Practical advice

Programming principle

- For the digital time switches, this consists of memorising the days and times of the required switching operations.
- For the mechanical time switches, this is performed by positioning captive segments or jumpers on a switching dial.
Example
■ Controlling an air conditionner in a hairdressing salon:

Monday ${ }^{(1)}$ Tuesday									
Wednesday							Thursday ${ }^{(2)}$	Etc.	
On $\mathrm{n}^{\circ} 1$									

Programming by copying or blocks

Whenever identical switching operations are found at the same times, several days in the week, this function lets you program these operations once only. In this case a single switching operation is used. If this function is used wisely, the number of possible switching operations can be greatly increased.
Example

Number of switching operations

Designation	Number of switching operations
IHP 1c	56
IHP + 1c	84
IHP 2c	56
IHP + 2c	84
IHP 1c 18 mm	56
IHP + 1c 18 mm	84
ITA 1c, ITA 4c	300
IH 24h 1c ARM	48 On -48 Off
IH 24h 1c SRM	48 On -48 Off
IH 60 mn 1c SRM	48 On -48 Off
IH 24h 1c SRM	48 On -48 Off
IH 24h 1c ARM	48 On -48 Off
IH 24h 2c ARM	24 On -24 Off
IH 7 j 1c ARM	42 On -42 Off
IH 24 $+7 \mathrm{j} 1+1 \mathrm{CARM}$	16 On -16 Off +7 On -7 Off

Saving on mains cut off

For digital switches equipped with this function, a lithium battery is used for saving.
The program, date and time are preserved. Switching operations are not performed.

Practical advice

Lets you control starting and stopping of a group of loads according to a cycle that is repeated every 60 minutes.

Lets you control starting and stopping of one or two groups of loads according to a daily cycle that is repeated, in identical manner, every day of the week.

Lets you control starting and stopping of one to 4 groups of loads according to a weekly cycle, that can be different each day, repeated each week.

60 min. time programming

Example
Controlling automatic watering

On $n^{\circ} 1$	2 min .30 s
${\text { Off } n^{\circ} 1}^{\text {On }} 2$	5 min.
$\mathrm{Off}^{\circ} 2$	25 min.
	37 min .30 s

Relevant time switches

IH 60mn 1c SRM.

24 h daily programming

Example

- Controlling a door of a block of flats:
- from 8 am to 7.30 pm: contact on "On", free access,
- from 7.30 pm to 8 am the next day: contact on "Off", access by confidential code every day of the week:

	From Monday to Sunday
On $n^{\circ} 1$	8 am
Off $\mathrm{n}^{\circ} 1$	7.30 pm

Relevant time switches

■ IH 24h 1c SRM/ARM.

- IH 24h 2c ARM.
- IHP 1c 18 mm .
- IHP + 1c 18 mm .
- IHP 1c, IHP + 1c.
- IHP $2 c$, IHP $+2 c$.
- ITA 1c, ITA 4c.

7 days weekly programming

Example

- Controlling an air conditionner in a hairdressing salon:

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
On $\mathrm{n}^{\circ} 1$		09 h 00	09 h 00	09 h 00		
Off $\mathrm{n}^{\circ} 1$		12 h 00	12 h 00			
On $\mathrm{n}^{\circ} 2$		14 h 00	14 h 00			
Off ${ }^{\circ} 2$		20 h 00	20 h 00	20 h 00		
On ${ }^{\circ} 3$					8 h 30	8 h 30
Off $\mathrm{n}^{\circ} 3$					12 h 30	12 h 30
On ${ }^{\circ} 4$					14 h 30	14 h 30
Off ${ }^{\circ} 4$					21 h 00	21 h 00

Relevant time switches

■ IH 7j 1cARM.

- IHP 1c, IHP + 1c.

■ IHP 2c, IHP + 2c.

- IHP 1c 18 mm .
- IHP + 1c 18 mm .
- ITA 1c, ITA 4c.

Lets you control by pulses (adjustable from 1 to 59 s) one to four groups of loads (pulse relays, bells, etc.).

Pulse programming

Example
■ Automatic controlling of bells, lighting and distribution of food: bells sounding the resumption and finish of work (channel 1), lighting of premises (channel 2), feeding fish in the aquarium (channel 3):

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Channel 1: bell (20 s pulse order)							
On	08 h 00	08 h 00	08 h 00	08 h 00	07 h 00	09 h 00	-
Duration	20 s	-					
On	12 h 00	12 h 00	12 h 00	12 h 00	11 h 00	13 h 00	-
Duration	20 s	-					
On	14 h 00	14 h 00	14 h 00	14 h 00	13 h 00	-	-
Duration	20 s	-	-				
On	18 h 00	18 h 00	18 h 00	18 h 00	16 h 00	-	-
Duration	20 s	-	-				
Channel 2: lighting (latched order)							
On	07 h 30	07 h 30	07 h 30	07 h 30	06 h 30	08h 30	-
Off	18 h 30	18 h 30	18 h 30	18 h 30	17 h 00	13 h 30	-
Channel 3: aquarium (15 s pulse order)							
On	10 h 00	-	10 h 00	-	10 h 00	-	10 h 00
Duration	15 s	-	15 s	-	15 s	-	15 s

Programming

- Programming of a pulse takes up 2 memory spaces.
- Combination of the two order types (pulse and latched) is possible on the same channel.

Relevant time switches

- IHP + 1c.
- IHP + 1c 18 mm .
- IHP + 2c.

■ ITA 1c, ITA 4c.

Programming special days.

Example
■ Controlling lighting and heating in a school:

- basic programming: program lighting (channel 1) and heating (channel 2):

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Channel 1: lighting							
On	07 h 00	-	-				
Off	20 h 00	20 h 00	16 h 00	20 h 00	16 h 00	-	-
Channel 2: heating							
On	06 h 00	-	-				
Off	18 h 00	18 h 00	12 h 00	18 h 00	12 h 00	-	-

\square dated programming: periods of non-operation, school holidays, etc.
Just memorise an Off at the start and another Off at the end of each period of absence:

		Holidays				
		Winter	Spring	Summer	Autumn	End of year
Channel 1: lighting						
Off	Date	20 feb.	17-apr	07-july	23 oct.	18 dec.
	Time	12 h 00	17 h 00	12 h 00	17 h 00	12 h 00
Off	Date	08-march	03-may	9 sept.	2 nov.	4 jan.
	Time	01 h 00				
Channel 2: heating						
Off	Date	20 feb.	17-apr		23 oct.	18 dec .
	Time	12 h 00	17 h 00		17 h 00	12 h 00
Off	Date	08-march	03-may		2 nov.	4 jan.
	Time	01 h 00	01 h 00		01 h 00	01 h 00

Relevant time switches

- ITA 1c, ITA 4c.

Connection

	Type	Tightening torque	Copper cables	
			Rigid	Flexible or with ferrule
			\square	$\square B$
$\cdots \infty$	IHP 1c, 2c, +1c, +2c	2 screwless / pole	$2 \times 2.5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$
,	IHP $18 \mathrm{~mm} \mathrm{1c}, \mathrm{+1c}$	2 screwless/pole	$2 \times 2.5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$
	IH 60 mn 1 c SRM	2 screwless/pole	$2 \times 2.5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$
	24h 1c SRM, ARM	2 screwless / pole	$2 \times 2.5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$
	24h 2c ARM	1.2 N.m	$\leqslant 6 \mathrm{~mm}^{2}$	$\leqslant 6 \mathrm{~mm}^{2}$
	7 j 1 c ARM	2 screwless / pole	$2 \times 2.5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$
	24h + 7j 1+1c ARM	1.2 N.m	$\leqslant 6 \mathrm{~mm}^{2}$	$\leqslant 6 \mathrm{~mm}^{2}$
	IH 18 mm 24h 1c SRM/ARM	1.2 N.m	$\leqslant 6 \mathrm{~mm}^{2}$	$\leqslant 6 \mathrm{~mm}^{2}$
	IHH 18 mm 7 j 1 c ARM	1.2 N.m	$\leqslant 6 \mathrm{~mm}^{2}$	$\leqslant 6 \mathrm{~mm}^{2}$
	ITA 1c, ITA 4c	1.2 N.m	$\leqslant 6 \mathrm{~mm}^{2}$	$\leqslant 6 \mathrm{~mm}^{2}$

IHP 1c/2c, IHP+ 1c/2c are mechanical compatible with electrical distribution comb busbar.

Weight (g)

Time switches		
IHP	1c/2c	170/205
IHP+	1c/2c	190/ 211
IHP 18 mm	1c/+1c	90
IHP DCF		244
IH 54 mm	60 mn 1 c SRM	208
	24h 1c SRM/ARM	212 / 119
	24h 2c ARM	216
	7j 1c ARM	119
	24h + 7j 1+1c ARM	223
1 H 18 mm	24h 1c SRM / ARM	97
IHH 18 mm	7j 1c ARM	101
ITA 1c		152
ITA 4c		303

