AFDD+ Range brochure

82

LiveSafe

Technology to protect what matters

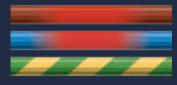
Electrical circuit protection for low voltage residential and light commercial installations

People, assets, property and your reputation are all things that matter to you. You can protect them all with EATON electrical safety systems for low-voltage residential and light commercial installations.


EATON offers state-of-the-art protection devices to protect against all types of fault currents.

Protect against short circuits and overcurrents with an EATON Miniature Circuit Breaker (MCB). Protect against earth fault currents – to prevent electric shock – with an EATON Residual Current Circuit Breaker (RCCB). Or combine both functions in the EATON Residual Current operated circuit Breaker with Overcurrent protection (RCBO).

Now Eaton also provides the highest level of advanced protection in end circuits, adding arc fault detection to the RCBO functionality, in a revolutionary all-in-one Arc Fault Detection Device (AFDD+).


Additional digital features increase the sensitivity and robustness of the protection devices, and the availability of installations and systems.

The EATON electrical safety range has everything you need, to protect what matters.

Types of fault

The following types of fault can lead to severe hazard and danger.

Overcurrents

A moderate increase in current which does not immediately damage the wiring but results in a thermal overload over time. May increase over a period or almost instantaneously jump to a steady state current.

Typical causes

- Insulation defects
- Breakdowns between phases
- Breakdowns between phase and neutral

Short circuit currents

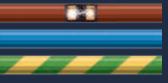
Faults with very low impedance and very high currents which can be up to 20 times the nominal current.

Typical causes

- Phase and neutral shortcircuiting over very low impedance, due to:
- Insulation breakdown
- Mechanical damage to wiring
- Water

Typical causes

Fault currents


High or low impedance faults between phase and earth. They can result in very low leakage and fault currents, either much lower than nominal current or in very high currents.

Typical causes

- Changes in insulation and insulation resistance, due to:
 - Humidity
 - Aging
 - Mechanical stress
 - Dust
 - Dirt etc.

Arc fault currents

Typically at nominal current or just below, and therefore difficult to detect. Small arcs can grow over time as insulation is increasingly damaged. Identified by high frequency noise and breakdown of the fault current close to the zerocrossing of the driving voltage.

Broken or squashed wires leading to an arc continually

or intermittently burning and damaging insulation.

Serial arc faults – the most common. Originate from a fault across the phase or neutral. Only detectable by AFDD+.

Parallel arc faults – originate from a fault between phase and neutral. Total current in the circuit increases depending on load impedance and fault impedance.

2,000,000 FIRES REPORTED IN EUROPE EACH YEAR

Effects of faults

Loss of power

Usually caused by very high overcurrents destroying wiring, installation devices or busbars. MCBs are designed to protect wiring against short circuits and overcurrents in low voltage residential installations.

Loss of life, property and assets

Electricity is a recognized ignition source for a number of fire hazards. Many fault currents are detectable, but serial and parallel arc faults were undetectable until the invention of the AFDD.

Electric shock can cause fatal injuries and loss of life. RCDs are the most important devices for protection against electric shock. Protection devices which can detect and disconnect high frequency fault currents are increasingly important, as electronic devices with integrated electronic inverters become more common.

Combined with digital arc fault detection technology, the EATON AFDD+ minimizes the risk of electrically ignited fire hazard, and provides protection against loss of power, property, assets and life.

PER DAY

E126,000,000,000,000

IN EUROPE MORE THAN 25% OF FIRES ARE IGNITED BY ELECTRICAL FAILURE

EATON AFDD+

How protection has evolved

It was in 1957 that F&G (which later became part of Eaton) filed a patent for its first Residual Current Circuit Breaker (RCCB) device. Now, 60 years later, the latest Eaton Arc Fault Detection Device is the most recent development in an ever-evolving range of Eaton circuit protection solutions.

Miniature Circuit Breaker (MCB)

Shortening of the load path via a very low impedance path is a recognizable fault cause. Circuit breakers prevent the problem by detecting the high fault current and quickly interrupting it. MCBs combine current-dependent overcurrents protection with very fast current independent short circuits protection.

Residual Current Circuit Breaker (RCCB)

Earth leakage currents exhibit serious threats for humans and can cause ventricular fibrillation of the heart. RCCBs detect asymmetric and unbalanced fault currents and disconnects the circuit. RCCBs protect against electric shock and provide a very basic fire protection capability. Digital RCCBs were introduced in 2009 providing additional safety features and higher functionality.

Residual Current Circuit Breaker with Overcurrent Protection (RCBO)

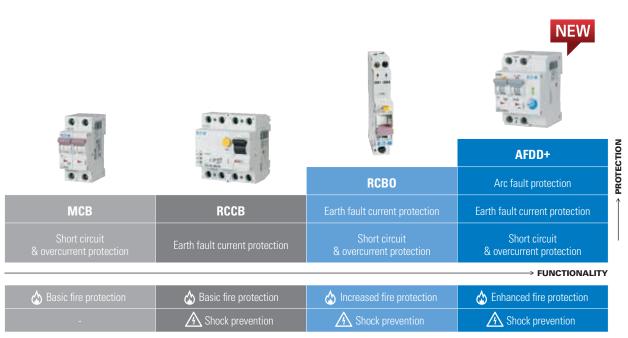
RCBOs provide protection against high short circuit currents and protection against electric shocks caused by low leakage currents in one device to increase safety.

Arc Fault Detection Device (AFDD+)

A new device combining short circuit and fault current protection capability from RCBOs with an AFDD (arc fault detection device), the next generation of detection technology. AFDD+ applies an algorithm in the integrated electronic circuit to ensure sensitive detection of fault currents, which indicates the presence of dangerous arc faults.

The next step in the evolution of protection

The EATON AFDD+ is not simply a development of devices that already exist. It is the next step in the evolution of protection devices, incorporating the benefits of digitalization.


A complete range of devices, that offer protection for people, property and assets including the next step in protection - prevention against electrically ignited fires caused by serial and parallel arcs.

People

The use of electricity and the operation of electrical installation should not result in any risk to people or assets. By continually devising new and innovative protection devices, EATON is striving to protect people's lifes.

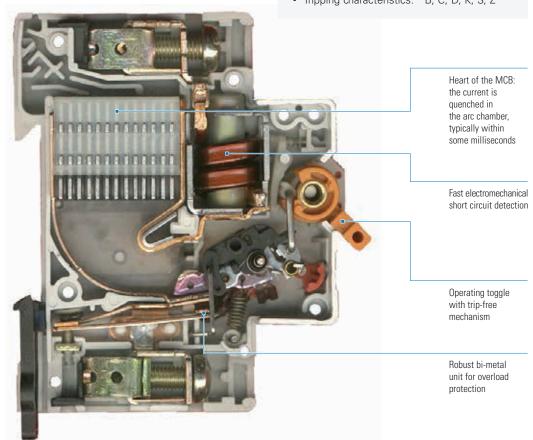
Property and assets

Property and other assets require protection against electrically-ignited fire hazards, to prevent damage, loss and financial consequences.

MCBs

Miniature Circuit Breakers (MCBs) are used in almost every electrical installation to protect against short circuits and overcurrents.

Overload currents can cause hazardous dissipation of high energy along the wire, leading to its heating and destruction. MCBs combine relatively slow, current-dependent, overcurrent protection and very fast, current independent short circuit protection.


Eaton MCB - Robust and Reliable Protection

Eaton offers a broad range of MCBs with the following characteristics:

- Rated current:
- Configuration: 1, 1+N, 2, 3, 3+N, 4

0,16A up to 125A

- Rated breaking capacity: 4,5kA up to 25kA
- Tripping characteristics: B, C, D, K, S, Z

RCDs

Since the widespread application of RCDs in the 1960s, the number of injuries from electric shock has declined dramatically.

1957

Gottfried Biegelmeier pioneered the development of time-delayed tripping and secured the first patent for an applicable residual current circuit breaker (RCCB). He had recognized the need to disconnect fault currents by detecting unbalanced currents and found a reliable way to realize this in protection devices. Biegelmeier was chief technical officer of Felten & Guillaume, which later became part of Eaton, and is recognised as the father of the RCD for the robust tripping mechanism he invented.

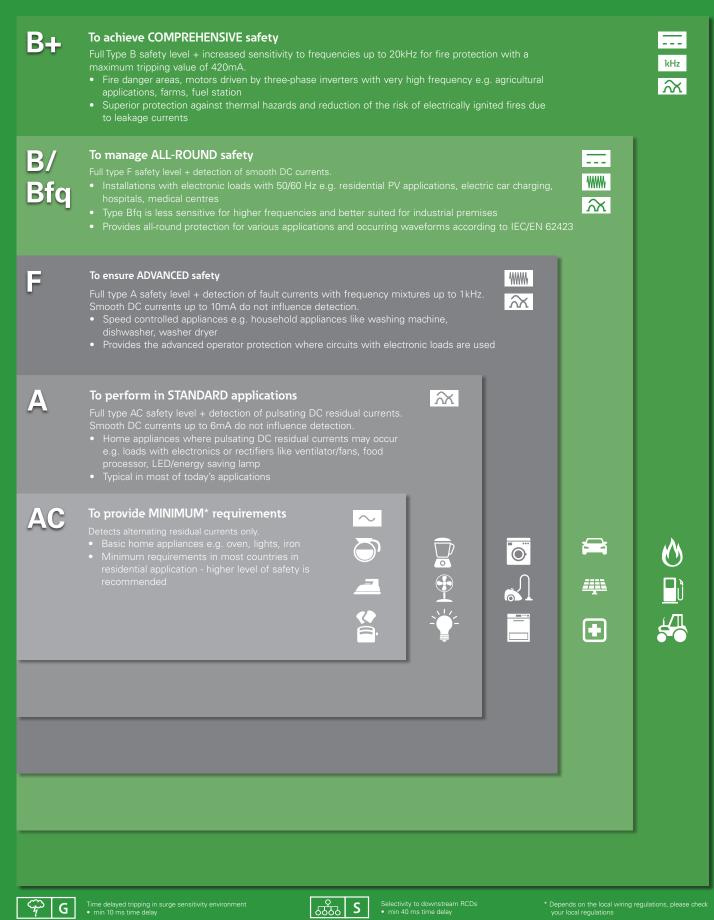
EATON is the world's leading manufacturer of digital protection devices, and the first to offer RCDs with digital features that provide higher levels of functionality and availability.

The requirements for protection against electric shock are set out in IEC 61140: Hazardous live parts shall not be accessible and accessible Conductive parts shall not be hazardous

This requirement needs to apply under: Normal condition Prote Single fault condition Prote

Protection against direct contact Protection against indirect contact

The requirement is the foundation for three very important protection schemes:


Basic protection:Insulation of live parts (class II equipment, cable insulation, barriers or enclosures)Fault protection:e.g. automatic disconnection of the power and the faultAdditional protection:Residual current protection device, 30mA for socket outlets.

Additional protection via 30mA RCD

> **Fault protection** e.g. via MCB or RCD

Basic protection nsulation of live parts

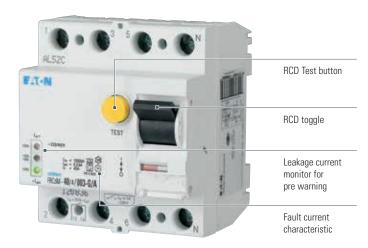
Choosing your EATON RCD

Fault currents protection

Residual Current Circuit Breakers are mandatory to provide additional protection against electric shock for socket outlets and are often applied for fault protection.

RCCBs are applied in the root of an installation or additionally in specific branches/circuits where a special fault current characteristic is needed. RCCBs are available for residual currents from 10mA to 500mA and above, delayed and no-delay tripping, and with selective characteristics.

EATON Digital RCCBs


Combining protection with digital features, EATON Digital RCCBs are unique – providing maximum circuit status information together with increased protection and availability.

The devices continually measure the residual current value in real time, and use the results to drive local warning LEDs and remote warning potential-free outputs.

This allows time to resolve developing problems before they lead to interruptions or failures. System status is always available at a glance, which can save money by preventing out-of-hours service call-outs. The mandatory test intervals can be reduced to just once a year.

System availability is enhanced by the shorter time-delayed tripping characteristic of the digital protection devices, and the optimized tripping thresholds. These ensure that brief malfunctions do not cause nuisance tripping and loss of system availability.

The digital RCCBs are equipped with a voltage-independent protection function and digital features. EATON Digital RCCBs are available as Types A, B, Bfq and B+.

with the following characteristics: • Rated current: 16A up to 125A

Eaton offers a broad range of RCCBs

- Configuration:
- Rated tripping current: 10mA up to 500Ma
- Sensitivity: AC, A, F, B, Bfq, B+
- Tripping behavior:

Instantaneous, short-time delayed, selective

1+N & 3+N

Digital RCCB LEDs and their meaning

When the red LED lights up, the leakage current is already higher than 50 percent of the

Red

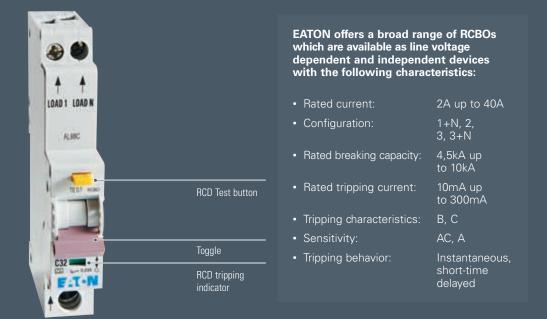
nominal fault current. Therefore the system is in a critical status - the digital RCCB only trips when the fault current continues to increase.

a residule current in the ambit of 30 to 50 percent of the nominal fault current. Before the system is shut down, professional countermeasures can be taken.

The vellow LED shows

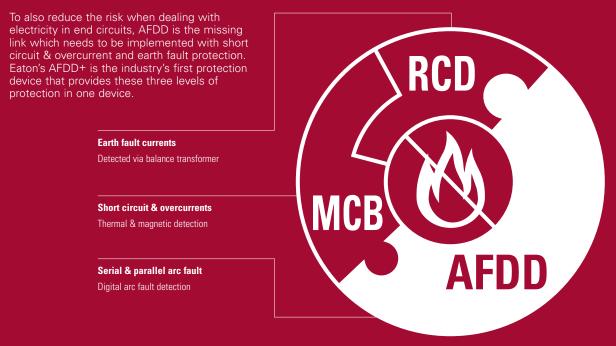
Yellow

Green

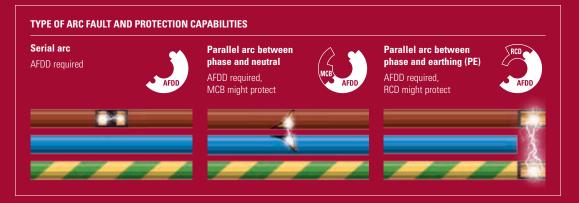

If the current flow in the system to ground is in the ambit from 0 to 30 percent of the nominal fault current, the green LED indicates the proper status.

Short circuits, overcurrents and residual fault currents protection – RCBOs

The Residual Current Circuit Breaker with Over Current Protection is a compact combination of short circuits, overcurrents and residual fault currents protection, ideally suited to fault and additional protection in individual end circuits.


End users benefit from RCBOs compared with the MCB/RCCB combination in the case of an earth fault, when only the particular circuit will trip so other circuits are not left without power. This also makes earth fault finding easier.

Different residual current characteristics enable the optimal protection for the specific applications. RCBOs are available for residual fault currents from 10mA to 300mA, delayed and no-delay tripping, with different sensitivities and breaking capacities.



Electrically-ignited fire hazard protection – AFDD+

As described in IEC 62606, AFDD allow the detection and disconnection of hidden arc faults that can cause severe damage. Only an AFDD can detect and disconnect serial and parallel arc faults in electric installations.

Protection according to the IEC 62606

Electrically-ignited fires are a hidden but significant threat only recently beginning to be addressed.

Arc faults, which occur out of sight within installations, have the potential to ignite fires and cause enormous damage. Statistics show that the source of over 25% of fires is an electrical system.

What?

Serial Arc Fault

- Occurs when there is an interruption of conduction
- Can go undetected for long period of time

Parallel Arc Fault

- Originates from a fault between phase and neutral
- Total current in the circuit increases

Where?

Arc faults can occur in:

- Cables or wires
- Fixed installations
- Cables of directly connected devices or devices connected via sockets

When?

Arc faults occur when:

- Wires are faulty or damaged, due to:
 - external influences
 - ageing
- Terminal connections are loose

Why?

The most frequent causes of arc faults are:

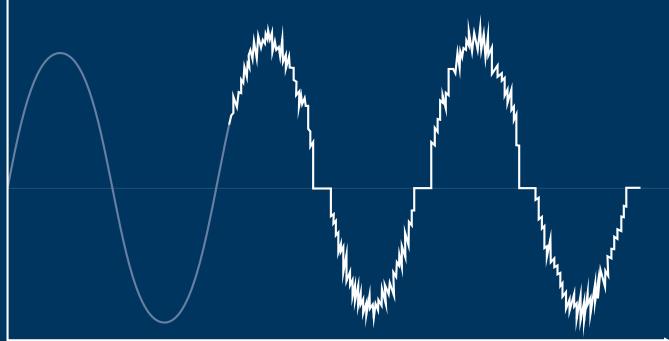
- Crushed wires
- Damage to wire insulation caused by nails, screws etc.
- Ageing installations
- Broken cables or interruptions in a wire
- UV rays
- Pets and rodent bites
- Loose contacts and connections
- Bent plugs and wires
- Wires are treated carelessly or exposed to stress

How it works

An AFDD+ uses embedded processing and smart evaluation of current signals, to provide sensitive detection of fault currents, combined with avoidance of nuisance tripping.

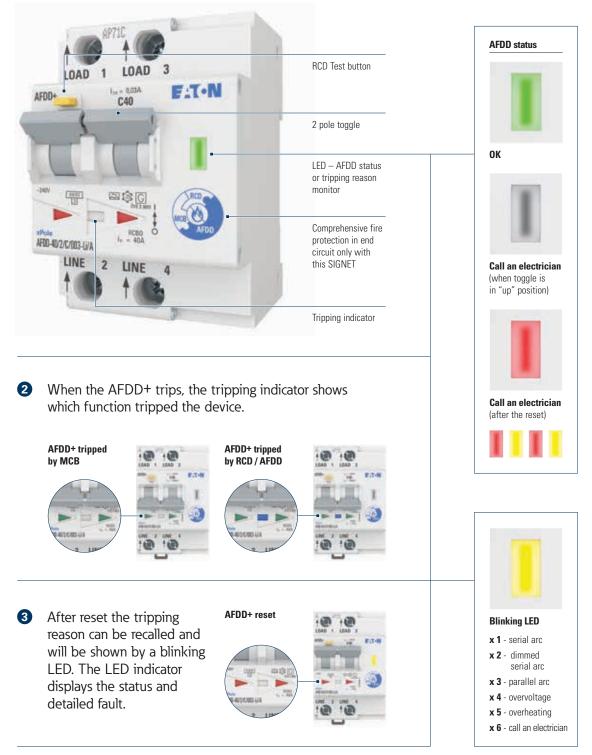
When an arc fault occurs it has unique and readily identifiable characteristics. These are:

· high-frequency noise within the fault current and


• a breakdown of the fault current, close to the zero-crossing of the driving voltage

The EATON AFDD+ uses these characteristics to detect arc fault and at the same time to prevent nuisance tripping. Detection is achieved using digital technology with embedded processing to monitor the wire for specific frequencies, and through smart evaluation of the fault currents.

Avoiding arc fault masking


Power line communication can cause intense signals that mask the noise generated by arc faults. The EATON AFDD+ has been developed to ensure this does not interfere with its detection capability.

Suddenly occuring serial arcing current

Status and tripping information

1 The LED indicator displays the status and the type of arc fault (serial or parallel) that tripped the device, which can be important for a fault finding.

Extended protection for people, property and assets

Protection against electrical hazards has evolved and improved to arrive at today's state-of-the-art EATON solutions.

Money-saving

Billions of dollars are lost because of fires. The AFDD+ makes a definite and significant contribution to reducing this loss, by offering installers for the first time a single compact device which not only increases safety but also reduces the risk of fire hazards.

Time-saving

Easy to operate and with no assembly required, the EATON AFDD+ is a fully integrated device, resistant to nuisance tripping, with sensitivity above the requirements of the product standard.

In case of an earth fault, having all protection in one device makes fault finding easier. And, as the AFDD+ provides tripping reason indicators, you, as a professional electrician, know immediately what to look for.

End User Convenience

In the case of any (earth) fault, only the circuit that caused the fault will trip so other circuits will remain powered.

Market-leading

EATON's long experience in developing electronic protection devices ensures the company's leading position in providing reliable and safe electronic protection devices – of which the AFDD+ is the latest in a long line.

Comprehensive protection in final end circuits

The AFDD+ provides threefold protection in the end circuits, in one compact device

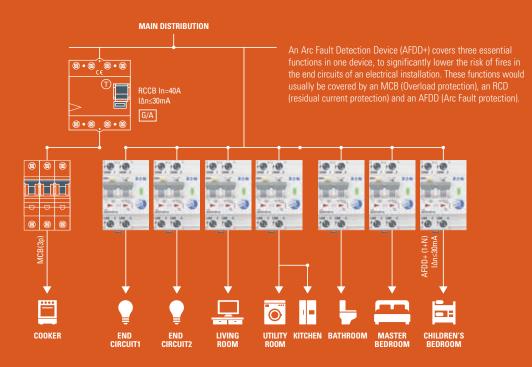
ARC FAULT PROTECTION ADDITIONAL PROTECTION FAULT PROTECTION

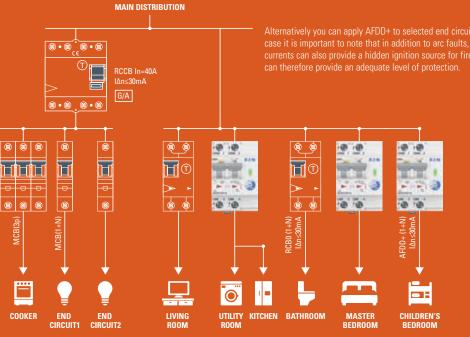
Additional protection via 30mA RCD

Fault protection e.g. via MCB or RCD

Basic protection Insulation of live parts

EATON's extended protection concept reduces the remaining risk in low voltage electrical installations.


EATON AFDD+

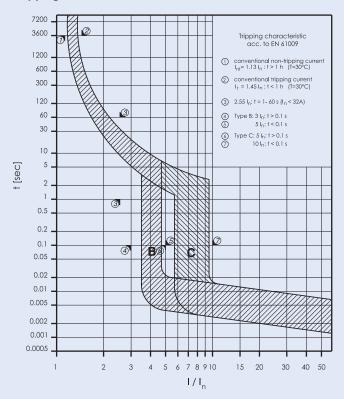

16

Choose your level of protection according to your needs

The most comprehensive protection can be achieved by installing AFDD+ for every end circuit.

important to note that in addition to arc faults, leakage currents can also provide a hidden ignition measure in the root, to reduce the overall fire risk. Moreover selective type RCDs (type S; 100mA, 300mA) are well suited to detecting leakage currents.

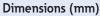
Electric Fire Protective Device,


- Arc Fault Protection AFDD+, 2-pole Detects and quenches arc faults in final circuits
- Fully combined with residual current circuit breaker (RCCB) and miniature
- circuit breaker (MCB)
- Safely detects arcs in cable length up to 70 meter
- Variable installation of N either left or right
- Rated currents from 10 to 40 A
 Tripped indication: MCB, RCCB or AFDD
- LED indication for arc faults
- Permanent self-monitoring
- Overvoltage and overheat monitoring
- 3-position DIN rail clip, permits removal from existing busbar system
- Comprehensive range of accessories suitable for subsequent installation
- 10 and 30 mA rated residual currents
- Tripping characteristics B, C
- Rated breaking capacity up to 10 kA

Accessories:

Auxiliary switch for		
subsequent installation	ZP-IHK	286052
Auxiliary switch	ZP-NHK	248437
Shunt trip release	ZP-ASA/	248438, 248439
Switching interlock	IS/SPE-1TE	101911
Buchare: 7\/ SS: 7\/ 11/NI: 7\/ 12/12: 7\/ AD	D. 7/ AE	

Busbars: ZV-SS; ZV-L1/N; ZV-L2/L3; ZV-ADP; ZV-AE


Tripping Characteristic AFDD+, Characteristics B and C

	ta	
Electrical		
Design accord	ing to	IEC/EN 62606, IEC/EN 61009
Current test m	arks as printed onto the	device
Tripping		
Line-voltage-ir	ndependent	instantaneous 250A
(8/20µs)		
		surge-current-proof
Rated voltage	U_	240 V AC; 50 Hz
Operational vo		170-264 V
Rated tripping	current I	10, 30 mA
Rated non-tripp	ping current L	0.5 I _{An}
Sensitivity	Δno	AC and pulsating DC
Selectivity clas	22	3
Rated breaking		0
AFDD 10-25		10 kA
AFDD 32-40		6 kA
Rated current	A	10 - 40 A
	hatand valta sa 11	
	hstand voltage U _{imp}	4 kV (1.2/50µs)
	eaking capacity $I_{\Delta m}$	0.1.4
EN 61009		3 kA
IEC 61009		10-16 A: 3 kA
		20-40 A: 500 A
••	ing times after load curre	ent
(acc. to IEC/EN	162606):	
Load curren	nt (A)	Tripping time (s)
≤ 2.5		<1
5		<0.5
10		<0.25
16		<0.15
32		<0.12
40		<0.12
Characteristic		B, C
Maximum bac	k-up fuse (short circuit)	100 A gL (>10 kA)
	electrical comp.	\geq 4,000 switching operations
	mechanical comp.	\geq 20,000 switching operations
	·	, 01
Mechanical		
Frame size		45 mm
Device height		80 mm
Device width		54 mm (3MU)
Mounting		3-position DIN rail clip,
wounting		permits removal from
		•
llppor and low	vor torminala	existing busbar system
Upper and low		open mouthed/lift terminals
Terminal prote	ection	finger and hand touch safe DGUV VS3, EN 50274
Terminal capa	city	1 - 25 mm ²
Busbar thickne		0.8 - 2 mm
Degree of prot	tection switch	IP20
	tection, built-in	IP40
Tripping temp		-25°C to +40°C
	ransport temperature	-35°C to +60°C
	climatic conditions	acc. to IEC/EN 61009

Connection diagram

Short Circuit Selectivity AFDD+ 10-20A towards Neozed¹⁾ / Diazed²⁾ / NH00³⁾

Short circuit currents in kA, Rated currents of fuses in A

Short circuit selectivity AFDD+ towards fuse link Neozed 1)

AFDD+	Neoz	Neozed ¹⁾								
	16	20	25	32	35	40	50	63	80	100
B10	<0,5	0,5	0,9	2	2,3	3,7	8	10	10	10
B13	<0,5	0,5	0,8	1,7	1,9	3	6	10	10	10
B16		0,5	0,7	1,5	1,7	2,4	4,4	6,8	10	10
B20			0,7	1,4	1,5	2,2	3,9	6	9,2	10
C10	<0,5	0,5	0,8	1,7	1,9	3	6,1	10	10	10
C13	<0,5	0,5	0,7	1,6	1,8	2,8	5,5	9,5	10	10
C16		<0,5	0,7	1,3	1,5	2,2	4	6,2	10	10
C20			0,6	1,3	1,4	2,1	3,7	5,6	8,5	10

Short circuit selectivity AFDD+ towards fuse link Diazed 2)

AFDD+	Diaze	Diazed ²⁾								
	16	20	25	32	35	50	63	80	100	
B10	<0,5	0,5	0,9	1,8	2,9	5,6	10	10	10	
B13	<0,5	0,5	0,8	1,5	2,4	4,5	10	10	10	
B16		0,5	0,8	1,3	2	3,4	8	10	10	
B20			0,7	1,3	1,9	3,1	7,1	10	10	
C10	<0,5	0,5	0,8	1,5	2,4	4,4	10	10	10	
C13	<0,5	0,5	0,8	1,4	2,3	4,2	10	10	10	
C16		<0,5	0,7	1,2	1,9	3,2	7,6	10	10	
C20			0,7	1,2	1,8	2,9	6,5	9,7	10	

Short circuit selectivity AFDD+ towards fuse link NHOO 3)

AFDD+	NHO	0 ³⁾										
	16	20	25	32	35	40	50	63	80	100	125	160
B10	<0,5	<0,5	0,8	1,5	2,3	3,2	5,7	9,1	10	10	10	10
B13	<0,5	<0,5	0,8	1,3	1,9	2,7	4,4	6,5	10	10	10	10
B16		<0,5	0,7	1,1	1,6	2,2	3,4	4,8	8	10	10	10
B20			0,6	1	1,4	2	3,1	4,3	7	10	10	10
C10	<0,5	<0,5	0,7	1,3	1,9	2,7	4,5	6,9	10	10	10	10
C13	<0,5	<0,5	0,7	1,2	1,8	2,5	4,1	6,1	10	10	10	10
C16		<0,5	0,6	1	1,5	2	3,1	4,4	7,5	10	10	10
C20			0,6	0,9	1,4	1,9	2,9	4,1	6,5	10	10	10

no selectivity

Type 5SE2; Size: D01, D02, D03; Operating class gG; Rated voltage: AC 400 V/DC 250 V Type 5SB2, 5SB4, 5SC2; Size: DII, DIII, DIV; Operating class gG; Rated voltage: AC 500 V/DC 500 V Type 3NA3 8, 3NA6 8, 3NA7 8; Size: 000, 00; Operating class gG; Rated voltage: AC 500 V/DC 250 V 3)

Short Circuit Selectivity AFDD+ 25-40A towards Neozed¹⁾ / Diazed²⁾ / NH00³⁾

Short circuit currents in kA, Rated currents of fuses in A

Short circuit selectivity AFDD+ towards fuse link Neozed 1)

AFDD+ Neozed 1) 16 20 25 32 35 40 50 63 80 100 B25 1,2 1,3 1,8 3,1 4,7 6 6 B32 1,2 1,7 2,7 3,8 5,5 6 B40 1,3 1,7 2,2 2,7 4,2 C25 1,1 1,3 1,8 2,8 3,9 5,6 6 C32 1,2 1,7 2,6 3,6 5,1 6 C40 1,3 1,9 3,3 3,2 5,8

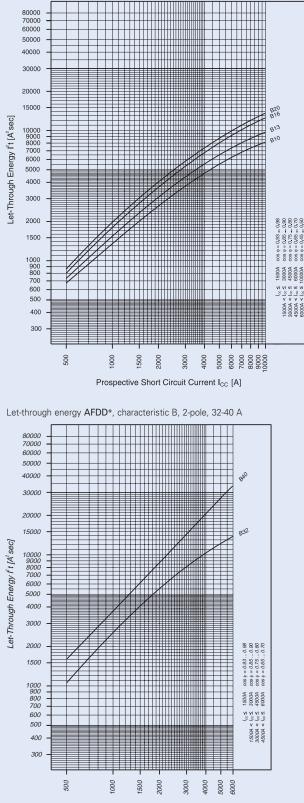
Short circuit selectivity AFDD+ towards fuse link NH00 3)

AFDD+	NH	DO ³⁾										
	16	20	25	32	35	40	50	63	80	100	125	160
B25				0,9	1,2	1,6	2,4	3,4	5,5	6	6	6
B32					1,1	1,4	2,1	2,9	4,3	6	6	6
B40							1,4	1,9	2,8	4,1	6	6
C25				0,9	1,2	1,6	2,3	3	4,6	6	6	6
C32					1,1	1,5	2,1	2,8	4,3	6	6	6
C40							1,5	2,1	3,1	5,4	6	6

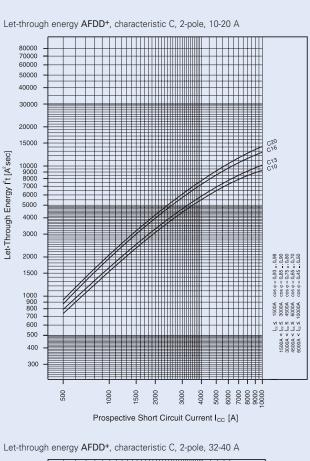
no selectivity

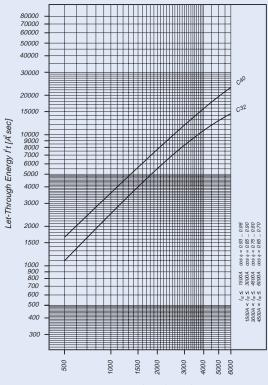
Type 5SE2; Size: D01, D02, D03; Operating class gG; Rated voltage: AC 400 V/DC 250 V

Type 5SB2, 5SB4, 5SC2; Size: DII, DIII, DIV; Operating class gG; Rated voltage: AC 500 V/DC 500 V


Type 3NA3 8, 3NA6 8, 3NA7 8; Size: 000, 00; Operating class gG; Rated voltage: AC 500 V/DC 250 V

AFDD+	Diaz	ed ²⁾							
	16	20	25	32	35	50	63	80	100
B25				1,1	1,5	2,4	5,5	6	6
B32					1,4	2,1	4,3	6	6
B40						1,4	2,4	2,9	5,1
C25				1,1	1,5	2,3	4,4	6	6
C32					1,4	2,2	4,1	5,6	6
C40						1,6	2,8	3,6	6


Short circuit selectivity AFDD+ towards fuse link Diazed 1)


Let-through Energy AFDD+

Prospective Short Circuit Current I_{CC} [A]

Prospective Short Circuit Current I_{CC} [A]

Electric Fire Protective Device, Arc Fault Protection AFDD+ 10 kA, 2-pole

Short-time delayed, pulsed-current-sensitive, Type A

SG06416	
	-
	- 14
	11
	3

06416

Ι _n /Ι _{Δn} (Α)	Type Designation	Article No.	Units per package
Characteristic B			
10/0.01	AFDD-10/2/B/001-Li/A	187166	1/40
13/0.01	AFDD-13/2/B/001-Li/A	187178	1/40
15OL/0.01	AFDD-15/2/B/001-Li/A-OL*	187190	1/40
16/0.01	AFDD-16/2/B/001-Li/A	187202	1/40
10/0.03	AFDD-10/2/B/003-Li/A	187169	1/40
13/0.03	AFDD-13/2/B/003-Li/A	187181	1/40
15OL/0.03	AFDD-15/2/B/003-Li/A-OL*	187193	1/40
16/0.03	AFDD-16/2/B/003-Li/A	187205	1/40
200L/0.03	AFDD-20/2/B/003-Li/A-OL*	187214	1/40
20/0.03	AFDD-20/2/B/003-Li/A	187220	1/40
25/0.03	AFDD-25/2/B/003-Li/A	187226	1/40
Characteristic C			
10/0.01	AFDD-10/2/C/001-Li/A	187172	1/40
13/0.01	AFDD-13/2/C/001-Li/A	187184	1/40
15OL/0.01	AFDD-15/2/C/001-Li/A-OL*	187196	1/40
16/0.01	AFDD-16/2/C/001-Li/A	187208	1/40
10/0.03	AFDD-10/2/C/003-Li/A	187175	1/40
13/0.03	AFDD-13/2/C/003-Li/A	187187	1/40
15OL/0.03	AFDD-15/2/C/003-Li/A-OL*	187199	1/40
16/0.03	AFDD-16/2/C/003-Li/A	187211	1/40
200L/0.03	AFDD-20/2/C/003-Li/A-OL*	187217	1/40
20/0.03	AFDD-20/2/C/003-Li/A	187223	1/40
25/0.03	AFDD-25/2/C/003-Li/A	187229	1/40

Electric Fire Protective Device, Arc Fault Protection AFDD+ 6 kA, 2-pole

Short-time delayed, pulsed-current-sensitive, Type A

Ι _n /Ι _{Δn} (A)	Type Designation	Article No.	Units per package	
Characteristic B				
32/0.03 40/0.03	AFDD-32/2/B/003-Li/A AFDD-40/2/B/003-Li/A	187232 187238	1/40 1/40	

Characteristic C

32/0.03 40/0.03 AFDD-32/2/C/003-Li/A AFDD-40/2/C/003-Li/A 1872351/401872411/40

* Only applicable for Norway

Electric Fire Protective Device, Arc Fault Protection AFDD+

10 kA, 2-pole

Non-delayed, pulsed-current-sensitive, Type A

I _n /I _{Δn} (A)	Type Designation	Article No.	Units per package
Characteristic B			
10/0.01	AFDD-10/2/B/001-A	187165	1/40
13/0.01	AFDD-13/2/B/001-A	187177	1/40
15OL/0.01	AFDD-15/2/B/001-A-OL*	187189	1/40
16/0.01	AFDD-16/2/B/001-A	187201	1/40
10/0.03	AFDD-10/2/B/003-A	187168	1/40
13/0.03	AFDD-13/2/B/003-A	187180	1/40
15OL/0.03	AFDD-15/2/B/003-A-OL*	187192	1/40
16/0.03	AFDD-16/2/B/003-A	187204	1/40
20OL/0.03	AFDD-20/2/B/003-A-OL*	187213	1/40
20/0.03	AFDD-20/2/B/003-A	187219	1/40
25/0.03	AFDD-25/2/B/003-A	187225	1/40
Characteristic C			
10/0.01	AFDD-10/2/C/001-A	187171	1/40
13/0.01	AFDD-13/2/C/001-A	187183	1/40
15OL/0.01	AFDD-15/2/C/001-A-OL*	187195	1/40
16/0.01	AFDD-16/2/C/001-A	187207	1/40
10/0.03	AFDD-10/2/C/003-A	187174	1/40
13/0.03	AFDD-13/2/C/003-A	187186	1/40
15OL/0.03	AFDD-15/2/C/003-A-OL*	187198	1/40
16/0.03	AFDD-16/2/C/003-A	187210	1/40
20OL/0.03	AFDD-20/2/C/003-A-OL*	187216	1/40
20/0.03	AFDD-20/2/C/003-A	187222	1/40
25/0.03	AFDD-25/2/C/003-A	187228	1/40

Electric Fire Protective Device, Arc Fault Protection AFDD+

6 kA, 2-pole

Non-delayed, pulsed-current-sensitive, Type A

$I_n/I_{\Delta n}$ (A)	Type Designation	Article No.	Units per package	
Characteristic B				
32/0.03 40/0.03	AFDD-32/2/B/003-A AFDD-40/2/B/003-A	187231 187237	1/40 1/40	

Characteristic C

32/0.03 40/0.03 AFDD-32/2/C/003-A AFDD-40/2/C/003-A 1872341/401872401/40

Electric Fire Protective Device, Arc Fault Protection AFDD+ 10 kA, 2-pole

Non-delayed, alternating-current-sensitive, Type AC**

sg06416	
	-
	-116

$I_n/I_{\Delta n}$ (A)	Type Designation	Article No.	Units per package
Characteristic B			
10/0.01	AFDD-10/2/B/001	187164	1/40
13/0.01	AFDD-13/2/B/001	187176	1/40
15OL/0.01	AFDD-15/2/B/001-OL*	187188	1/40
16/0.01	AFDD-16/2/B/001	187200	1/40
10/0.03	AFDD-10/2/B/003	187167	1/40
13/0.03	AFDD-13/2/B/003	187179	1/40
15OL/0.03	AFDD-15/2/B/003-OL*	187191	1/40
16/0.03	AFDD-16/2/B/003	187203	1/40
20OL/0.03	AFDD-20/2/B/003-OL*	187212	1/40
20/0.03	AFDD-20/2/B/003	187218	1/40
25/0.03	AFDD-25/2/B/003	187224	1/40
Characteristic C			
10/0.01	AFDD-10/2/C/001	187170	1/40
13/0.01	AFDD-13/2/C/001	187182	1/40
15OL/0.01	AFDD-15/2/C/001-OL*	187194	1/40
16/0.01	AFDD-16/2/C/001	187206	1/40
10/0.03	AFDD-10/2/C/003	187173	1/40
13/0.03	AFDD-13/2/C/003	187185	1/40
15OL/0.03	AFDD-15/2/C/003-OL*	187197	1/40
16/0.03	AFDD-16/2/C/003	187209	1/40
20OL/0.03	AFDD-20/2/C/003-OL*	187215	1/40
20/0.03	AFDD-20/2/C/003	187221	1/40
25/0.03	AFDD-25/2/C/003	187227	1/40

Electric Fire Protective Device, Arc Fault Protection AFDD+ 6 kA, 2-pole

Non-delayed, alternating-current-sensitive, Type AC

$I_n/I_{\Delta n}$ (A)	Type Designation	Article No.	Units per package
Characteristic B			
32/0.03 40/0.03	AFDD-32/2/B/003 AFDD-40/2/B/003	187230 187236	1/40 1/40

Characteristic C

32/0.03 40/0.03

AFDD-32/2/C/003 AFDD-40/2/C/003 187233 1/40 187239 1/40

* Only applicable for Norway

** Application of AC type in not allowed in every country, this depends on local wiring regulations. Please check your local standards.

At Eaton, we're energized by the challenge of powering a world that demands more. With over 100 years' experience in electrical power management, we have the expertise to see beyond today. From ground-breaking products to turnkey design and engineering services, critical industries around the globe count on Eaton.

We power businesses with reliable, efficient and safe electrical power management solutions. Combined with our personal service, support and bold thinking, we are answering tomorrow's needs today. Follow the charge with Eaton. Visit uk.eaton.com

To find out more about how to protect what matters, visit eaton.com/gb/livesafe.

Powering Business Worldwide

Eaton Eaton Electric Limited 270 Bath Road Slough Berkshire SL1 4DX United Kingdom

© 2018 Eaton All Rights Reserved Publication No. BR003012EN / CSSC-893 February 2018

Changes to the products, to the information contained in this document, and to prices are reserved; so are errors and omissions. Only order confirmations and technical documentation by Eaton is binding. Photos and pictures also do not warrant a specific layout or functionality. Their use in whatever form is subject to prior approval by Eaton. The same applies to Trademarks (especially Eaton, Moeller, and Cutler-Hammer). The Terms and Conditions of Eaton apply, as referenced on Eaton Internet pages and Eaton order confirmations.

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

