ЛN).		

3 Masterpact NW devices Diagram no. 51156907

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with **switch-disconnectors, connect the SDE to terminals 81 and 84.**

Legen	ds			
QN	"Normal" source Masterpact NW			
QR	"Replacement" source Masterpact NW			
МСН	spring-charging motor	States	permitted by I	nechanical interlocking syster
MX	standard opening voltage release	Normal 1	Normal 2	Replacement
XF	standard closing voltage release			
OF	breaker ON/OFF indication contact	0	0	0
SDE1	"fault-trip" indication contact	1	1	0
PF	"ready-to-close" contact	0	0	1
CE1	"connected-position" indication contact (carriage switch)	1	0	0
СН	"springs charged" indication contact	<u>-</u>	0	-
F1	auxiliary power supply circuit breaker	0		0
S1	control switches	Note:		
S2	source selection switches	diagram s	hown with circui	t breakers in connected position, oper
t1	order for transfer from "R" to "N1 + N2"	charged, a	and ready to clos	se.
	(QN1 and QN2 closing time delay = 0.25 sec. minimum)	Auxiliary p	oower supply = s	upply voltage of auxiliary relays (KA
t2	order for transfer from "N1 + N2" to "R"	= supply v	oltage of electric	cal auxiliaries (electrical operation,
	(QR closing time delay = 0.25 sec. minimumm)	MCH, MX	, MN).	

(QR closing time delay = 0.25 sec. minimumm)

3 Masterpact NW devices Diagram no. 51156908

2 normal sources and 1 replacement source: automatic-control system for generator set without lockout after a fault (with MN)

Legends

- "Normal" source Masterpact NW QN...
- QR "Replacement" source Masterpact NW
- МСН spring-charging motor
- XF standard closing voltage release
- ΜN undervoltage release
- breaker ON/OFF indication contact "ready-to-close" contact OF... PF
- CE....
- "connected-position" indication contact (carriage switch) СН "springs charged" indication contact
- auxiliary power supply circuit breaker F1
- F2/F3 circuit breaker (high breaking capacity)
- **S1** control switches
- S2 source selection switches
- KA1 auxiliary relay KA2 auxiliary relays with 10 to 180 sec. time delay
- auxiliary relays with 0.1 to 30 sec. time delay КАЗ
- KA4 auxiliary relay
- KA5 auxiliary relays with 0.25 sec. time delay
- KA6 auxiliary relays with 0.25 sec. time delay

States permitted by mechanical interlocking system and with associated automatism **-14** Max - 1-2

Normal 1	Normai 2	Replacement
0	0	0
1	1	0
0	0	1
1	0	0
0	1	0
N		

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

3 Masterpact NW devices Diagram no. 51156909

2 normal sources and 1 replacement source: automatic-control system for generator set with lockout after a fault (with MN)

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

Legends

- QŇ... "Normal" source Masterpact NW
- QR "Replacement" source Masterpact NW МСН spring-charging motor
- XF standard closing voltage release
- MN
- undervoltage release breaker ON/OFF indication contact OF...
- SDE1 "fault-trip" indication contact
- PF "ready-to-close" contact CE... "connected-position" indication contact (carriage switch)
- СН "springs charged" indication contact
- F1 auxiliary power supply circuit breaker F2/F3 circuit breaker (high breaking capacity)
- control switches S1
- S2 source selection switches
- KA1 auxiliary relay
- auxiliary relays with 10 to 180 sec. time delay auxiliary relays with 0.1 to 30 sec. time delay KA2
- KA3 KA4 auxiliary relay
- KA5
- auxiliary relays with 0.25 sec. time delay auxiliary relays with 0.25 sec. time delay KA6
- auxiliary relay KA7
- KA8 auxiliary relay

States permitted by mechanical interlocking system and with associated automatism Normal 1 Normal 2 Replacement

0	0	0	
1	1	0	
0	0	1	
1	0	0	
0	1	0	

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

D-26

Schneider Belectric

3 Masterpact NW devices Diagram no. 51156910

Legends

- QŠ... "Source" Masterpact NW
- МСН spring-charging motor
- MX XF standard opening voltage release
- standard opening voltage release standard closing voltage release breaker ON/OFF indication contact
- OF...
- PF "ready-to-close" contact
- CE... "connected-position" indication contact (carriage switch)
- сн "springs charged" indication contact
- F1 t1 auxiliary power supply circuit breaker order for transfer to "Source 1"
- (QS1 closing time delay = 0.25 sec. minimum) t2 order for transfer to "Source 2"
- (QS2 closing time delay = 0.25 sec. minimum)
- t3 order for transfer to "Source 3"
- (QS3 closing time delay = 0.25 sec. minimum)

States permitted by mechanical interlocking system

Source 1	Source 2	Source 3
0	0	0
1	0	0
0	1	0
0	0	1

Note:

diagram shown with circuit breakers in connected position, open,

3 Masterpact NW devices Diagram no. 51156911

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

Legends

- "Source" Masterpact NW QS...
- МСН spring-charging motor
- MX XF OF. standard opening voltage release
- standard closing voltage release breaker ON/OFF indication contact "fault-trip" indication contact
- SDE1
- PF
- "ready-to-close" contact "connected-position" indication contact (carriage switch) CE...
- СН "springs charged" indication contact
- F1 auxiliary power supply circuit breaker
- t1 order for transfer to "Source 1
- (QS1 closing time delay = 0.25 sec. minimum) order for transfer to "Source 2" (QS2 closing time delay = 0.25 sec. minimum) t2
- t3 order for transfer to "Source 3"
- (QS3 closing time delay = 0.25 sec. minimum)
- KA1 auxiliary relays
- KA2 auxiliary relays

D-28

auxiliary relays KA3

States permitted by mechanical interlocking system Source 1 Source 2 Source 2

Source 1	Source 2	Source S
0	0	0
1	0	0
0	1	0
0	0	1
A.L		

Note.

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

3 Masterpact NW devices Diagram no. 51156912

Legends

- "Source" Masterpact NW
- QS... QC MCH "Coupling" Masterpact NW
- spring-charging motor
- ΜΧ
- standard opening voltage release standard closing voltage release breaker ON/OFF indication contact XF
- OF...
- PF "ready-to-close" contact
- CE. "connected-position" indication contact (carriage switch)
- СН "springs charged" indication contact F1
- auxiliary power supply circuit breaker coupling order for "Source 1 failure" t1
- (QC closing time delay = 0.25 sec. minimum) t2 coupling order for "Source 2 failure"
- (QC closing time delay = 0.25 sec. minimum)
- t3 coupling order for "Source 1 restored" (QS1 closing time delay = 0.25 sec. minimum) coupling order for "Source 2 restored "
- t4
- (QS2 closing time delay = 0.25 sec. minimum)

Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

3 Masterpact NW devices Diagram no. 51156913

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with **switch-disconnectors, connect the SDE to terminals 81 and 84.**

Leger QS QC MCH MX	"Source" Masterpact NW "Coupling" Masterpact NW spring-charging motor standard opening voltage release			
XF OF	standard closing voltage release breaker ON/OFF indication contact	States pe	ermitted by r	nechanical interlocking system
SDE1		Source 1	Source 2	Coupling
PF	"ready-to-close" contact	0	0	0
CE	"connected-position" indication contact (carriage switch)	1	1	0
CH F1	"springs charged" indication contact auxiliary power supply circuit breaker	1	0	1
t1	coupling order for "Source 1 failure"	0	1	1
••	(QC closing time delay = 0.25 sec. minimum)	1	0	0
t2	coupling order for "Source 2 failure"	0	1	0
	(QC closing time delay = 0.25 sec. minimum)	0	0	1
t3	coupling order for "Source 1 restored" (QS1 closing time delay = 0.25 sec. minimum)	Note:		·
t4	coupling order for "Source 2 restored "		own with circuit	breakers in connected position, open,
	(QS2 closing time delay = 0.25 sec. minimum)	5	d ready to clos	1 1 1
KA1	auxiliary relays			upply voltage of auxiliary relays (KA)
KA2	auxiliary relays			al auxiliaries (electrical operation,
KA3	auxiliary relays	MCH, MX, I	ИМ).	

D-30

3 Masterpact NW devices Diagram no. 51156914

2 sources and 1 coupling: automatic-control system with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

Legends

- "Source" Masterpact NW "Coupling" Masterpact NW QS...
- QC МСН
- spring-charging motor МX
- standard opening voltage release standard closing voltage release XF
- OF.. breaker ON/OFF indication contact
- SDE1 "fault trip" indication contact
- PF "ready-to-close" contact
- CE... "connected-position" indication contact (carriage switch)
- CH F1 "springs charged" indication contact auxiliary power supply circuit breaker
- F2/F3 circuit breaker (high breaking capacity)
- **S1** control switches
- S2 source selection switches
- KA1
- KA2 KA3
- auxiliary relays with 10 to 180 sec. time delay auxiliary relays with 0.1 to 30 sec. time delay auxiliary relays with 0.1 to 30 sec. time delay auxiliary relays with 0.1 to 30 sec. time delay auxiliary relays with 0.25 sec. time delay KA4
- KA5
- auxiliary relays with 0.25 sec. time delay KA6
- KA7 auxiliary relays with 0.25 sec. time delay

States permitted by mechanical interlocking system and with associated automatism Source 1 Source 2 Coupling

Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Source-changeover systems with automatic controllers

2 Compact NSX100/630, NS630b/1600 or Masterpact NT/NW devices

Source-changeover system with BA controller

Transfer conditions

Terminals 20 and 21: additional control contact (not part of controller).

Tests on "Normal" and "Replacement" source voltages The single-phase check for UN and UR

is implemented across terminals 1 and 5 of circuit breakers Q1 and Q2.

Legends

- QÌ circuit breaker supplying and protecting the automaticcontrol circuits for the "Normal" source
- circuit breaker supplying and protecting the automatic-control circuits for the "Replacement" source Q2
- ACP control plate
- BA automatic controller
- IVE electrical interlocking and terminal block unit

Source-changeover systems with automatic controllers

2 Compact NSX100/630, NS630b/1600 or Masterpact NT/NW devices

Source-changeover system with UA controller

Load shedding and genset management

Transfer conditions

Terminals 20 and 21:

additional control contact (not part of controller).

Tests on "Normal" and "Replacement" source voltages

"Normal" source voltage UN test

"Replacement" source voltage UR test The single-phase check for UR is implemented across terminals 1 and 5 of circuit breaker Q2.

Legends

- Q1 circuit breaker supplying and protecting the automaticcontrol circuits for the "Normal" source
- Q2 circuit breaker supplying and protecting the automatic-
- control circuits for the "Replacement" source
- ACP control plate UA automatic controller
- *IVE* electrical interlocking and terminal block unit

diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

Controller settings

Controller settings

The address of the UA 150 controller is set using the two BBus dials.

Tests on "Normal" source voltage

- A = 0 single-phase test,
- A = 1 three-phase test.

Voluntary transfert (e.g. for energy management)

- action in the event of genset failure
- B = 0 circuit breaker N opens,
- B = 1 circuit breaker N remains closed.
- maximum permissible genset startup time (T6)
- C = 0 T = 120 s, C = 1 T = 180 s.

After this time has elapsed, the genset is considered to have failed.

Source-changeover systems with automatic controllers

2 Masterpact NT or NW devices Diagram no. 51156903

Electrical interlocking with lockout after a fault

The diagram shows the electrical wiring for circuit breakers.

When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

(2) Not to be wired on fixed version.

(3) Prefabricated wiring supplied.

Legends QN "∧

- "Normal" source Masterpact NT or NW
- QR "Replacement" source Masterpact NT or NW
- мсн spring-charging motor
- ΜХ standard opening voltage release
- standard closing voltage release breaker ON/OFF indication contact XF ÖF..
- SDE1 "fault-trip" indication contact
- PF "ready-to-close" contact
- "connected-position" indication contact (carriage switch) CE1
- СН "springs charged" indication contact
- IVE electrical interlocking and terminal block unit

Wiring colour codes

RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system

Normai	Replacement		
0	0		
1	0		
0	1		
Notor			

diagram shown with circuit breakers in connected position, open, charged, and ready to close.

Additional characteristics

Presentation Functions and characteristics Installation recommendations Dimensions and connection Electrical diagrams	3 A-1 B-1 C-1 D-1
Tripping curves	E-2
Limitation curves Current limiting Energy limiting	E-4 E-5
Catalogue numbers and order form	F-1

Additional characteristics

Tripping curves

E-2

Additional characteristics

Limitation curves

Current limiting

Voltage 380/415/440 V AC

Rated short-circuit current (kA rms)

Voltage 660/690 V AC

Energy limiting

Rated short-circuit current (kA rms)

E-4

UK contact details -

0870 608 8 608

Fax 0870 608 8 606

.....

Ireland contact details -601 2200

Fax 01 601 2201

As a global specialist in energy management with operations in more than 100 countries, Schneider Electric offers integrated solutions across multiple market segments, including leadership positions in energy and infrastructure, industrial processes, building automation, and data centres/networks, as well as a broad presence in residential applications.

Focused on making energy safe, reliable, and efficient, the company's 110,000 plus employees achieved sales of 19.6 billion euros in 2010, through an active commitment to help individuals and organisations "Make the most of their energy."

We are changing our brand names and becoming one Schneider Electric. You'll get the same great quality products, but from one name you can remember and trust. This provides you and your customers with the reassurance associated with Schneider Electric.

Some of our market leading brands have already become Schneider Electric including Merlin Gerin, Telemecanique, Square D, GET, Mita, Sarel, Himel, Thorsman, Tower and TAC.

Working as one Schneider Electric makes it clearer that our ranges are highly compatible for integrated solutions.

Schneider Electric Ltd

United Kingdom Ireland Stafford Park 5, Telford Shropshire Campus TF3 3BL Tel: 0870 608 8 608 Fax: 0870 608 8 606 www.schneider-electric.co.uk www.schneider-electric.ie

Head office, Block a Maynooth Business Maynooth, Co. Kildare Tel: (01) 601 2200 Fax: (01) 601 2201

Schneider Electric Limited is a company registered in England and Wales. Registered number: 1407228. Registered office: Stafford Park 5, Telford, Shropshire TF3 3BL.

© 2011 Schneider Electric. All Rights Reserved. Schneider Electric, Active Energy Management, Compact, EcoStructure, ICN Enterprise, IRIO, Make the most of your energy, Masterpact, Micrologic, Power Plant To Plug, Modbus, and PowerLogic are owned by Schneider Electric Industries SAS, or its affiliated companies in the United States and other countries, 998-3432,

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

