General Information

Moeller is Eaton

Powering business worldwide

Discover Eaton - a leader in the power management field

Since 1911, when our company began trading as a small truck parts supplier, Eaton ${ }^{\oplus}$ Corporation has come a long way. Today, as a diversified power management company, Eaton has sales of $\$ 11.9$ billion USD (FY 2009), employs 70,000 people and has customers in more than 150 countries. Everyday, we help companies across the world to manage power, and do more, while consuming less energy.

Eaton's innovative products, solutions and technologies are designed to help customers to manage power and conserve resources while working more productively, safely and sustainably. Our integrated and diversified business strategy ensures that we remain at the forefront of our industry, decade after decade.

Aerospace

A leading global supplier to commercial and military aviation and aerospace industries. An extensive technology portfolio includes hydraulic systems, fuel systems, motion control systems, propulsion sub-systems, cockpit controls and displays and fluid health monitoring systems. Our products improve fuel economy, aircraft performance, reliability and safety.

Truck

A leader in the design, manufacture and marketing of complete line of drivetrain systems and components for medium- and heavy-duty commercial vehicles. Under the
"Roadranger" brand, Eaton also markets lubricants, safety products and service tools. Eaton's hybrid power systems have earned the company recognition as a global leader in alternative power for commercial vehicles.

Electrical

A global leader in electrical control, power distribution, uninterruptible power supply and industrial automation products and services. Our products provide customer-driven PowerChain Management ${ }^{\circledR}$ solutions to serve the power system needs of the industrial, institutional, government, utility, commercial, residential, IT, mission critical and OEM markets worldwide.

Powering business more sustainably

Sustainability - smaller footprint in the world

The principle of sustainability means meeting the current needs of our own society without compromising the needs or options of future generations. It is a principle, which forms the very core of our design and production philosophy and guides all our activities across the world. Our commitment to reducing our own ecological footprint covers a wide range of green technologies, products and services that help our customers utilise electrical power more efficiently, while improving environmental performance.

Eaton has been recognised throughout the world for its uncompromising business ethics. For example, it was listed as one of the 'World's Most Ethical Companies' on the Ethisphere Institute's annual list for three consecutive years (2007, 2008 and 2009).

Automotive

A supplier of critical components that reduce emissions and fuel consumption and improve stability and performance of cars, light trucks and commercial vehicles. Principal products include engine valves and valve train components, transmission and engine controls, supercharger, locking and limited slip differentials, cylinder heads, fluid conveyance components, body mouldings and spoilers.

Hydraulics

A worldwide leader in reliable, high-efficiency hydraulic systems and components for use in mobile and industrial applications. Markets include agriculture, construction, mining, forestry, utility, material handling, earth moving, truck and bus, machine tools, moulding, primary metals, automotive, power generation, port machinery and entertainment.

Learn more about Eaton Green Solutions at www.eaton.com/greensolutions

When you see this symbol, you know the solution represents an Eaton benchmark for environmental performance.

Powering electrical systems worldwide

Buildings

- Residential
- Healthcare
- Education
- Commercial offices
- Retail
- Public sector
- Airports
- Electrical distribution solutions for safe and efficient power delivery
- Power quality systems for uptime and reliability
- Power metering and monitoring to add intelligence and save costs
- Industrial control products for HVAC applications

Information Technology

- Data centers
- Telecommunication
- Networks
- Computer rooms
- World's most efficient line of UPSs to reduce footprint and save energy
- Reliable power systems with inherent redundancy to improve availability
- Power metering and monitoring to diagnose problems and lower costs
- Local service and support for quick response

Public and private sectors

Buildings, Information Technology, Industrial \& Machinery, Energy \& Utilities We provide reliable, efficient and safe power management.

Industrial \& Machnery

- Manufacturing
- Agriculture
- Construction
- Mining and metals
- Processing:
- Petrochemicals
- Pharmaceuticals
- Pulp and paper
- Material handling
- Electrical distribution equipment to deliver power throughout the enterprise
- Control \&automation and power quality equipment for process control
- Power metering and monitoring to manage energy costs and uptime
- Power and motion control products to optimize productivity, reliability, safety and operator comfort

Energy \& Utilities

- Renewable energy:
- Solar
- Wind
- Hydropower
- Traditional energy:
- Oil
- Gas
- Smart grid
- Water and waste water
- Electrical balance of system and turnkey services for residential, utility and commercial solar installations
- Power distribution equipment, control components and system installations services
- Network power grid technology for intelligent data, lower costs and crew / publicsafety

Complete coverage of the market worldwide in all standards

Local market leader with global competence

As in so many respects with Eaton and Moeller, the presence of one in the different regions of this world also complements that of the other. In markets that adhere to IEC standards, components from Moeller are established, and in the world of UL/CSA , Eaton is a key player. Now all customers are benefiting from first-rate engineering and the combined know-how in research and development - no matter which standards they use.

In electrical engineering, it was less continents and regions but rather standards that drew boundaries. Historically grown in the U.S. market, Eaton focused on product series according to UL/CSA standards. Consequently, Eaton's Electrical Sector was always strongly geared towards the markets in North and South America, the Middle East, Benelux as well as the United Kingdom.
Moeller series products from Eaton are the customers' first choice in markets adhering to IEC standards for innovative switchgear and control circuit devices, control, drive and operating systems as well as sophisticated visualization and communication.

There's a certain energy at Eaton. It's the power of uniting some of the world's most respected names to build a brand you can trust to meet every power management need. The energy created supports our commitment to powering business worldwide.

Powering Business Worldwide

From generation and distribution to protection and control, Eaton allows you to proactively manage your complete power system by providing electrical solutions that make your applications safer, more reliable, and highly eff cient. Visit www.eaton.com/electrical.

Eaton Main Catalogue for Industry

Highlights

SmartWire-Darwin Communication System

Evolution in the control panel

For the manufacturer of machinery and installations, finding the optimal balance between maximum functionality and optimal costs is paramount. Designed for further development, SmartWire Darwin is a communication system for industrial switchgear in control panels and the periphery: from control, protection and switching to actuation, operation and monitoring.
One technology from which you will profit, now and in the future

SmartWire Darwin products in this catalogue:
Chap. 1 - SmartWire Darwin- the complete range
Chap. 2 - Pilot devices
Chap. 5 - Contactors
Chap. 7 - Motor protective circuit breaker
Chap. 9 -Softstarter
Chap. 17 - Compact circuit-breakers

SmartWire Darwin reduces cabling effort on many switchgear systems by over 60 percent and helps save costs along the entire work chain - from design through construction and commissioning, up to expansion. Here, SmartWire-DT relies on proven Moeller industrial switchgear devices and enables them to communicate.

xBoard enclosure and energy distribution program

Utilised in industry and buildings - enclosures from Eaton are convincing. High flexibility, easily adapted to frequently changing circumstances.
Designed for long-term mechanical loads.
High mechanical stability.
Numerous enclosure variants.
Time-saving mounting units.
Prefabricated energy and control distributions.
Our system partner switchgear systems operate prefabricated energy and control distributions worldwide.
www.moeller-systempartner-schaltanlagen.net

Moeller Systempartner Schaltanlagen

CS sheet steel wall-mounting enclosure
45 enclosure sizes: $250 \times 200 \times 150 \mathrm{~mm}-$ $1200 \times 1200 \times 250 \mathrm{~mm}$.
Effective protection against direct contact with live parts. Full safety and protection from damaging ambient conditions through protection type IP66. Ideal for inclusion of SmartWire Darwin components. - Chap. 21

Busbar system SASY 60i
Utilized in control panels in machinery and installations worldwide. Large air and creepage distances according to UL508A.
Especially suitable for CI insulated enclosures (Chap. 20), CS steel enclosures (Chap. 21) and combination enclosures (Chap. 22).

- Chap. 16

Service distribution board IVS

A wide variety of mounting units, tailored to original Eaton switchgears and protection devices. Time-saving, easy mounting. - Chap. 22

CI insulated enclosures

Flexible in assembly: individual enclosures, wall-mounting distribution systems, floor standing distribution boards in many sizes always the right solution.
Ideal for the circuit-breaker NZM (Chap. 17) and the photovoltaic components (cf. alongside) from Eaton. Chap. 20

Combination enclosure XVTL

55 sizes to select from. Height: 1400-2000mm, width: 425-1200 mm depth: 300-800 mm.
Robust type, in commercial buildings as well as in industry. Chap. 22

Safety Technology-Control the unexpected

Safety Technology from Eaton - the comprehensive product portfolio for safety-related solutions. Depending on the specific application and requisite hazard protection, the appropriate safety functions in compliance with the highest requirements of international safety norms are utilized.
Safety Technology components from Eaton are certified by TÜV-Rheinland or the German Institute for Occupational Health and Safety (BGIA) and cover the entire safety chain:

- Input: fast and safe recording.
- Logic: safe monitoring and processing.
- Output: reliable switching off.

Safety engineering in this catalogue:
The fundamental purpose of all Eaton devices is to help you control electricity safely and reliably. Several components are especially designed and constructed for safetyrelated applications.
Chap. 2 - Pilot devices, hand and foot switches
Chap. 2 - Pilot devices, emergency stop devices
Chap. 2 - Pilot devices, signal colums with acoustic alarm
Chap. 3 - Position switches, sensors, safety position switches
Chap. 4 - Cam switches, switch-disconnectors
Chap. 5 - Contactors, power contactors
Chap. 5 - Contactors, contactor relays
Chap. 5 - Contactors, contactor monitor CMD
Chap. 13 - Safety relay ESR5
Chap. 13 - Control relay suitable for safety circuits easySafety

Safe logic processing with safety relay ESR and safety-related control relay easySafety.
Flexible processing with safety-related control relay easySafety. All in one: easySafety combines safety and control functions in one device.
Cost-effective monitoring with safety relay ESR5. The appropriate safety function for each application, in a smaller enclosure width.

Renewable energy - photovoltaics

Photovoltaics - Covert sunlight to electricity with solar cells. A sustainable, renewable energy source, used in private or public buildings and open space installations.
For photovoltaic applications in the industrial and building sectors, Eaton offers a product range of DC switching devices for direct voltages up to
 found in these catalogues:
Chap. 5 - DC contactors
Chap. 7 - DC string circuit-breaker
Chap. 7 - DC switch-disconnector
Chap. 17 - Compact circuit-breakers up to 1400 A
Chap. 19 - DC fuse switch-disconnector
In the catalogue Installation Devices 2010: Residual current devices, AC transient voltage surge suppression
In the catalogue Building Services Automation xComfort 2009: Home/Room-Manager For information regarding DC transient voltage surge suppression and inverters, please contact us.

DC overvoltage protection Home/Room-Manager
DC-String circuit-breaker

Eaton Main Catalogue for Industry

Highlights

Eaton Sensors

The Eaton sensors significantly extend the previous Moeller spectrum of position switches and sensors.
The familiar position switches of the series LS-Titan have been supplemented by a great number of electrical sensors: inductive, optical and capacitive. The basic devices have been supplemented and completed by a comprehensive scope of accessories for mounting aids, cables and multisensor connection blocks.

GLOBAL series E57:
Inductive sensors in standard industrial design.

Comet series:

Optoelectronic sensors with integrated one-way or reflection light barriers, with/without background suppression, optional connection of fibre optic cables.

PREMIUM plus series:
Inductive sensors in miniature design. Include greater clearances, longer lifespans.

E58 Harsh Duty:
For use in harsh environments, where high pressure or steam jets etc. are used

iProx series:
The programmable inductive sensor permits variable setting of switching interval and functionality as well as shielding from background metals.

E65 SM:

The TargetLockTM technology stands for the simplest setting work. Optimal performance in a smaller construction type.

Series E52 and E56:

Inductive proximity switch. High performance and durability in industrial standard enclosures. \rightarrow Page 3/xx

Switchgear for the global market and for North America:

Eatons After Sales Service

This is the new name of the familiar Field Service from Moeller. Whilst the name has been changed, the reliable, fist class service remains. Comprehensive information and Terms and Conditions are found in Chapter 23. The overview pages at the beginnings of the chapters also refer to Eaton After Sales Service whenever services relevant to you exist for the indicated product.

Service Specialists

Gain the benefit of our Service personnel. Comprehensive expertise linked with long term experience and modern equipment help you find the solution to your tasks.

Material

Components, cards and spare parts of the Eaton product range are available for your use.

Logistics

Personnel and material are furnished according to your requirements, professionally and on time.

Service products

The After Sales Service offers appropriate service products for the Eaton products.

Hotline

Free malfunction service around the clock.
+49 (0) 1805223822 (24/7)
$€ 0.12 €$ per minute through the
Deutsche Telecom network.
Onsite Service
Onsite service, analysis, installati-
ons, expansions and maintenance.

Repairs

Repair and exchange service for Eaton devices.
Online Service
Downloads, FAQs and interactive troubleshooting.

Air circuit breakers IZM

width increases with the required rated operational current.
A compact, cost-effective size can always be selected.
These especially robust circuitbreakers are already deployed worldwide
in many hundreds of thousands of heavy duty industrial applications. Large material thicknesses and a high short-time withstand current are its characteristic features.

Open circuit-breakers in this catalogue:
Chap. 18 - Molded-case circuit breaker IZM and switch-disconnector IN up to 6300 A

Frequency inverters $\mathrm{M}-\mathrm{Max}^{\mathrm{TM}}, \mathrm{H}-\mathrm{Max}^{\mathrm{TM}}$

Frequency inverter M-Max ${ }^{\text {TM }}$

Small and compact for assigned motor outputs up to $14 \mathrm{~A}(7.5 \mathrm{~kW}$ at 400 V$)$. Especially suitable for applications where simple operation and economic efficiency are important. With integrated EMC filter and serial interface (RS485, Modbus RTU), preferred for use in compact machinery controls. Optional field bus connections such as CANopen, DeviceNet und PROFIBUS DP expand communication possibilities.

Frequency inverter H-Max ${ }^{\text {TM }}$

Compact design in IP20 and IP54 for assigned motor outputs up to 310 A (160 kW at 400 V). With integrated DC link choke and EMC filter, ideal for heating, ventilation and air conditioning technology. Serial interfaces and field bus connections as with M-MAX and additional networking protocol BACNet.

Eaton Main Catalogue for Industry

Catalogues

Eaton Online Catalogue

The catalogue portal is your entryway to the online catalogue. A high performance search function and the intuitive graphic navigation leads you quickly to the desired product.
Steady updating makes the online catalogue a valuable supplement and continuation of the printed catalogue.
http://de.ecat.moeller.net

THE PRODUCT GROUP TREE

```
Information
Control circuit devices
(Safety) position switch
Pressure switches
Cam switches, switch-disconnectors up
to 315 A
Safety rend measuring relays
    Safety relays, safety control relays
    Touch panel, multi-function-display
    Touch panel, PLC, IVO expansion
    Contactors
    Overload relays
    Motor-starter combinations
    Soft starters
    frequency inverters
    distributed drives engineering
    Compact circuit-breakers up to 1600 A
    Compact switch-disconnectors up to
    1600 A
    Circuit breakers up to 6300 A
    Miniature circuit-breakers
```

Transformers

The product group tree:
Clear layout of the Moeller products in product groups.

The one-dimensional product structure ensures the user can easily locate the product with a few clicks.

The selection aid:
3 clicks to product
Selection-relevant features allow users to locate their products easily, without problems. From general to specific to product - 3 clicks!

A suggestion list brings the search an above-average success rate, because nothing makes less sense than a 0 -hit result.

Search/result list: high performance search with suggestion list by "Entry".

Your guide through the Main Catalogue for Industry 2010

The main catalogue Industry 2010 presents a wide offering of widely differing products. Product descriptions in this catalogue are correspondingly complex and varied. Nonetheless, you can easily and quickly find your way to the desired product.

Quicklinks

Each ordering page contains a Quicklink, e.g. HPL01001DE. Go to the web page of your Eaton company in Germany, Austria or Switzerland and enter the Quicklink in the search window there.

Familiarise yourself with the systematics of this catalogue. Three orientation aids to entry:

- Table of contents
- Part number list
- Alphabetical index

In each chapter, the products are always presented in the same sequence on six different page types:

- Chapter entry with table of contents
- System and technical overviews
- Ordering
- Engineering
- Technical data
- Dimensions

This systematic generally stretches itself once over the entire chapter, e.g. for the circuit-breakers and switch-disconnectors NZM up to 1600 A.
However, it may also repeat itself several times within a chapter, as in the pilot devices, where the themes foot and hand switches, RMQ-Titan, RMQ16 and signal columns SL each comprise a small sub-chapter with the sequence: entry, overview, ordering, engineering, technical data, dimensions.

A glance in the entire table of contents or the alphabetical index brings you to Chapter 5.

The table of contents for Chapter 5 guides you to the page where ordering information in located.

Or you may go to the graphic over- The ordering page contains all the view at the start of the chapter, information you need to place an where all detail information is available. order.

New in this catalogue: extensive information for the use of Eaton Moeller devices for world markets in North America.

Notes to the use of the device is provided by the pages from type "Engineering".

Comprehensive technical data is found on the pages with that name.

The dimensions needed to plan mounting and installation are found in the "Dimensions" pages.

Approvals, directories After Sales Service

This closing chapter of the Main Catalog Industry 2010 from Eaton contains all the essential information that does not refer directly to specific products or product groups. The details are found to the right in the table of contents.

Technical instructions
Terminal capacities +++ Power Conversion Equipment nach UL +++ Rated motor currents of three-phase motors

After Sales Service

Fast and competent help when devices or installations fail +++ Support during commissioning minimizes risk of failure +++ Extended warranty minimizes damage in case of malfunction +++ Inspection and maintenance minimize risk of failure

Switchgear for North America

Everything you need to know to deploy devices in North America +++ Substantial safety increase through selection of the correct devices +++ Valuable tips for the correct documentation of devices, machinery and installations intended for deployment in North America +++ A comprehensive, complete description of the subject that has yet to find its equal

Eaton and Moeller worldwide

You may find the current addresses of Eaton representatives worldwide on the Internet: www.moeller.net/address

Helpline

24/7 Hotline

Unscheduled machine and plant downtime, system faults and device failures: Get round-the-clock expert advice (without contractually agreed services):
+49 (0)180 5223822 (24/7)
$0.12 €$ per minute from within the Deutsche Telekom telephone network

Help desk
During business hours, we support you in commissioning, application queries right through to fault analysis, which can also be carried out by remote diagnosis. +49 (0)228 6023640

Monday to Friday between 8:00 and 16:00 hours. E-mail:
AfterSalesEGBonn@eaton.com
Fax: +49 (0)228 $\mathbf{6 0 2 6 1 4 0 0}$

Online diagnostics

We can provide special assistance if you wish to analyze and rectify faults on products. You can carry out interactive troubleshooting via the Internet with direct access to the After Sales Service database.
http://www.moeller.net/aftersales

Onsite Service

Troubleshooting onsite
You can also obtain onsite troubleshooting. Qualified service technicians and specialists can visit you to rectify faults quickly and reliably.

Installation and commissioning support

Contact us for expert support with installation and commissioning. Specialists are at hand to support you with hardware and software issues.

Conversions and expansions

Whether automation equipment, circuit breakers or other components: we help you make sure that your machines and plants are always up-to-date. This applies specially for equipment that can no longer be repaired. A failure of these components would result in costly production downtimes.

Inspection and maintenance

Reliable operation of power distribution systems is vital for uninterrupted production and personnel protection. Our experiences team supports you with the inspection and maintenance of low-voltage distribution systems and the testing of circuit breakers.
For flatrate prices please inquire.

Thermography

At low cost and using specialist hardware, our specially trained experts locate weak spots in running operation to help you avoid expensive production downtimes. This saves you the cost of expensive measuring equipment and personnel training.

Measurement and system testing

Every technician knows that electronic controllers can fail, or circuit breakers trip without apparent reason. And replacing the offending device does not solve the problem.
To avoid lengthy, expensive troubleshooting, it makes sense to perform a network analysis over a longer period of time. We can support you with this.

Repairs

Direct exchange

Unexpected machine and system downtimes incurring considerable costs can arise on account of device failures. Replacing defective components on time can help significantly cut these costs.
Selected products of current and discontinued ranges are available with the Direct Exchange service of our After Sales Service.

Repair

The repair of products in our Service Center is an inexpensive option for fault rectification.

Service agreements

Telephone fault advice Installation and commissioning support
Conversions and expansions
Inspection and maintenance Spare parts

Basic agreements for all contract types according to customer requirements.

Extended warranty

Our After Sales Service offers two versions of the Extended Warranty service product. It extends the standard warranty for drives and soft starters by 12 months if the devices have been commissioned by our After Sales Service or an authorized service provider. The flat-rate commissioning charge depends on the device's rating.
The Extended Warranty can be extended up to 24 months.

Working on live equipment
To carry out testing on systems that must remain live for operational reasons, our After Sales Service cooperates with a service partner.

Hourly charges

Charges are calculated according to the hourly or daily rates listed below and, where applicable, according to the relevant regulations of the federal wage agreement for the special working conditions of installation personnel in the iron, metal and electrical industries (BMTV), and the associated wage agreement for subsistence allowances and aggravation bonuses.

The remaining time is calculated as working time.
All listed rates are net without deductions.

Germany
(Other countries please enquire)

Standard rates, personnel	$€ /$ hour
Installation and commis- sioning support in power distribution systems	$85.00 €$

Standard rates, personnel	$€ /$ hour
Inspection and mainte- nance of plants and circuit breakers	$107.00 €$
Repairs and troubleshooting of circuit breakers/Arcon	$127.00 €$
Software creation for drives and automation	$127.00 €$
Commissioning/trouble- shooting for automation equipment and drives, application optimization	$142.00 €$

Normal working hours

Workdays Monday to Friday, 7 hours each between 7:00 and 19:00 hours.

Overtime and aggravation surcharges

For working times or working conditions requiring surcharges, the following surcharges apply for commissioning and installation:
25% for the first two hours of overtime per day beyond the normal working times, and from 6:00 to 7:00 hours and from 19:00 to 20:00 hours
25% Saturdays for the first two hours

50\% for any further remaining overtime

50\% for overtime between the hours of 20:00 and 6:00 (night-time work)
50\% for overtime worked following night-time work up to the start of the normal day-time shift
70% for work on Sundays
100\% for work on Good Friday, Easter Monday, Ascension Day, Pentecost, Corpus Christi, 3 October, 1 November, and 26 December

150\% for work on 1 January, Easter Sunday, 1 May, Whitsunday, 25 December, late work on 24 December between the hours of 17:00 and 20:00, and night-time work in the nights immediately preceding 25 December and 1 January.

Tripping

According to the applicable tax regulations within Germany/abroad
Accommodation costs are charged at flat rate or on evidence.

The starting point for the calculation of subsistence allowances is the business location.

Travel costs

Car $0.80 €$ per kilometer traveled, calculated from the business location.

Rail First class ticket plus any surcharges
Air Business Class
Plus any costs for regional/local transport, telephone and costs related directly with the journey

Return journeys

For return journeys scheduled according to tariff, the rates for other travel days plus additional expenses for reserving accommodation apply.
Abroad: Charges contractually agreed.

Transport costs

For transport of travel luggage, tools, measuring instruments and other material generally $20.00 €$
Surcharges for air travel on verification of costs.

Instruments

The above rates include the furnishing of simple measuring instruments and standard tools. For measuring and other instruments exceeding the normal equipment, a flat rate of $360.00 €$ is charged per started week. The evaluation of measurement results is charged separately.

Emergency service flat rate

Outside normal working hours $165.00 €$ plus material costs.
Courier journeys are charged separately.
Important: Goods ordered and delivered as part of the emergency service can not be returned!

Hired equipment

For hired equipment, a flat rate depending on the equipment is charged for the first week, and thereafter 2.1 \% of the gross list price per started week.

Cost estimate

Cost estimates for on-site equipment repairs are calculated at a rate of $165.00 €$. For all other cost estimates please inquire.

Warranty

The warranty period for all repairs, replacement devices and services provided is 12 months from the date of delivery or performance.

In their basic version, the Moeller-branded Eaton devices are approved for use throughout the world, including the USA and Canada. As such, they can be used without restriction as devices for world markets. The standard versions of some devices, such as circuit breakers, can be used worldwide except in the USA and Canada. For export to North America, numerous devices are available in special UL- and CSA-approved versions.
For currently available approvals, see our website:
https://wss.moeller.net/
approbationen/step1.do
Eaton's Moeller-branded low-voltage switchgear and switchgear assemblies conform to national and international specifications, making it possible to construct control systems that will conform to the national and international specifications of any country in the world.
This, of course, means that due consideration must be given to the national standards of the respective country, such as those concerning installation, operation, installation materials and methods, as well as any pertaining to circumstances such as severe environmental conditions. The device rating data given in this catalog for $220-240 \mathrm{~V}, 380-440 \mathrm{~V}$, $500 \mathrm{~V}, 600 \mathrm{~V}$, and 690 V covers virtually all existing three-phase systems worldwide.
Deviating requirements for the USA and Canada are given in detail in each chapter of this catalog. Read also the detailed description "Switchgear for North America" from Page 22/13. For the worldwide use of switchgear, special installation standards and approval requirements must also be observed in addition to the widely differing system conditions: Where screw fuses are used in a control system, some European countries - such as Denmark, Finland, the Netherlands, Norway and Sweden - require gage screws. In this case, "FORM P" fuse bases must be used Switzerland no longer requires the use of gage screws, but they are still often requested by customers.
The majority of countries permit the import of switchgear assemblies and devices on the manufacturer's undertaking that they have been constructed in accordance with the pertinent specifications. In some countries, such as the USA and Canada, however, there is a legal obligation to obtain official approval. In these countries, devices and enclosures - sometimes even complete control systems - are tested and approved by independent bodies.
In Scandinavia and in Switzerland, an official approval for low-voltage switchgear and controlgear had to be sought to some extent. For industrial switchgear, this legal obligation has now been abolished, provided the devices have been manufactured and tested in accordance with harmonized European standards (such as IEC/EN 60947). There is then no longer a requirement for them to carry their country's own approval mark. Eaton develops switchgear to international
standards, such as IEC/EN 60947 and applies the corresponding marks.
Devices that conform to the European Low-Voltage Directive and are sold within the European Union must contain the CE mark.

C

Europe, Conformité Européen (CE)
The CE mark indicates that the device corresponds with all relevant requirements and standards. Mandatory marking allows unrestricted use of marked devices within the European economic area.
Devices sold within the European union must comply with the Electromagnetic Compatibility (EMC) Directive. Eaton has performed the required tests for all Moeller-branded products subject to this Directive and applied the CE mark, which demonstrates compliance with the EMC Directive.
Because devices bearing the CE mark comply with the harmonized standards, approval and the associated marking is no longer required in the following countries: Belgium, Denmark, Finland, France, the Netherlands, Norway, Sweden, and Switzerland.

An exception is installation material. In some areas, miniature circuit breakers and residual current device must still be labeled and therefore carry the corresponding approval mark.

Belgien, Comité Electrotechnique Belge/Belgisch Elektrotechnisch Comité (CEBEC)

Germany, Verband Deutscher Elektrotechniker (VDE)

France, Union Technique de l'Electricité (UTE)

Austria, Österreichischer Verband für Elektrotechnik (OVE)

Switzerland, Schweizerischer Elektrotechnischer Verein (SEV)

Devices for export to the USA and Canada have either additional UL and CSA approval or are available in a separate version with UL and CSA approval.

USA, Underwriters Laboratories (UL) - Listing

7

USA, Underwriters Laboratories (UL) - Recognition

Canada, Canadian Standards Association (CSA)

Approval for electrical products is also required in Argentina, China, Russia, South Africa, and the Ukraine. Marking is partly mandatory for these countries. As in other European countries, the IEC rating data is accepted here.
Romania requires that components that are to be used in public buildings must be approved by the Romanian test authority ICECON.

Russia

Devices for Russia must bear the appropriate marking.

Russia, Goststandart (GOST-R)

Ukraine

Devices for the Ukraine must bear the appropriate marking.

Ukraine, Goststandart (Ukrain-GOST)
China
Devices for China must bear the appropriate marking

China, China Compulsory Certification (CCC)

South Africa

In South Africa approval is mandatory for circuit breakers and busbar trunking systems: These devices must bear the appropriate marking.

SR日S

South Africa, South African Bureau of Standards (SABS)

Argentina

In Argentina, mandatory approval is based on Resolution 92/98. From April 01, 2001, miniature circuit breakers and residual-current circuit breakers are subject to mandatory approval. As of this date, circuit breakers up to $\mathrm{I}_{\mathrm{e}}=63 \mathrm{~A}$ and $\mathrm{U}_{\mathrm{e} \text { max }}=440 \mathrm{~V}$ must carry the following marks:

Argentinien, Instituto Argentino de Normalización y Certificación (IRAM)

Selection of devices

In addition to the required approvals and conformance with applicable regulations, the design of devices and systems themselves must be suitable for the target market.
Points to keep in mind when selecting switchgear for export include:

Motor-protective circuit breakers
Use auto-protected circuit breakers, which are capable of controlling the highest prospective fault levels at the point of installation without the need for back-up protection.

Advantages

Can be positioned anywhere and are fully independent of the local circuitprotection system; no spare part problems

Circuit-breakers

Use makes with visible contacts, and quick-make and quick-break operation as standard. For high short-circuit levels, use current-limiting circuit breakers. Selective switches are recommended for the selective graduation of networks.

Advantages

Independence from local accident prevention regulations requiring visible contacts, and safety from faults caused by inexperienced operating personnel. The effects of shortcircuits are kept to a minimum. Fuseless installations offer greater safety and reliability in plant operation. In the event of a fault, only the faulty section of the system is isolated.

Contactors

Use contactors whose entire range provides consistently reliable operation in the event of voltage drops (80% Un should be aimed for) and whose contact system will not assume an indeterminate position on closing or opening under these conditions.

Advantages

During the electrification work in areas such as Africa and the Middle East, an insufficient voltage stability is - at least for a certain time - likely in many applications (for example due to long spur lines or small local generators). The use of devices that fulfil the above requirements will eliminate one of the main failure causes related to contactors.

Enclosures

Use insulated enclosures with transparent covers (i.e. "totally insulated" enclosures).

Advantages

Total insulation is the best possible protective measure from the user's point of view, avoiding, reliance on the possibly doubtful skills of unknown installation personnel. Furthermore, protective measures based on grounding are often extremely difficult, if not impossible (in the Middle East, for example, due to the dryness of the ground).
Insulated enclosures completely eliminate the need for any additional protection against corrosion. The transparent covers contribute significantly to the correct operation of a system, because switchgear operation can be monitored even with the doors or covers closed, thus virtually eliminating the possibility of these being left open through carelessness. The transparent cover is an important contribution to safety, especially where exports to areas of uncertain skills are concerned.

Overcurrent protection devices

Always use circuit breakers or motorprotective circuit breakers and avoid fuses wherever possible.

Advantages

The operational reliability of a system is especially important for export contracts. Circuit-breakers and motorprotective circuit breakers provide this reliability in full measure since they can be immediately reclosed once a fault has been cleared, they disconnect all poles, they have ideal protection through high tripping accuracy and they can be used for selective operation. Because they have no fuses or other consumables, they also greatly reduce the problem of obtaining replacement parts. The advantages of fuseless design for export are especially evident in this case. No complicated investigation is needed to find out which fusing system is used in the respective location and which specifications have to be followed to select the correct fuses. Often several different fuse systems with widely varying characteristics are used side-by-side in the same country. For the uninitiated, it may be almost impossible to find the right fuse in these circumstances. These problems do not arise where a circuit-breaker is used.

Main switch and safety switch

Use devices with positive contact separation and clear switch position indication.

Advantages

The mechanical coupling of the actuating element with the contacts ensures that the Off position is indicated only when all main contacts are separated by the prescribed distance, and only in this position can the switch be padlocked. This ensures safety when carrying out maintenance and repair work on the installation or machinery.

Shipping classifications

Many Moeller-branded Eaton devices are approved by all important shipping associations: Germanischer Lloyd, Lloyd's Register of Shipping, Bureau Veritas, Russian Maritime Register of Shipping, Registro Italiano Navale, Det Norske Veritas, Polski Rejestr Statków, etc.
Because the status of currently valid shipping approvals is subject to significant variations, this Catalog does not provide an overview, as this would quickly be out of date.

Please see our corresponding, up-to-date information on the Internet https://wss.moeller.net/approbationen/schitt.do

	Country Test authorities		RUS GOST-R	$\begin{aligned} & \text { PRC } \\ & \text { CCC } \end{aligned}$	UA Ukrain -GOST
	USA UL	CDN CSA			
SmartWire-Darwin					
EU5...	0	\bigcirc	-	N	-
SWD...	\bigcirc	\bigcirc	-	N	-
M22-SWD...	\bigcirc	\bigcirc	-	N	-
Pilot devices					
FAK.../I	-	-	-	\bullet	\bigcirc
RMQ16	-	-	-	-	-
RMO-Titan	-	\bigcirc	\bigcirc	\bullet	-
SL signal towers	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Position switches					
LS...	\bigcirc	\bigcirc	-	-	-
LS-......-ZB	\bigcirc	-	-	-	-
LS-......-ZBZ/...	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Pressure switches					
MCS...	-	-1)	N	N	\bullet
Cam switches					
T...	-	\bullet	\bullet	\bullet	\bullet
Contactor relays					
DILER	-	-	-	-	\bigcirc
DILA	-	-	\bullet	\bullet	\bigcirc
DILA-XHI	-	-	\bullet	N	\bullet
Contactors					
DILM7, DILM9, DILM12, DILM15	-	-	-	-	-
DILM17, DILM25, DILM32, DILM38	-	-	-	-	-
DILM40, DILM50, DILM65, DILM72	-	-	-	\bullet	\bullet
DILM80, DILM95, DILM115, DILM150, DILM170	-	-	-	-	-
DILMP20	-	-	\bullet	\bullet	-
DILMP32, DILMP45	\bigcirc	-	\bullet	\bullet	-
DILMP63, DILMP80	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
DILMP125, DILMP160, DILMP200	-	-	-	\bullet	-
DILM...-XHI	\bigcirc	\bigcirc	\bigcirc	N	\bigcirc
DILM...-XMV	\bigcirc	\bigcirc	\bigcirc	N	\bigcirc
DILM...-XS1	-	-	\bullet	N	\bigcirc
DILM...-XP1	-	-	\bullet	N	\bigcirc
DILEM(-12)(-G)	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc
DILM250, DILM300A	-	\bullet	\bullet	\bullet	\bigcirc
$\overline{\text { DILM185, DILM225, DILM250 }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DILM300, DILM400, DILM500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DILM580, DILM650, DILM750, DILM820, DILM1000	-	\bullet	-	\bullet	\bullet
DILL	\bigcirc	\bigcirc	\bigcirc	-	-
DILMF	\bigcirc	\bigcirc	\bigcirc	-	-
DILK12 ... DILK50	\bigcirc	\bigcirc	\bigcirc	-	-
Overload relays					
ZB32	-	-	\bullet	\bigcirc	\bigcirc
ZB65	-	-	\bullet	\bigcirc	\bigcirc
ZB150	-	-	\bullet	\bullet	\bigcirc
ZE-...	-	-	\bullet	\bullet	\bigcirc
Z5-...	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Z5-.../FF225A	-	-	\bullet	-	\bigcirc
Z5-.../FF250	-	-	\bullet	-	\bigcirc
Notes	$\begin{aligned} & -\mathrm{App} \\ & \bigcirc \mathrm{Ap} \\ & \mathrm{NAp} \\ & - \text { Not } \end{aligned}$	ed or ac d for val or acc proved or	pted ptance no accepted		

	Country Test authorities				
	USA UL	$\begin{aligned} & \text { CDN } \\ & \text { CSA } \end{aligned}$	RUS GOST-R	$\begin{aligned} & \text { PRC } \\ & \text { CCC } \end{aligned}$	UA Ukrain -GOST
ZW7-...	\bullet	\bullet	\bullet	-	-
ZEB	-	-	-	-	-
ZEV	-	-	-	\bullet	-
Thermistor relay for machine protection					
EMT 6	-	\bullet	\bullet	\bullet	\bullet
Motor-protective circuit-breakers					
PKZM01	\bullet	-	\bullet	\bigcirc	\bullet
PKZM0...	\bullet	-	\bullet	\bullet	\bullet
PKZMO-T	-	-	-	-	-
PKE	\bigcirc	O	\bullet	-	-
PKZ2.../ZM...	\bullet	\bullet	\bigcirc	\bigcirc	-
PKZ2/../S-SP...	$0^{2)}$	- ${ }^{2)}$	-	-	\bullet
PKZM4-...	\bullet	-	\bigcirc	\bullet	-
P-SOL...	\bigcirc	\bigcirc	-	N	-
PKZ-SOL...	O	O	-	N	-
Soft starters and accessories					
DS4-340	-	-	-	N	\bullet
DS6-340	\bullet	\bullet	-	N	\bullet
DE4-KEY-2	-	-	-	N	\bullet
DE4-COM-2X	\bullet	\bullet	-	N	\bullet
DE4-NET-DP2	\bullet	\bullet	-	N	\bullet
Electronic timing relays					
ETR 4-...	\bullet	\bullet	-	N	\bullet
DIL ET	-	-	\bullet	N	\bullet
EMR4-...	-	-	-	N	-
Measuring and monitoring relays					
EMR4...	-	\bullet	-	N	\bullet
Control relays easyRelay					
easy...	-	\bullet	\bullet	N	\bullet
Programmable logic controllers					
EC4P-...	-	\bullet	\bullet	N	-
I/0 expansion easy					
EASY618-AC-RE	-	-	-	N	-
EASY618-DC-RE	\bullet	\bullet	\bigcirc	N	\bullet
EASY620-DC-TE	-	-	-	N	-
EASY202-RE	\bullet	\bigcirc	\bigcirc	N	\bullet
Coupling modules easy					
EASY2...	-	\bullet	\bullet	N	\bullet
Ethernet module					
EASY209-SE	\bullet	\bullet	\bigcirc	N	\bigcirc
Multi-function displays					
MFD-80...	-	-	-	N	-
MFD..CP8...	-	-	-	N	\bullet
MFD..CP4...	-	-	-	N	\bullet
MFD..R...	-	-	-	N	\bullet
MFD-T...	\bullet	\bullet	-	N	\bullet
MFD-T(A)P...	-	-	-	N	\bullet
Switched-mode power supply units easy					
EASY200-POW	-	-	\bullet	N	\bullet
EASY400-POW	-	-	\bigcirc	N	\bullet
Series-connected device					
EASY256-HCI	-	\bigcirc	\bullet	N	\bullet
1) Form CDN. 2) Switchgear for North America. ${ }^{3)}$ Approved devices please enquire. 4) Switchgear for North America in surface mounting enclosure ${ }^{5)}$ As supplementary protectors up to 40 A only. ${ }^{6)}$ Applies only for standard Cl types; not for North America versions					

	CountryTest authorities		RUS GOST-R	$\begin{aligned} & \text { PRC } \\ & \text { CCC } \end{aligned}$	UA Ukrain -GOST	Country Test authorities					
	USA UL	$\begin{aligned} & \text { CDN } \\ & \text { CSA } \end{aligned}$					USA UL	$\begin{aligned} & \text { CDN } \\ & \text { CSA } \end{aligned}$	RUS GOST-R	$\begin{aligned} & \text { PRC } \\ & \text { CCC } \end{aligned}$	UA Ukrain -GOST
Safety relays						P1, P3	- ${ }^{4}$	- ${ }^{4)}$	-	-	-
ESR...	-	\bullet	-	N	-	P5	\bullet	-	-3)	-3)	-
Control relay suitable for safety circuits						Supplementary protectors FAZB..., FAZC..., FAZR...,	-	-	-	-	-
easySafety	-	\bigcirc	\bullet	N	-	FAZS...					
I/0 systems						Circuit-breakers					
XIOC	-	\bullet	\bigcirc	N	-	FAZ...	-	-	\bigcirc	\bigcirc	\bullet
XIO-EXT121-1			\bullet	N	-	FAZ-HK	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
Transformers						FI...	\bigcirc	-	\bigcirc	\bigcirc	\bullet
STI/STZ	-	-	N	N	N	ASA, USA	\bigcirc	\bullet	-	-	-
DTI/DTZ	-	-	N	N	N	FAZ-NA, FAZ-RT	-	-	-	-	-
UTI	-	\bullet	N	N	N	FAZ-K/S/Z	-	-	-	-	-
SASY60i	-	\bullet	-	-	-	Combination circuit breakers PKNM	-	-	-	-	-
Circuit breakers						Fuse-switches VLC14, VLC22	\bigcirc	-	-	-	-
NZM1-4	$0^{2)}$	${ }^{2)}$	\bullet	\bullet	-	Insulated enclosures CI					
IZM	-3)	-3)	-	-	-	CI..-...-NA, CI..-.../(2)T-NA	-	-	N^{6}	-	${ }^{6}$
Switch-disconnectors						CI..X-...-NA, CI..X-.../T-NA	-	-	N^{6}	-	- ${ }^{6}$
N1-4	$0^{2)}$	$\square^{2)}$	\bullet	\bullet	\bullet	Small enclosures CI-K					
IN	-3)	-3)	-	-	-	CI-K...-NA	-	-	N^{6}	-	${ }^{6}{ }^{6}$
Notes	- Approved or accepted O Applied for N Approval or acceptance not required - Not approved or accepted					1) Form CDN. 2) Switchgear for North America. ${ }^{3)}$ Approved devices please enquire. 4) Switchgear for North America in surface mounting enclosure ${ }^{5)}$ As supplementary protectors up to 40 A only. ${ }^{6)}$ Applies only for standard Cl types; not for North America versions					

Eaton's Moeller devices -
Shipping classifications
Many Moeller-branded Eaton
devices are approved by all
important shipping associations:
Germanischer Lloyd, Lloyd's
Register of Shipping, Bureau
Veritas, Russian Maritime Register
of Shipping, Registro Italiano
Navale, Det Norske Veritas, Polski
Rejestr Statków, etc.
Because the status of currently
valid shipping approvals is subject
to significant variations, this Catalog
does not provide an overview, as
this would quickly be out of date.
Please see our corresponding, up to
date information on the Internet.
https://wss.moeller.net/approbationen/schitt.do

The reason that the selection pages for all product groups and this chapter of the main catalog contain specific information about approvals and devices for use in North America is that:

- through the activities of machine and panel builders a large percentage of the products are indirectly destined for export;
- North American codes and standards that are less well known and that deviate significantly from the IEC and EN standards must be observed;
- for export projects, devices approved for NA must always be used;
- NA-approved devices often have different ratings and sizes and are often used and combined in ways that differ from usual IEC and EN practice;
- the customs and standard practices in the North American market must also be taken into consideration;
- with the information in this catalog customers striving to build machines for the world market can see that they can largely use the same Eaton devices for all markets;
- interesting new products are now available for this field of business;
- customers expect or are demanding a supportive business relationship.
Because Eaton wants to make export as simple as possible for its customers, we have made comprehensive improvements to this catalog following intensive discussions with our exporting customers. Although the catalog contains mainly Moeller products, Eaton's sales companies can, in some cases - for example circuit breakers - supply other Eatonbranded products approved for North America.
This article provides only a summary of this topic ${ }^{11}$. For further information about approvals for export to North America, see Moeller's detailed Technical Essays ${ }^{2)}$. For an explanation of special terminology, see the glossary in this catalog on page 22/22. "North America" or "NA" always refers to the USA and Canada.
In the USA the legally binding OSHA ${ }^{3)}$ and the NEC ${ }^{4}$) require an approval of devices and plants. The necessary testing and certification can be performed by various "Nationally Recognized Testing Laboratories" (NRTL), of which the Underwriters Laboratories (UL) ${ }^{5}$ are the best-known and most widely accepted. Alternatively, approvals and approval marks can be issued by approved subsidiaries of German Technische Überwachungsvereine (TUV) ${ }^{6}$) or by ETLIntertek ${ }^{77}$, which is also active within Germany. Approvals can not be based on testing by the manufacturer only. Testing and approval by an independent third-party is always required.

In Canada, all electrical apparatus must comply with the CEC ${ }^{8}$, which requires that all equipment and installations have been approved by CSA ${ }^{11}$ or equivalent bodies.
In addition to the normal UL and CSA approvals, the trade regulations resulting from the NAFTA agree ments ${ }^{10)}$ allow vendors to apply for a joint UL and CSA approval at all approval organizations. The devices then carry a logo that should be recognized in both countries. To date, Eaton, and previously Moeller, have rarely made use of this approval method because these combined approvals are still not fully recognized by local inspectors and end users. Eaton strives to help its customers avoid problems with approved devices in North America.
A special characteristic of the North American market is that, with few exceptions, electrical equipment must be acceptance-tested on-site by socalled Authorities Having Jurisdiction (AHJ). These authorities check that all components have the required approvals. In addition, the components must be approved for their application according to the standard applicable in each case, i.e. they must be correctly dimensioned, combined and used according to the NEC or CEC codes as well as any applicable standards. Device combinations approved on behalf of the component manufacturer - for example motor starter combinations - usually exhibit better technical data than combinations of individual devices that are not tested as combinations. The reason for this is that the components support each other in their switching tasks. This is an important aspect, for example, for the "Overall Short Circuit Current Rating" ${ }^{111) .}$ Many machine and panel builders have their end products (such as machines)approved already at the point of manufacture, while some even have their own approved workshops.
The codes and standards of the USA and Canada differ - to some extent significantly - from those of other industrial countries, which use the IEC/EN standards ${ }^{12)}$. Keep in mind that the USA and Canada publish their own, independent standards, which do not always have an identical content, and which may require different approvals. Eaton offers two groups of electronic, switching and protective devices approved for North America:

1) Preferably as world-market

 devices with the following key characteristics:World-market devices fulfil all device and product standards and feature all relevant approvals (see approvals overview from page 22/5), including the North American approvals, and can be used throughout the world.
World-market devices have rating plates with all important technical data for worldwide use and for use in in the

USA and Canada. IEC/EN rating data has no relevance for use in North America.

For unrestricted sale in European Union member states, world-market devices contain the CE mark.

Examples of world-market devices include:
Pilot (control circuit) devices, cam switches, position switches, contactors, motor-protective circuit breakers, overload relays, measurement and protective relays, electronic devices and systems, user-programmable PLCs. These are, on the whole, the devices covered by standards UL 508 and CSA C22.2 No. 14-05.
2) Device versions for North America

Where the combination of the requirements of all codes and standards in a single product range is uneconomical or not possible, these devices have been developed by modifying existing IEC/EN devices. In some cases, the cost of approval depends on the devices' production quantity, which is viable only for products that will be exported.
The devices Eaton terms "NA devices" (Listed Components) or "CNA devices" (Recognized Components) have the following key characteristics:
These products have been approved to UL and CSA and can be used in the USA and Canada as well as in other countries if the end client requires UL and CSA approvals or conformance with with the North American standards ${ }^{133}$.

They have ratings plates containing at least all important data for use in the USA and in Canada. But because these devices will also be exported from the USA or Canada, their rating plates usually also contain data to IEC and EN standards. Devices with IEC/EN data also carry the CE mark and the CCC mark for China.

They are largely identical with the IEC/EN devices of the same series but differ in their detail design or feature slightly lower ratings, depending on the approval requirements. If the
throughout the world. Some major customer do this to reduce the number of versions.

With rare exceptions, the IEC/EN and the NA versions have the same external dimensions and can usually (depending on approvals) be equipped with the same accessories, such as auxiliary contacts or shunt releases.
The existing approvals for the USA and Canada are included in the devices' part numbers as a part number suffixes, and are indicated on rating plates by the corresponding approval marks as follows:

Eaton has special North America versions for:

Circuit breakers NZM, molded case switches NS...-NA and miniature circuit-breakers FAZ (see additional information about FAZ, FAZ-NA, FAZ-RT in Chapter 19 of this catalog).
Recognized Components are frequently and incorrectly used without regard for the additional Conditions of Acceptability (CoA) contained in the product standards. This is known to the inspectors, who, for this reason, are particularly thorough in checking the correct use of these devices. Incorrect usage of Recognized Components is likely to be noticed and will result in a denial of commissioning until corrective measures have been taken. Special care should therefore be taken here.

Technical data and approval status for North America

This main catalog contains all approved technical data for the North American market for engineering switchgear systems, such as control panels for the electrical equipment of machines and plants ${ }^{14)}$. Power distribution systems are rarely exported, and further approvals would be required for them ${ }^{15)}$. When engineering switchgear systems for North America, the applicable North American standards should be obtained under all circumstances.

For the first time in this catalog, the selection pages include a clear,

Partno. Type of approval

Approval mark
suffix
-NA For use in the USA the device is approved as a single device as "Listed Component"; in Canada it is a "Certified Component".
-CNA For use in the USA the device is approved as a "Recognized Component"; for Canada as a single device it is a "Certified Component".
For use in the USA, additional "Conditions of
Acceptability (CoA)" must often be adhered to
according to North American standards.
reduced technical data does not
present a problem, these devices can,
like world-market devices, be used
precise indication of each product approved for the North American market, using flag symbols for the USA and Canada. This level of attention is paid to the approvals for North

[^0]9) Canadian Standards Association, http://www.csa.ca
${ }^{10)}$ North American Free Trade Agreement, between USA, Canada and Mexico
${ }^{11)}$ SCCR, short-circuit strength of the switchgear systems
12) International Electrical Commission, http://www.iec.ch,

EN = European standards
${ }^{13)}$ e.g. in offshore area, or if the plant is to be used in different locations throughout the world
${ }^{14)}$ e.g. Industrial Control Panels for Machinery, UL 508A and NFPA 79
${ }^{15)}$ For example testing in specific distribution board enclosures

America because of the significant export share of these devices and because standards, selection and usage criteria that differ from IEC and EN must be specially considered. In engineering, North American practices must often be observed (for example regarding operating elements for main switches). Where all articles on a page or double page are approved, the whole page or double page is marked only once with the flag symbols in the page header. If a page or double page also contains articles that are not approved for North America, the approved articles are indicated with flags as groups or per article in column "Std. pack". In this column, articles are sometimes grouped together with stylized parentheses.

Unfortunately mere marking with flags and approval marks on the devices is not always sufficient proof of approval for inspectors. Occasionally, doubts may arise as to the admissibility of the use of the approved devices for specific tasks. In such cases, the the numbers of the certification reports, or even the reports themselves, must be available. To facilitate this, the ordering pages of this catalog provide information relevant for export to North America, which include the UL and CSA certification report numbers as well as the relevant Category Control Numbers (UL) ${ }^{1)}$ or Classes (CSA) ${ }^{2}$.

Customers can find the most important excerpts from the certification reports for most of the NA-approved articles by entering the product group, e.g. DILM..., and the approval organization in the approvals database for Eaton's Moeller-branded products ${ }^{3)}$. Unfortunately the approval records not drawn up by Eaton Moeller are often poorly structured and hard to read. In some cases, the part numbers of the approved products are given with varying degrees of accuracy. The approval organizations Inspectors can also access the full approval records through their organizations.
In the event of difficulties, which often arise out of misunderstandings, please contact Eaton. We are continually working to improve and complete the approvals situation, which will therefore change in this catalog's validity period. Eaton Electric's database and online catalog ${ }^{4}$) will, however, be regularly updated with all changes. In the online catalog, you can dynamically create up-to-date data sheets for products to save as PDF files and print out.
You can also access the certification reports through the databases of the approvals organizations:

- Access to the UL database is through the address http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME /index.html
- For CSA, visit http://directories. csa-international.org/.

For CSA, the certification report numbers in the CSA database do not always correspond with the numbers of the approval records issued to Eaton or Moeller. To find the required record, you should therefore always enter the name "Moeller" and the Class Number (from the selection page in the catalog).. Do not use "Eaton" here yet.

For products with approvals s worldmarket devices, the technical data is given at the end of each chapter of the catalog, where you can also find the IEC/EN data. Although the contactors and motor starters are also approved as world-market devices, they have special selection pages to take into account the North American voltages and HP ratings. Because motors rated in kW are often used for exported plants and machines, it must be remembered that inspectors convert kW into HP ratings ${ }^{5}$) and reading the standard currents for the next largest standard motors rated in HP from the NEC or CEC. This can result in the need to use larger conductor crosssections. Design engineers should also follow this practice when dimensioning systems. When working to North American codes and standards, further correction factors for dimensioning components and cables must also be observed.
For the North America versions of circuit breakers NZM and molded case switches NS...-NA the main catalog contains comprehensive selection information. Those pages contain, for example, switches with fixed overload releases (NZM...-AF...-NA), which, in the USA, are combined to motor starters for higherrated motors with a contactor and overload relay. Switches of this kind are not common in IEC/EN countries The switches of construction size NZM...2...-NA also cover the current ranges of switches NZM...1...-NA. In all, the range of models for the North American market is greater than that for the IEC/EN market. The selection pages for the special devices for the NA market contain the data required for selecting the appropriate switches. Further, less frequently required data for engineering is included under
"Technical data" at the end of the chapter. Because more information is required for the complex circuit breakers than for other devices, the information for North America contains further important details, such as whether their use in feeder and/or branch circuits is permissible, or whether the switches are approved as current-limiting devices. For circuit breakers with part number suffix "-CNA" (Recognized Component), a stated Condition of Acceptability (CoA) is that these devices must always be combined with a contactor and an overload relay. See also the motor starter selection table (page 8/30). Only these complete combinations have a specified, stated short-circuit current rating (SCCR).

Voltage types and network configurations in North America
For the use of some devices, such as motor-protective circuit breakers and some motor starters, the maximum permissible "full voltage"6) (e.g. 480 V , 600 V) or "slash voltage"7) (e.g. $480 \mathrm{Y} / 277 \mathrm{~V}, 600 \mathrm{Y} / 347 \mathrm{~V}$) must be observed. Devices for which slash voltages are mandatory, must be used only with star networks with solid grounding. These networks can be installed with or without neutral conductor. In North America threephase networks are usually threepole. Devices for full voltages can be used in star and delta networks, irrespective of the type of grounding. In combination, some devices can also be approved for smaller full voltages and larger slash voltages. The decisive factor for the permitted network configuration in this case is the actually used voltage. If only a single device in a switchgear system can be used for a slash voltage, this slash voltage must be stated on the switchgear system's rating plate.
Some devices can not be used with the 600 V often found in Canada. This may be true even if these devices are IEC/EN-approved for up to 690 V . This restriction is due to the differing test conditions specified by the North American standards. For exports to Canada, many customers use $600 / 480 \mathrm{~V}$ or $600 / 400 \mathrm{~V}$ matching transformers to avoid any restrictions due to the high voltage of 600 V at the engineering stage. When using transformers with separate windings, a separate, grounded star network can be connected to the transformer's output side to allow the use of devices approved only for slash voltages.

Most North American component standards currently specify a maximum of 600 V for I.v. systems. It has become apparent that these voltages are no longer sufficient for new technologies with high ratings, such as photovoltaics or wind power. New standards are currently being developed that will, in future, allow higher voltages. These changes will also have to be made, for example, in the UL 489.

When using switching and protective devices, the voltage indications, such as 115 V or $120 \mathrm{~V}, 230 \mathrm{~V}$ or $240 \mathrm{~V}, 460 \mathrm{~V}$ or 480 V , 575 V or 600 V , often cause irritation. The higher of the two stated voltages in each case is the rated service voltage ${ }^{88}$. The lower of the two values is the Utilization Voltage ${ }^{9)}$, which is the voltage between the point of connection ${ }^{10}$ to the consumer system to the point at which the apparatus is connected. To a mains supply with a rated voltage of, for example, $\mathbf{4 8 0} \mathbf{V}$ motors dimensioned for 460 V can be connected. The same applies for the other voltage pairs. To simplify device selection, Eaton has included both voltage values in its NA motor starter tables, even though motors with, for example, 480 V are not usual.

In connection with approvals, a great deal of information must be made available to users. The most important information is contained on the devices' rating plates and in the catalog. For some devices, further details that are relevant mainly for installation, are included in the installation instructions ${ }^{11)}$ included with the devices. The required information is specified in the standards or, in some individual cases, by the approval organizations in the approval documents. To ensure the large clearances and creepage distances for feeder circuits, circuit breakers must always be fitted with insulating components and covers. To limit the vendor's liability, the installation instructions for the device and for the switchgear systems in which it is installed should be handed on to the end customer and the operator.

Codes and standards

 in North AmericaAs with IEC and European standards, North American standards can be divided into those that apply to individual products and those that apply to assembled installations. Product-related standards, such as UL 489, UL 508, UL 508C, and UL 1077) apply mainly to component manufacturers, while system-related standards, such as UL 508A and NFPA 79 are relevant mainly for companies that process these components. Canada dos not have installation-related standards in some cases. The statutory requirements are not incorporated in the CEC and CSA standards as clearly. In these cases, it is advisable to use the US installation-related standards as a guideline for engineering, as these have similar requirements. Component manufacturers and machine/system builders that use third-party components should each be familiar with the respective other type of standard. Note that, in addition to the national US and Canadian standards, member states or provinces and larger cities may have additional legal requirements that must be met by system builders when supplying to these regions. In the USA, the latest NEC standards do not always apply in all states.

Device types in North America

This main catalog takes into account the fact that a distinction is made in Canada and the USA between
Distribution Equipment and Industrial Control Equipment:

Distribution equipment

This includes for example:

- Circuit-breakers (UL 489,

CSA-C22.2 No. 5-09).

- Load interrupters (UL 489,

CSA-C22.2 No. 5-09).

- Switch-disconnectors (UL98, CSA-C22.2 No. 4-04).
- Fuses (UL 248,

CSA-C22.2 No.248).

- Fuse switch-disconnectors (UL98, CSA-C22.2 No. 4-04).

[^1][^2]These devices are of a rugged design and have larger insulating clearances than other switching devices (for 301 to 600 V : 1 inch $=25.4 \mathrm{~mm}$ air distance and 2 inches $=50.8 \mathrm{~mm}$ creepage distance).
In power distribution equipment (switchgear, switchboards, panelboards), only these devices must be used for power supply and tap-off. In addition, these components are also used, for example, as main switches or circuit breakers in motor and other load circuits in industrial contro systems.

Testing of these devices is specially stringent, with running production being subject to regular checks by test authority inspectors. The type tests for UL- and CSA-approved circuit breakers are among the world's strictest. Eaton's NA circuit breakers have passed all of these tests

Industrial control equipment
These include, for example, devices to UL 508, CSA-C22. 2 No. 14-05:

- Contactors.
- Contactor relays.
- Overload relays.
- Motor protective circuit breaker.
- Cam switch.
- Pilot devices
- Electronic devices and systems.
- User-programmable PLCs

These devices have smaller physical dimensions and the insulating clearances are not as great as those of power distribution devices. Here, too, running production is monitored by test authority inspectors, but the inspection requirements are not as extensive as those for circuit breakers

This industrial control equipment is used mainly in industrial control panels, motor circuits and consumer circuits of all types, in motor control centers (MCC) and in power distribution systems. In industrial control panels, it can be combined directly with power distribution devices, for example with circuit breakers as main switches or in a motor feeder.

Circuit types in North America

In North America, main circuits are classified into "feeder circuits"1) and "branch circuits"2). In feeder circuits, large clearances and creepage distances are required, for example according to UL 489. The boundary between these two circuit types is the "branch circuit protective device (BCPD)"3), which are required to have large clearances and creepage distances at least on their feeder side. Typical BCPDs are circuit breakers NZM...-NA, PKZM4...-CB,FAZ...-NA, and FAZ...-RT, and fuses. In North America, circuit breakers must be marked with their conduction direction (LINE or LOAD) unless they are approved for both conduction directions. The circuit breakers must then be fed only from above and the specified infeed side must be marked "LINE". The Eaton circuit breakers do not have this limitation. We often receive inquiries about this, even though it is stated in the technical data. As BCPDs, motor starters of UL 508 Types E and F can be used only for individual motors, not for any other load type. In motor control centers (MCC) the control voltage is often generated per withdrawable unit.

Ratings data for industrial switchgear
Note that the IEC/EN rating data on devices or in this catalog must not be used for selecting devices for use in North America. Use only the approved data. As with the IEC and European standards, which define utilization categories for I.v. switchgear, US and Canadian standards define "duty types" for various types of switched loads. The type of load for each duty type is indicated on the device's ratings plate or in its technical specifications and defines is application purpose. The following table provides an overview of these assignments:

Contactors

In North America, Contactors are classified as industrial control equipment according to UL 508 and CSA-C 22-2 No. 14-05). For the North American market, contactors must have so-called "NEMA-sizes"4), unless they are used for switching motors, for which orders will specify ratings in HP. For the NEMA-sizes, corresponding HP motor ratings and continuous thermal currents are assigned to all North American standard voltages.
Chapters 5 and 8 of this catalog list the contactors and motor starters with the HP ratings approved for North America. The table on a Page 5/84 provides an overview of the NEMA sizes in relation to the HP ratings and continuous currents.

Combination "contactor and overload relay" ("Non Combination Motor Starter")

First of all, it is important to know that when North American customers speak of "non-combination motor starters" they mean what in Europe is referred to as a "contactor and overcurrent relay" combination and will give the same ordering information as for contactors. Complete contactor and overcurrent relay combinations can be assembled as per page $8 / 30$. In addition, a short-circuit protection device, i.e. a fuse or circuit-breaker is required. The highest permissible rating for this protective device is given in each case in this catalog.

Motor starters

("Combination Motor Starters")
The European-type motor starter that contains all devices for short-circuit protection, overload protection and operational switching of the motor (such as circuit-breaker, contactor and overload relay), is called "combination motor starter" in North America. This type of motor starter must be engineered like a small control system complete with all associated individual devices. The contactor and overload relay are selected as described on page $8 / x x$.

With its devices, Eaton offers different versions for electrical, and to some extent also for mechanical connection of the motor starters' components. The most convenient connection method is provided by the tool-less plug connection wiring kits. All connection methods with wires or elements of different types are approved for North America. This also goes for surface mounting the motor starters on busbar adapters of the SASY 60i system.

IEC/EN motor protective circuit breakers

In North America, motor-protective circuit breakers can not be used irrespective of make, as is customary in IEC and EN standard systems. According to current US and Canadian standards, these devices are classified merely as "manual motor controllers" or "manual motor protectors". These devices are subject to the special conditions described below, which must be observed.

The integrated short-circuit protection function and the isolating functions of these motor-protective circuit breakers is not recognized in North America. According to UL 508 and CSA C 22.2 No. 14-05, approved motorprotective circuit breakers must be protected against short circuits with UL- or CSA-approved circuit breakers or fuses. In the event of a short-circuit, the motor-protective circuit-breaker's short-circuit release will, of course, also trip.

The additional short-circuit protective device can protect individual motor starters or - if approved for use in "group installations" - a group of motor starters. Motor-protective circuit breakers PKZM0, PKZM4 and PKE are additionally approved as "tap conductor protectors".

Motor protective circuit breakers PKZ, PKE (Chapter 7)

In North America, these devices are industrial control equipment to UL 508 and CSA-C 22.2 No. 14-05) and are used as manually operated motor starters in controllers or separately as

[^3][^4]discrete devices. They are rated in HP and - if they are equipped with auxiliary contacts - they contain duty type information for use as controlgear (pilot duties). The devices have fixed or adjustable magnetic or electronic short-circuit releases ${ }^{1)}$ and adjustable bimetallic or electronic releases for motor overload protection. They can be used for switching motor circuits, and their auxiliary contacts for switching control circuits. In the PKE system, the modular plug-in trip blocks can be exchanged depending on the size of the connected motor. The electronic releases have a wide adjustment range. The PKE system also allows motor starters to be networked through the NA-approved SmartWire-Darwin system. PKZ and PKE must be used only for protecting and switching motors in North America and not, like in IEC/EN, for other types of load. The circuit breakers can optionally equipped with undervoltage or shunt releases.
Although PKZ motor-protective circuit breakers have an inherent shortcircuit withstand capability at small currents, they must, according to North American standards, always be operated with an upstream shortcircuit protection device (exceptions: UL 508 Types E and F). For most devices the specifies short-circuit protection can also be used to protect a group of motor-protective circuit breakers. In North America this characteristic is referred to as group protection. When forming groups and choosing cables, special rules of the codes and standards must be observed. If the motor starters' cable dimensions vary significantly, the groups are difficult to coordinate and some devices can be used only with separate protective devices in this case. Motor-protective circuit breakers with upstream protection can also be used without limitation in delta and ungrounded star networks.

Motor starters without additional

 short-circuit protection, UL 508 type E startersAccording to a supplement to UL 508, motor starters can be tested as "type E combination motor controllers" ${ }^{2}$), for which an additional short-circuit protection is not required (selfprotected combination motor controller). This starter type is also CSA-recognized for Canada. Type E starters must be used only in solidly grounded star networks, for example at slash voltage $480 \mathrm{Y} / 277 \mathrm{~V}$. They must be used only for switching and protecting motors and for no other load types.
For the protection of motors and frequency inverters, the frequency inverters must be tested and approved by their manufacturers together with these Type E starters (at the time of print, this possibility is being planned and not yet officially included in the standards).

All components for a complete motor starter, including full short-circuit protection, are contained in a single device. This reduces the required space and eliminates the wiring between the components. These
devices are used in motor control centres (MCC), in controllers and enclosed discrete equipment. Up to the specified switching capacity, these devices do not need additional short-circuit protection.
In the PKZ2 system, these devices are available with type designation PKZ2/ZM-.../S-SP. These devices feature large clearances and creepage distances. In individual motor outgoers they can perform the BCPD function without additional upstream protection. They can be tripped by optional undervoltage or shunt releases and remotely switched on and off with optional remote operators. The PKZ2 system also includes a trip block version that actuates a relay output on overload instead of tripping the circuit-breaker through the breaker mechanism ${ }^{31}$. This version allows separate signaling of overloads and short-circuits. On overload, the circuit-breaker does not have to be closed again after the fault is rectified. These breakers are used when the overload is self-canceling or can be easily remedied by operating personnel. This avoids the need to call in an electrician.

UL 508 manual Type E starters

In addition, the "type E combination motor controllers" comprise the "manual self-protected starters", which, if no upstream short-circuit protective devices are used, require larger clearances and creepage distances, for example according to UL 489 or CSA-C 22.2 No. 5-09. These devices are suitable only for manual switching of motors. They must be used only in solidly grounded star networks, for example at slash voltage $480 \mathrm{Y} / 277 \mathrm{~V}$. In individual motor outgoers they can perform the BCPD function without additional upstream protection. They must be used only for switching and protecting motors and for no other load types.

Manual self-protected combination motor controllers are implemented as a modular system with a PKZMO,
PKZM4 or PKE with a special additional incoming terminal BK25/3-PKZO-E or BK50/3-PKZ4-E. For use in Canada these devices must, in addition, be lockable, i.e. the starters must be fitted with operating handle AK-PKZO. It is permissible to connect several PKZM at their input side with three-phase commoning links, for example B3...-PKZO, and to connect this group through only a single incoming terminal BK....

UL 508 Type F remote-switchable

 startersBy combining a "manual type E starter" with a contactor, a "type F combination motor controller" can be constructed. These starters also do not need additional short-circuit protection. Type F starters can be combined and used as shown on page $8 / x x$. These combinations can also be used exclusively in solidly grounded star networks, for example at slash voltage $480 \mathrm{Y} / 277 \mathrm{~V}$. They must be used only to switch motors and no other types of load. Type F starters are
accepted in Canada, although they are not yet described in the standards there.

Here, too, three-phase commoning links with a single incoming terminal can be used. Alternatively, the devices can be mounted on busbar adapters and busbar systems. The adapters and busbar systems SASY 60i are also approved for use in North America. The Eaton devices offer this very effective "two-component starter" with up to 52 A . Up to the specified switching capacity, these starters do not need additional short-circuit protection.

Motor starters for higher-rated motors

At their basic equipment level, circuit breakers are not suitable for motor protection in North America. Like the conventional IEC/EN-standard circuit breakers, these breakers lack a motor protection characteristic for overload releases that meets the requirements of current North American codes and standards. Later in this section, a new circuit-breaker as motor-protective circuit-breaker NZM... -ME...-NA will be introduced, with a motor protection characteristic that comforms to UL 508.

In North America, motor starters for higher-rated motors (for Eaton devices $>52 \mathrm{~A}$) are assembled from three components: A circuit-breaker, a contactor and an additional overload relay. The circuit breakers used have

- with fixed overload releases (NZM...-AF...-NA)
- or with adjustable overload releases (NZM...-A...-NA)
- or without overload release (NZM..-S...-NA).
The overload relays optionally feature thermal bimetallic or electronic trip blocks. The configurable tripping behavior of electronic overload relays can be optimized for the motors' startup behavior under adverse load, for example for heavy starting duty.

Motor-protective circuitbreakers

 NZM...-ME...-NAThese novel devices are fully-featured circuit breakers in North America (molded-case circuit breakers to UL 489 and CSA-C22.2 No. 5-09) and, in addition, like overload relays contain an overload release calibration (to UL 508 and CSA-C22.2 No. 14-05). They are used mainly in controllers and motor control centers (MCC). They are short-circuit rated in kA and - if they are equipped with auxiliary contacts - contain duty type information (pilot duties). These circuit breakers can optionally be equipped with and tripped by shunt or undervoltage releases or be switched on and off with remote operators.
These devices feature adjustable electronic short-circuit releases and adjustable electronic wide-range releases for motor overload protection ${ }^{4}$. The adjustable tripping class allows the devices to be adapted to the starting characteristics of various different motors and load types. They can be used as separate, manual breakers, for protecting and
switching motor circuits, and their auxiliary contacts for switching control circuits.

In combination with a downstream contactor, they are classified as a "Type C combination motor starter", in which the contactor, acting as motor controller, switches and regulates the motor current with a high, reliable operating frequency and the NZM provides protection. For these Type C combination motor starters the HP ratings indicated on the contactors then apply. These combinations then form "two-component motor starters", which require less space and fewer components and engineering resources, and have lower thermal losses than three-component motor starters. This is specially advantageous for the compact withdrawable MCCs.
Motor-protective circuit breakers NZM...-ME...-NA can be used with or without contactor in motor circuits up to the stated switching capacity without additional short-circuit protection. With just three models, they cover a current range from 45 to 200 A. The circuit breakers are " 100% rated", meaning that their entire current range can be utilized. Their setting ranges overlap with the twocomponent motor starters up to 52 A that are formed with the Type E or Type F versions of circuit breakers PKZMO, PKZM4 or PKE. Covering currents up to 200 A , the two-component motor starters can now be used to costeffectively protect and switch more than 95 percent of all motors.

Circuit-breakers

without overload protection,
NZM..-S(E)..-CNA
In North America, these devices are circuit breakers (instantaneous-trip only molded-case circuit breakers according to UL 489 and CSA-C 22.2 No. 5-09) and are used mainly in motor control centres (MCC), controllers and enclosed discrete equipment. They are rated in amperes and - if they are equipped with auxiliary contacts contain duty type information (pilot duties).

The devices have adjustable magnetic or electronic short-circuit releases, no overload releases and can be used for switching motor circuits, and their auxiliary contacts for switching control circuits. They also provide short-circuit protection in motor circuits. They can optionally be tripped by shunt or undervoltage releases or be switched on and off with remote operators.
Circuit-breakers NZM..-S(E)..-CNA are UL-approved as Recognized Components. They are not used as discrete devices; they are always combined to a "combination motor starter" with a downstream contactor and overload relay, in which the contactor performs operational switching and regulation of the motor current, the overload relay acts as overload protective device and the circuit-breaker acting as short-circuit protection device. This combination has the added benefit of allowing a separate tripped indication on overload through the overload relay's auxiliary contacts or on short-
3) ZMR-...-PKZ2, overload is signaled only; the circuit-breaker does not trip
4) The overload releases are, in addition, calibrated like overload relays in compliance with UL 508 and CSA-C 22.2 No. 14-05
circuit through the circuit-breaker's auxiliary contacts. In North America combinations of this type are used in motor control centres (MCC) and as discrete starters in separate enclosures. Electronic overload relays also provide protection for motors with heavy starting duty. For this duty type, such combinations are also used in IEC/EN-standard switchgear systems.

For the switches alone, no shortcircuit rating is given. At locations with short-circuit currents up to the switching capacity specified for the complete "combination motor starter" they can be used without upstream short-circuit protection device.

Circuit-breakers

NZM...A(E)...-NA,
NZM...A(E)F...-NA, NZM...VE...
-NA, NZM...V(E)F...-NA
In North America these devices are inverse-time molded-case circuit breakers to UL 489 and CSA-C22.2 No. 5-09) ${ }^{1}$. They are the normal switches for power distribution systems, but can also be used in motor control centres (MCC) and controllers. All versions of construction sizes NZM1 ...-NA, NZM2...-NA ${ }^{2}$) and NZM3...-NA are approved as currentlimiting devices and marked accordingly on their rating plate. They are rated in A, their short-circuit switching capacity is given in amperes and if they are equipped with auxiliary contacts - contain duty type information (pilot duties).

These devices have adjustable magnetic or electronic short-circuit releases and fixed-current or adjustable bimetallic or electronic trip blocks for overload protection for non-motor outgoing circuits. They can be used as short-circuit protection devices and for switching motor circuits ${ }^{31}$, and their auxiliary contacts for switching control circuits. At mounting locations with short-circuit currents up to their switching capacity, they can be used without upstream short-circuit protection device.
In main current outgoing and incoming lines, they can be used as main switches. The letter "E" in the part number indicates versions with electronic releases. The letter "V" indicates electronic releases with adjustable, tripping times with adjustable delay. They can optionally be tripped by shunt or undervoltage releases or be switched on and off with remote operators. In North America circuit breakers with fixed overload releases are often used to reduce the required cable crosssections. Example: A circuit is to carry 150 A . If the adjustable switch has a rated operational current of 250 A , it must be wired for 250 A in North America (for the highest adjustable current). A switch permanently set to 150 A must be wired only for 150 A . At least for large currents and long lines, this consideration can also be of interest for IEC/EN-standard systems.

Circuit-breakers PKZM4- ...-CB
From motor-protective circuit-breaker PKZM4 a fully-featured circuit-breaker to UL 489 has been derived. These circuit breakers are larger than their motor-protective counterparts because of the large clearances and creepage distances required at their input- and output-side main power connections. These devices can be used as branch circuit protective devices.

This circuit-breaker has been developed with the aim of offering devices for smaller rated operational currents than are possible with circuit breakers NZM yet with a high switching capacity. These circuit breakers have a switching capacity that is comparable with that of circuit breakers FAZ...-NA. The need for these protective devices is that non-motor loads must be protected with fuses or with circuit breakers. These loads often have only low currents. This also applies for the protection of frequency inverters, although here, too, the load is a motor. Exporters prefer the use of circuit breakers and similar fuseless solution, which is also Eaton's recommendation. In North America, systems commonly contain a large number of fuses, even though standard NFPA 70 E $^{4)}$ presacribes very complex safety measures for replacing defective fuses.

Switch-disconnectors N, PN

For North America the switch-disconnectors N and PN , which are derived from circuit breakers NZM and which have a proven track record in the IEC/EN market, have been replaced with molded-case switches NS...-NA to comply with North American practices.
Molded case switches NS...-NA
Molded-case switches NS...-NA, to UL 489 and CSA-C22.2 No. 5-09 are the typical North American switchdisconnectors. They are the normal switches for power distribution systems, but can also be used in motor control centres (MCC) and controllers, for example as main switches. where they are the normal switches for power distribution systems, but can also be used in motor control centres (MCC) and controllers. They are rated in amperes, their short-circuit switching capacity is given in kA and if they are equipped with auxiliary contacts - contain duty type information (pilot duties).
These devices feature fixed shortcircuit releases and no overload release. The short-circuit releases are intended only for intrinsic protection of the circuit-breaker. They can not be used as short-circuit protection for downstream protecting and switching devices. Their auxiliary contacts can be used for switching control circuits. At mounting locations with shortcircuit currents up to their switching capacity, they can be used without upstream short-circuit protection
device. They can optionally be tripped by shunt or undervoltage releases or be switched on and off with remote operators. The North American standards regard these devices are switch-disconnectors, while the IEC/EN standards consider them circuit breakers of category CBI-X5). It should be noted that molded-case switches NS...-NA have a tripped position that the switch-disconnectors do not have. After tripping, they must be reset.

Current limitation

Current limitation is a feature of modern circuit breakers that interrupt short-circuit currents very quickly and of some fuse types. With specially developed contact systems, these circuit breakers interrupt short-circuit currents before the breaker mechanism can respond. The current is interrupted long before it reaches its limit value. This is referred to as dynamic contact disengagement through magnetic force fields around the conducting parts of the breaker mechanism. The fast interruption of the short-circuit currents results in much lower let-through currents and energies.
According to IEC/EN the switching and protective elements connected downstream of a current limiter are dimensioned only for these reduced letthrough characteristics. According to the North American standards the current-limiting effect in industrial control panels for machinery can be used only partially to UL 508A Part 2 and NFPA 79. Annex SB of UL 508A does mention these current-limiting protective devices in the context of the determining the short-circuit current rating (SCCR), but demands that all branch circuit protective devices (BCPD) ${ }^{6}$) downstream of the currentlimiting protective device have at least the same switching capacity as the current limiter itself. This, in effect, ignores the physical effect, making the plants unnecessarily expensive. In reality, the load on the entire installation after the current limiter is significantly reduced. For dimensioning apparatus in the control panel arranged on the consumer side downstream of the BCPD ${ }^{7 /}$ the let-through characteristic of the current limiter can then be expected again.

All circuit breakers of construction sizes NZM1 ...-NA, NZM2...-NA ${ }^{8}$) and NZM3...-NA, and the small circuit breakers FAZ...-NA and FAZ...-RT are designed and approved as current limiters and marked accordingly on their rating plate.
Circuit-breakers NZM4...-NA have single-pole-interrupting contact systems that are optimized for current selectivity. For selectivity at higher currents and for installation away from short-circuits, contacts that remain closed as long as possible are required. The selectivity requirements exclude the current-limiting effect.

Series connection of circuit breakers, back-up protection (series rating)

If, according to IEC/EN standards, the switching capacity of a circuit-breaker is not sufficient for short-circuit currents that may occur in specific applications, a further protective device with a higher switching capacity is connected upstream of the circuit-breaker. Together, the two series-connected circuit breakers can handle the higher short-circuit currents. If the additional protective device protects or supports a group of lower-rated protective devices, this is referred to as group protection.
According to the North American standards, this interaction of several protective devices in power distribution systems (distribution equipment) is also permissible. For the industrial control panels for machinery (ICP) to UL 508A and NFPA 79 that are dealt with here, a series connection of circuit breakers, fuses or a combination of the two is not permissible if the series connection is intended to increase switching capacity. Circuitbreakers FAZ ...-NA and FAZ...RT, which are popular in IEC/EN installations, have a rated current dependent switching capacity of 10 or 14 kA . These circuit breakers are often used in ICPs. According to the North American standards it is not currently possible to increase the switching capacity with a series-connected protective device (circuit-breaker or fuse). In an ICP a circuit-breaker must always provide the required switching capacity by itself. While it is possible to connect two circuit breakers in series as main switch and outgoing circuit-breaker, this does not increase the overall switching capacity. The switching capacity of every protective device must always be equal to or greater than the highest expected short-circuit current.

Operating elements

for circuit breakers and molded case switches
Operating elements of the upstream switches that are used in industrial control equipment for machines currently attract the particular attention of inspectors. This applies specially to the operation of main switches with door coupling rotary handles and to door interlocks. Here follows a brief explanation of the complex requirements. A more detailed Technical Essay on this subject is also available ${ }^{91}$.

North American standards UL 508A, Part 2, Industrial Machinery ${ }^{10}$ and NFPA 7911) demand that the operating elements of main switches (supply circuit disconnecting (isolating) means) ${ }^{12)}$ are permanently connected with these switches to allow switch operation at any time and irrespective of the control panel door's position. The operating elements must also be lockable to prevent their operation (closing). A further requirement is that

Notes

1) The term "inverse time" is usually omitted. It expresses that the tripping time is inversely proportional to the current.
2) Except NZM...2-ME...-NA
3) In combination with an overload relay
4) NFPA 70 E, "Standard for Electrical Safety in the Workplace"
5) Category CBI-X circuit breakers are molded case circuit-breakers without overload release. According to IEC/EN switch-disconnectors must not contain a current-dependent trip block.
6) Circuit-breakers for individual branches
7) e.g. contactors or frequency inverters
8) Except NZM...2-ME...-NAJ]
9) http://www.moeller.net/binary/ver techpapers/ver966de.pdf
10) UL 508A, UL Standard for Industrial Control Panels
11) NFPA 79, Electrical Standard for Industrial Machinery; subject comparable with IEC/EN 60204-1
12) Supply Circuit Disconnecting (Isolating) Means
the main switch can be switched on only when all control panel doors are closed and that all doors are mechanically and/or electrically interlocked with the switch that the doors can not be opened when the main switch is closed ${ }^{11}$.

A simple interlock with a shunt release that simply trips the main switch when a door is opened should be avoided, as this can lead to critical or dangerous situations for plant and personnel ${ }^{2}$). A defeat mechanism, with which specialists can temporarily disable the door interlock to correct faults is permissible ${ }^{3)}$, as faults can often be determined only in a live system. If more comprehensive measures are required to rectify faults, the plant should be shut down for the duration of the work.
To ensure the permanent connection between operating elements and switches, main switches with handle mechanisms are the preferred choice. The switch handles are fitted directly to the sides of the switches or more flexibly connected with a bowden cable. The fronts of North American control panels typically feature a fixed flange over the panel's entire height, into which the handle is installed, so that they can also be operated when the panel door is open. These handles are referred to an flange-mounted handle4) in North America. These handles are, in addition, connected to all control panel doors with a mechanical interlock. Eaton supplies these handles ${ }^{5}$) with a standard drilling template and with bowden cables of various lengths - see page $17 / \mathrm{xx}$. Lever handles do not fulfil the requirements of IEC/EN standards and do not contain the CE mark. They must therefore be used only in North America. Panel builders working to IEC/EN standards normally use these operating elements and the special control panels only by customer request.
In distribution equipment switches with toggle lever mechanisms are often used, while in industrial control panels ${ }^{6}$) switches with rotary mechanisms are preferred. For main switches, door coupling rotary handles with a high protection type are usually used, since these must be operable when the control panel door is closed. With the panel door open, the handle is on the outside of the door so that the switch can not be operated without tools. An additional handle ${ }^{7}$) can therefore be fitted to the switch axis inside the panel. According to the standards, this handle must be operable only through deliberate action ${ }^{8}$. To fulfil this requirement, Eaton's handles must, with the panel door opened, be rotated through about 15 degrees, then pushed and at the same time turned further to close the switch. Switching off does not require any special measures.

With this unique solution, Eaton's offers a clear competitive advantage on the European market because the high degree of protection ${ }^{9}$) of the door coupling handles and control panels are preserved. With the approved additional handle, the switch contains two operating elements, two switch position indicators and two locking facilities - one each for closed and for open doors. These handles are also recommended for IEC/EN standard panels, to which the described issues also apply.

When using switches with door coupling rotary handles and several control panel doors, an electrical door interlock is required. This interlock can be defeated by specialists and must automatically become active again when the last door is closed. For the electrical door interlock, our customers prefer position switches with mechanical locks. This solution more closely resembles a mechanical door interlock and provides a high level of safety. On control panels with only one door, this door can be directly mechanically interlocked with the switch through the door coupling rotary handle. The mechanical door interlock can also contain a defeat mechanism ${ }^{10}$.

As alternative to door coupling rotary handles, Eaton offers side-wall and rear-mounted switch mechanisms, which provide a permanent mechanical connection between handles and switches. Because of the versatile installation options of these mechanisms, an electrical door interlock must be provided for each switch ${ }^{11)}$.

Door coupling rotary handles for North America
 With door coupling rotary handles

 NZM..-XTVDV.. for NZM and NS...-NA, used mainly outside North America, the mechanically interlocked control panel door can be opened when handle and switch are in their OFF position. With the NA version of these handles - NZM..-XTVDV..-NA, the interlocked panel door can not be opened in the OFF position: The handle must be rotated further, beyond the OFF position to release the door. This is standard North American practice. Both door coupling rotary handle types are approved for North America.Cam switches T, switch-
disconnectors P1 and P3
In North America, these switches are industrial control equipment according to UL 508 and CSA-C 22.2 No. 14-05). Switch-disconnectors P1 and P 3 are a 3-pole design and have two switch positions. They are used mainly in controllers and as single devices in motor circuits. They are rated in HP and - if they are equipped with auxiliary contacts - they contain duty type information (pilot duties). The switches have no short-circuit switching capacity and must therefore
be fuse-protected. They can be used for switching motor circuits and other main circuits, and their auxiliary contacts for switching control circuits. Cam switches T can be manufactured with up to eleven contact units ${ }^{12)}$ and with more than two switch positions. They are therefore used mainly as control switches, for example as operating mode or measuring device selector switches. They are rated in HP and can also be used in motor circuits.
According to UL 508 the devices described above can be used as locally installed switch-disconnectors if the control panel contains a branch circuit protective device (BCPD) and the switch is, in addition, regarded as motor disconnect according to UL 508 and CSA-C22.2 No. 14-05 and marked accordingly on its rating plate. Eaton's T- and P-type switches fulfil these requirements. For the required line fuse ratings, see the catalog or the rating plates of the switches.

Fuse bases and fuses

For the following reasons, the use of circuit breakers, selected according to the above criteria, is preferable to the use of fuses:

- In North America only North Americ an fuse types must be used; IEC/EN standard fuses are not acceptable.
- Fuse bases for North American fuses are very large and take up a lot of space.
- NZM circuit breakers provide current isolation, short-circuit protection, overload protection and fault signaling in a single device and are much less expensive and smaller than a combination of fuse base, fuses and overload relay.
If the use of fuses is unavoidable, we recommend that you observe the following points:
- North American fuses are classified according to physical size, breaking capacity and current-time characteristics. The above table provides a rough overview.
- Motor circuits:

When using time delay fuses ${ }^{133):}$ Rated current of the max. line fuse $=1.75 \times$ motor rated current or next higher fuse current rating (max. $2.25 \times$ motor rated current). When using non-time delay fuses ${ }^{14)}$:
Rated current of max. line fuse $=$ $3 \times$ motor rated current or next higher fuse current rating (max. $4 \times$ motor rated current).

- "Circuits with non-motor loads: For these consumers line fuses are to be selected according to the consumer manufacturer's instructions. This also applies for frequency inverters, even if motors are connected to the frequency
inverters. In these cases the frequency inverters are regarded as consumers.
- "Switchgear:

For switchgear requiring line fuses for inherent short-circuit protection, the fuse ratings are to be obtained from the technical data in the catalog or from the devices's rating plates. For short-circuit protection of the combination of Eaton contactor and overcurrent relay, see page $8 / 35$ for the max. line fuse ratings.
To ensure both trouble-free motor starting and short-circuit protection of all devices within a circuit, select the smallest fuse required according to criteria 2b), 2c) and 2d). Regarding the short-circuit current rating (SCCR) non-time delay fuses can have advantages over circuit breakers.

Supplementary protectors FAZ

In North America, these devices are industrial control equipment and protectors (supplementary protectors according to UL 1077 and CSAC22.2 No. 235) ${ }^{151}$. They are used mainly in controllers. They can also be used as additional protective device in electrical devices whose incomer is already short-circuit protected. Eaton also provides an approved DC switching capacity in addition to the switch's AC switching capacity. They can therefore also be used in DC circuits.
Supplementary protectors FAZ are Recognized Components according to UL standards. This type of protective element is often used incorrectly. FAZ must be used only as additional protective device and never for branch circuit protection (BCPD). They have non-adjustable magnetic short-circuit releases for short-circuit protection and fixed-current overload relays for overload protection. Eaton supplies supplementary protectors with a range of IEC/EN-compliant tripping characteristics. The characteristic is selected according to the protected load type.
Supplementary protectors FAZ are specially suitable for fuseless protection of control circuits on the output side of control transformers. These protectors can also be used for input-side protection of control transformers, but not on the input side of power transformers.

Circuit-breakers FAZ...-NA FAZ...-RT (Miniature Moulded Case Circuit Breakers, MCCB)
Circuit-breakers FAZ...-NA and FAZ...-RT are a further development of supplementary protectors FAZ. They feature large clearances and creepage distances in the connection area. and, as miniature molded-case circuit breakers (MCCB), comply with standards UL 489 and CSA-C22.2 No. 5-09. They are Listed Components according to the UL standards and

Notes

1) In North America, electrical switching and protective devices are not
generally designed with protection against accidental contact
2) The Stop categories to IEC/EN and NFPA 79 must be observed
3) Defeat mechanisms are usually operated with a tool (screwdriver)
4) Also referred to as "side-mounted handle"
${ }^{5)}$ e.g. NZM-XSHGVR12-NA, plus further components
5) Industrial Control Panels to UL 508A and NFPA 79
6) e.g. NZM...-XHB-...-NA
7) Deliberate action
8) Or protection type - an important aspect with regard to the approval of switchgear systems/panels
${ }^{10)}$ Operated by turning a screw on the handle with a screwdriver
9) Also on panels with only one door
10) Eleven contact units correspond with 22 contacts
${ }^{13)}$ Also called "dual element time delay fuses"
11) "Non-time-delay fuses"
12) Protective devices for additional protection (in addition to a BCPD), e.g. splitting of circuits after a BCPD

Classified Components according to CSA. They have non-adjustable magnetic short-circuit releases for short-circuit protection and fixedcurrent overload relays for overload protection. They are approved as

Available accessories are auxiliary contacts, shunt releases and threephase commoning links with large clearances and creepage distances are available.

Part no. or design in:		Standards UL, CSA	Fuse charac-	SCCR	Typical values
USA	Canada				
Class H , "Code"	Class $\mathrm{H}_{\text {, }}$ No. 59 "Code"	$\begin{aligned} & \hline \text { UL 248-6/7, } \\ & \text { C22.2 248-6/7 } \end{aligned}$	Fast	$\frac{10 \mathrm{kA}, 250 \mathrm{VAC}}{10 \mathrm{kA}, 600 \mathrm{VAC}}$	0... 600
$\begin{aligned} & \hline \text { Class } \\ & \text { CC } \end{aligned}$	$\begin{aligned} & \hline \text { Class } \\ & \text { CC } \end{aligned}$	$\begin{aligned} & \hline \text { UL 248-4, } \\ & \text { C22.2 248-4 } \end{aligned}$	Fast Time-lag	$\begin{aligned} & 200 \mathrm{kA}, \\ & 600 \mathrm{VAC} \end{aligned}$	0.5... 30
Class G	Class G	$\begin{aligned} & \hline \text { UL 248-5, } \\ & \text { C22.2 248-5 } \end{aligned}$	Fast Time-lag	$\begin{aligned} & 100 \mathrm{kA}, \\ & 480 \mathrm{VAC} \end{aligned}$	21... 60
				100 kA, 600 VAC	0.5... 20
Class J	$\begin{aligned} & \hline \text { Class J } \\ & \text { HRCI-J } \end{aligned}$	$\begin{aligned} & \hline \text { UL 248-8, } \\ & \text { C22.2 248-8 } \end{aligned}$	Fast Time-lag	$\begin{aligned} & 200 \mathrm{kA}, \\ & 600 \mathrm{VAC} \end{aligned}$	1... 600
$\begin{aligned} & \hline \text { Class K } \\ & \text { K1, K5 } \end{aligned}$	$\begin{aligned} & \hline \text { Class K } \\ & \text { K1, K5 } \end{aligned}$	$\begin{aligned} & \hline \text { UL 248-9, } \\ & \text { C22.2 248-9 } \end{aligned}$	Fast Time-lag	$\begin{aligned} & 50 \mathrm{kA} / 100 \mathrm{kA} / \\ & 200 \mathrm{kA}, \\ & 600 \mathrm{VAC} \end{aligned}$	0... 600
Class L	Class L	$\begin{aligned} & \hline \text { UL 248-10, } \\ & \text { C22.2 248-10 } \end{aligned}$	Fast Time-lag	$\begin{aligned} & 200 \mathrm{kA}, \\ & 600 \mathrm{VAC} \end{aligned}$	601...6000
Class \mathbf{R} RK1, RK5	$\begin{aligned} & \hline \text { Class R } \\ & \text { HRCI-R } \\ & \text { RK1, } \\ & \text { RK5 } \end{aligned}$	$\begin{aligned} & \hline \text { UL 248-12, } \\ & \text { C22.2 248-12 } \end{aligned}$	Fast Time-lag	$\begin{aligned} & 50 \mathrm{kA} / 100 \mathrm{kA} / \\ & 200 \mathrm{kA}, \\ & \text { 600VAC } \end{aligned}$	0... 600
Class T	Class T	$\begin{aligned} & \hline \text { UL 248-15, } \\ & \text { C22.2 248-15 } \end{aligned}$	Fast	$\begin{aligned} & 200 \mathrm{kA}, \\ & 300 \mathrm{VAC} \\ & 200 \mathrm{kA}, \\ & 600 \mathrm{VAC} \end{aligned}$	0... 1200

manufacturers and users reduce their parts stock and provide optimized solutions more quickly.

The standardized continuous currents and switching duties for AC and DC for auxiliary switches are assigned

Motor protection must be provided by an overload relay. For dimensioning the motor outgoer with soft starter, use the selection tables in this catalog.

Eaton's soft starters (DS4, DS6, DS7) are UL-listed and CSA-certified (DS7

Fields of application	Notes
Primarily domestic	Types H, K and No. 59 "Code" fit the same bases and are therefore interchangeable. There is therefore a risk that they may be incorrectly used! See also note on K.

Fast:	Time-lag:
Protection from resistive and inductive loads.	Protection from inductive and highly inductive loads.
Circuits for	Circuits for heating, motors, lighting, feed- ers and transformers, lighting etc.

Extremely compact design.
Current limiter to UL/CSA.
Compact design.
Current limiter to UL/CSA.
All other fuse types do not fit into bases.
Compact design.
Current limiter to UL/CSA.
All other fuse types do not fit into bases.

Not current limiter to UL/CSA.
 In the USA, the K types are therefore being

 increasingly replaced by the RK part numbers.Current limiter to UL/CSA.
All other fuse types do not fit into bases.

Current limiter to UL/CSA.

Types RK1, RK5 and HRCI-R fit the same bases. All other fuse types do not fit into these bases. RK1 fuses have lower let-through values than RK5.
Extremely compact design.
Current limiter to UL/CSA.
All other fuse types do not fit into bases.
current limiters and marked accordingly on their rating plates. This means that their rated current can be fully utilized. They are rated in amperes, their short-circuit switching capacity is given in kA and - if they are equipped with auxiliary contacts contain duty type information (pilot duties). Eaton also provides an approved DC switching capacity for single-pole 48 V and two-pole 96 V in addition to the switches' AC switching capacity ${ }^{11}$.

These miniature circuit breakers can be used as branch circuit protective devices (BCPD) in feeder circuits and branch circuits. Up to a rated current of 32 A, FAZ...-NA and FAZ...-RT must be used only in star networks with solid grounding and a slash voltage of up to $480 \mathrm{Y} / 277 \mathrm{~V}$. FAZ...-NA and FAZ...-RT for higher current values can be used up to 240 VAC , irrespective of network configuration and grounding. Part number suffix "-RT" stands for Ring Terminal. On these versions the terminal screws can be fully turned out to allow the connection of ring cable lugs.

These circuit breakers are available with one, two or three poles and with IEC/EN tripping characteristics B, C and D . The characteristic is selected according to the protected load type.

Accessories, such as auxiliary contacts and shunt releases
In North America, approvals were, for a long time, available only for complete, unalterable devices. For the practice common in Europe of allowing customers to retrofit devices with auxiliary contacts, undervoltage releases, shunt releases and other accessories, the corresponding UL and CSA approvals can now be issued. This applies even for changes in the main current area, for example different main current terminal types. The permissible versions must, of course, have been described, tested and approved. Permissible alternative connection blocks must be indicated on the device's rating plate. Observe the installation instructions and do not omit any parts only because their purpose is not clear. These parts ensure the required clearances and creepage distances, prevent shortcircuits between phases due to faulty insulation and improve protected against accidental contact.

The tried-and-tested modular design method allows the field of application of contactors, circuit breakers, motorprotective circuit breakers, position switches and control circuit devices to be cost-effectively extended with add-on functions. It also helps reduce
according to the standards to the characteristic values and switching duty types indicated in the devices' technical specifications and on their ratings plates. These pilot duties are given in the table for auxiliary contacts in $A C$ and $D C$ circuits on page $5 / x x$. Auxiliary contacts are approved mainly for heavy pilot duty, and on some devices for standard pilot duty. For detailed information, see the technical data for the device groups. The ratings plate on some auxiliary switches contains information such as " 600 V , same polarity". This means that adjacent auxiliary contacts of the same auxiliary switch or switch block must be connected only to the same control voltage source.

Soft starters and frequency inverters

Soft starters DS4, DS6, DS7

Like IEC/EN 60947, North American standards regard soft starters largely like contactors. These devices are developed, tested and approved to UL 508, CSA-C22.2 No. 14-05 and CSA-C22.2 No. 0-M91. Circuit-breakers or fuses provide short-circuit protection. The North American standards do not currently include protection through UL 508 Type E starters or the treatment of these devices as contactors, i.e. as UL 508 Type F starters.
as of Summer 2010) for an operationa voltage of up to $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ (full voltage). They are used in branch circuits. In practice, the soft starters are bypassed with a built-in bypass after the motor has started up. This reduces heat losses and thyristor load. Any short-circuit currents in the motor outgoer do not flow through the thyristors in the event of a fault. This increases the soft starters' reliability. On some models the soft starters switch two phases and the third phase is fed through. One of of the competitive advantage of Eaton's soft starters is that they have terminal types that are adapted to the switchgear. At currents up to 41 A the same terminal types are used as for circuit breakers, whose accessories can therefore also be used.

Frequency inverters M-Max and H-Max

Frequency inverters are developed, tested and approved according to North American standards UL 508C and CSA-C22.2 No.14-05. Short-circuit protection is provided by circuit breakers or fuses. It is currently not yet clear whether UL 508 Type E or Type F starters can be used as protective devices. Frequency inverters can be used only in combination with the tested, manufacturer-assigned

Notes

1) For additional approved versions for single-pole 125 V DC and two-pole 250 V DC please enquire
protective devices. Overload protection of a single, directly connected motor can be provided directly by the frequency. For drives with several motors and bypass circuits the motors must be individually overloadprotected with overload relays.

The frequency inverters are used in branch circuits. They can be used with three-phase rated operating voltages of up to $480 \mathrm{Y} / 277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Because of their suppressor circuit, solidly grounded star networks with neutral conductor are always required.
Radio interference suppression measures (EMC) in frequencycontrolled power drive systems (PDS) are not specified in the North American standards. To ensure interfer-ence-free operation, the EMC measures laid out in IEC/EN 81600-3 should be carried out for machines and plants for export to North America

Control relays easyRelay

 and MFD silverElectronic control relays easyRelay and multi-function displays MFD-Titan have all UL 508 and CSA-C22.2 No. 142 approvals. They are also approved to CSA (Class 1, Div. 2) for use in hazardous locations to CSA-C22.2 No. 213-M1987(R2008)11.
All technical details for the North American market in this catalog, in the installation instructions and in the manuals are also given in American units, such as inches, lb , and degrees Fahrenheit. The relay data are given in pilot duties B300, R300, and make/break. The operational DC voltage of 24 V is also the common voltage for electronic components and systems in North America.
easyRelay and MFD-Titan are programmed in programming language ladder diagram. The easySoft software is also capable of representing North American ANSI contact sequences.
Control relays easyRelay and multifunction displays MFD-Titan are therefore fully equipped as control components/systems for the North American market.

Protection types for enclosures (degree of protection)

- The binding design and degree of protection requirements for enclosures for the USA are defined in NEC = NFPA 70, in UL 508(A) and in UL 50(E). For Canada they are specified in CSA-22.2 No. 14-05 and in CSA-C 22.2 No. 94. The degrees of protection are given as NEMA types or as identical UL/CSA types. Because the UL/CSA types must be third-party certified, they have largely superceded the NEMA types. Many inspectors demand UL/CSA types. Where products with third-party certified UL/CSA types are available, they should be used in preference.
- The enclosures used by Eaton are accepted for use in North America, since they are approved with UL/CSA types and meet the requirements regarding contact protection, corrosion protection
and ingress protection against solids and liquids. See the information about degree of protection on the selection pages or in the technical specifications for the product groups.
- The IEC/EN standard ingress protection (IP) types include protection against ingress of solids and water. The comparable standards in Canada and the USA go further, also covering protection against ingress of oil and coolant, and corrosion protection of the enclosure; they therefore also define its place of installation. The table on a Page 22/xx ((17/18)) provides an overview of the requirements in Canada and the USA and a comparison with the IP ratings.
- IP protection type information has no relevance for use in North America and can not replace missing information about NEMA/UL/CSA types. The NEMA/UL/CSA types cover the corresponding IP ratings but not the other way round.
When exporting to North America, particular attention must be paid to the selection and implementation of the correct degree of protection for enclosures and installed apparatus. The inspectors are known to check very thoroughly for adherence to the degrees of protection. In almost every case, plants fail the inspection on this aspect and must be rectified. This results in lost time and additional costs. Always choose enclosures with the right degree of protection from the start. Every opening subsequently made in an enclosure puts its degree of protection into question. The degree of protection remains intact only when each of these enclosures is sealed again to the same degree. This can be done, for example, by installing a control circuit device or switch handle with the same or a higher degree of protection. Likewise, all openings that are not immediately apparent because they are hidden by other components must be sealed. In most cases the assembly personnel knows exactly where work was performed with less than 100 percent accuracy. Hoping that this will not be noticed will usually result in severe problems. To obtain acceptance, these locations will later have to be improved at great cost. Improvements carried out at the customer's site are specially expensive. Here, too, it should be remembered that this work has to often be performed by a North American vendor and can not be carried out by the manufacturer, who can then, at best, take on the role of supervisor.

Sheet-steel enclosures and

 installation techniqueSheet steel enclosures can be used for all types of controllers. In North America, and specially in power distribution systems cables are commonly laid in metal conduits. Into these conduits, individual strands, not whole cables, are laid. The conduits are bolted together along their entire length to act as continuous grounding conductor. They are connected to the enclosure flanges with suitable metal glands. Enclosures with metal flanges
ensure an uninterrupted conducting connection between incoming and outgoing conduits, so that the enclosures are included in the grounding measure. Sheet steel enclosures with metal or insulating flanges are also suitable for connecting plastic conduits and cables, which are connected with commercial glands. In this configuration, protective grounding must be provided with a ground conductor routed with the cabling. This cable routing type has established itself in many modern installations and is today the preferred choice, for example for machines. On machines, only the input wiring to the main switch is often installed with metal conduits. Regarding the configuration and space utilization of cable trays, cable ducts and wiring ducts in control panels, the limitations imposed by the Electrical Codes must be observed. The permissible space utilization lies some way below that usually specified by the IEC/EN standards. Inspectors usually investigate this aspect in great detail. Where cable trays and ducts are secured to the building, extensive regulations of the Electrical Codes must be observed. Consistent grounding of all components that must be included in the grounding system will be thoroughly inspected and objections are not infrequent. The required grounding conductor cross-sections must be adhered to under all circumstances.
Another important aspect is the protection of the insulation of electrical cables where the cables are routed through openings or are exposed to movement during machine operation (for example trailing cables). Cables that are mechanically protected in IEC/EN installations must, of course, also be protected in plants destined for export to North America. The cables as well as all materials used for routing and securing them must be verifiably approved. Always observe the installation and dimensioning instructions of the Electrical Codes.

Wall-mounting enclosures CS

Eaton now supplies a new enclosure system with approvals for the USA and Canada. Wall-mounted enclosures in 45 enclosure sizes ranging from $250 \times 200 \times 150 \mathrm{~mm}(\mathrm{~h} \times \mathrm{w} \times \mathrm{d})$ to $1200 \times 800 \times 300 \mathrm{~mm}$ are available. The smaller enclosures are ideal for enclosing individual devices or small combinations, such as motor-starter combinations or frequency inverters complete with the additionally required components. The larger enclosures are suitable for constructing small to medium-sized machine controllers. It is advisable, wherever possible to fix the enclosures to the machine. This has the added advantage that the machine can be delivered ready for connection and fully function-tested. If the enclosures and installation are mounted on the building, the extensive installation regulations of the Electrical Codes must be observed. The enclosures have a high degree of protection (IP65 UL/CSA Types 1 and 12, indoor use only). The surrounding rain channel profile offers protection against the ingress of liquid such as
water or oil as well as dirt when the door is opened. A powder-coated textured surface provides abrasionresistant corrosion protection. The enclosures feature galvanized sheet steel mounting plates. Sheet steel bottom plates for self-assembly are available. The enclosure can be turned through 180° for cable entry from above or below.

Insulated enclosures CI-...-NA

Enclosures $\mathrm{Cl}-\ldots$-NA fulfil the statutory North American requirements for the construction and degree of protection, which is laid out in UL 508(A) for the USA and in CSA-C22.2 No. 14-05 for Canada. They are therefore suitable for enclosing motor starters and miniature and small controllers for installations and machinery. With thei complete corrosion-resistance they are ideally suited for humid or corrosive environments. The enclosures are suitable for the connection of cables and both metal and plastic conduits, which are connected with commercial screwed glands. Because the "total insulation" that Eaton offers for its enclosures is not recognized for insulating enclosures in the USA and Canada, the enclosures must be grounded according to the enclosed installation instructions.
Enclosures $\mathrm{Cl}-. .$. -NA are approved both with and without insulated flanges. For the full range of Cl enclosures with UL/CSA approvals see Chapter 20.

Busbar systems SASY60i

Busbar systems are an essential part of IEC/EN installations and of modern control systems. In North America they are still relatively new. There, power distribution to switching and protective devices is frequently still implemented using power distribution blocks, which are less well known in the rest of the world. In 2007, when Moeller began to introduce the busbar system SASY 60 i , the system's components received only approvals as UL Recognized Components and CSA Certified Components. In the meantime, most of the system's key components are approved as UL Listed and CSA Certified Components - see the markings on the selection pages. This was an important step, as Listed Components no longer have to be included at additional cost into the certification reports for switchgear systems. In the next edition of UL 508A the busbar system are expected to also be included in "Component Requirements" SA1, Table SA1.1.
Initially, the busbars were approved only for peak loads of $1000 \mathrm{~A} /$ inch2 or $1.55 \mathrm{~A} / \mathrm{cm}^{2}$, which is about half of the load capability according to IEC/EN. In the meantime, the busbars have been tested and approved with IEC/EN loads. This was a major step for machine and panel builders that want to supply world-market machines and control panels.

Notes

1) Non-Incendive Electrical Equipment for Use in Class I, Division 2 Hazardous Locations]

Summary

This chapter of the main catalog briefly introduced the topic of approvals for North America as well as the various switchgear and protective devices and their normal usage in conformance with the North American codes and standards. Further information about equipping machines and installations to UL 508A and NFPA 79 is available from Eaton in a range of technical essays. Eaton also holds workshops on this subject.

Some users still think that they can avoid compliance with the North American standards and codes. There may be a few exceptions, in which an installation is not inspected for compliance, and in even fewer cases adherence to the North American codes and standards is not required. If you have experienced such a case, you should not assume it to be the normal situation. The electrical codes have the same status as to North American law.
We regularly receive calls from machine and panel builders whose products are not accepted in North America and who are desperately looking for solutions for their sometimes serious mistakes. Rectifying these can be very expensive, cost a considerable amount of time and results in lost image. What is more, in North America some modifications must be performed by North American companies and can not, therefore be carried out by the manufacturer.

For companies that supply the North American market only occasionally and who do not wish to expand this market region, it may be more efficient to commission an experienced subcontractor with supplying and installing the electrical equipment. These vendors can re-engineer IEC/EN installations to North American codes and standards and build installations that are already accepted and approved at the place of manufacture. Eaton Electric GmbH itself does not provide engineering services because we do not want to compete with our customers.
This information does not replace the detailed study and implementation of the North American codes and standards. It has been compiled by Wolfgang Esser and other Eaton specialists to our best knowledge and belief based on the product situation and state of the standards at the beginning of 2010 .
The binding documents are always the original North American codes and standards and, for the described products, the applicable Eaton main catalog and Eaton's approval documents for its products

22/16 Switchgear for North America
Switching duty of auxiliary contacts, rating data for three-phase contactors to NEMA

Type ${ }^{1)}$	construction ${ }^{1)}$ in		Tripping characteristic ${ }^{1)}$	Switching capacity $\mathrm{kArm}_{\mathrm{s}}$	Applications ${ }^{11}$	For use in	
	USA	Canada					
H		-	Fast	10	Primarily domestic	USA, Canada	Types H, K and No. 59 "Code" fit the same bases and are therefore interchangeable. In the USA, the K types are therefore being increasingly replaced by the RK types. Rated operational current: $1 \ldots 600 \mathrm{~A}$
		No. 59 "Code"	Fast	10	Primarily domestic	Canada, USA	
$\begin{aligned} & \mathbf{K} \\ & \mathbf{P} \end{aligned}$	K1/K5	-	Fast	100-200	Protection of circuits for heating, lighting and feeders and outgoers for mixed loads.	USA	
		-	Time-lag	100-200	Protection of circuits for motors, transformers, heating and lighting.	USA	
J		-	Fast	200	See item 2 above.	USA, Canada	Compact design. Types J and HRCI-J fit the same bases, all other types numbers do not fit into these bases. Rated operational current: $1 \ldots 600 \mathrm{~A}$
		-	Time-lag	200	See item 3 above.	USA, Canada	
		HRCI-J	Fast	200	See item 2 above.	USA, Canada	
			Time-lag	200	See item 3 above.	USA, Canada	
RK	RK1/RK5	-	Fast	100-200	See item 2 above.	USA, Canada	Types RK1, RK5 and HRCI-R fit the same bases, all other types numbers do not fit into these bases. Rated operational current: $1 \ldots 600 \mathrm{~A}$
		-	Time-lag	100-200	See item 3 above.	USA, Canada	
		HRCI-R	Fast	100-200	See item 2 above.	Canada, USA	
			Time-lag	100-200	See item 3 above.	Canada, USA	
		HRCII-R	$\begin{aligned} & \text { Time-lag - } \\ & \text { Fast } \end{aligned}$	100-200	5. Protection of motor circuits	Canada	All other fuse types do not fit into bases for HRCII-R.
CC(CD)		-	Fast	200	See item 2 above.	USA, Canada	Very compact design; all other fuse types do not fit into these bases. Rated operational current: CC $1 \ldots 30$ ACD $31 \ldots 60$ A
			Time-lag	200	See item 3 above.	USA, Canada	
L		-	Fast	200	See item 2 above.	USA, Canada	"Code" fuses for higher ratings Rated operational current: 601 ... 6000 A
			Time-lag	200	See item 3 above.	USA, Canada	

| Enclosure | | Location | Type of protection |
| :--- | :--- | :--- | :--- | :--- |
| Enclosure and protection type marking to | | | |

22/20 Terminal capacities

This glossary contains short definitions of technical terms used in this catalog. Because the terms used in IEC/EN 60947 can be open to interpretation, it is always advisable to also refer to the relevant standard. This applies in particular to the American National Electrical Code (NEC,
NFPA 70) and the US standards
UL 508, UL 489, UL 508A, and NFPA 79.

The Canadian Electrical Code (CEC) contains equivalent terms in standards CSA-C 22.2 No. 5 and CSA-C 22.2 No. 14.
The American English terms are appended to the glossary in a new block. The German equivalents of the American terms are not definitive equivalents; they are intended merely as an aid to understanding. Because
these terms often describe concepts that are not defined in the IEC world, there is no authorized German equivalent for them. The explanations apply to the use of components in particular in industrial control panels for machinery to UL 508A and NFPA 79. Each technical term contains a reference to the corresponding standard, e.g. IEC/EN 60947-1. For the
correct translation, the IEV No. of the electrotechnical glossary (IEC 50:
International Electrotechnical
Vocabulary) is specified,
e.g. IEV 441-17-31.

Altitude

The density of air decreases with increasing altitude, and this reduces its insulating capacity as well as its heat transfer capability. This affects the rated operational voltage and rated operational current of switching devices, conductors and motors, as well as the tripping behavior of thermal overload relays. On request, Eaton can supply information about the suitability of equipment for operation at altitudes above the standard-specified 2000 m .

Ambient temperature, enclosed

(cf. IEV 441-11-13) Temperature at which the switchgear is capable of being operated within a closed housing. The elevated temperature inside the enclosure due to the switchgear's heat dissipation must be taken into account here.

Ambient temperature, open

(cf. IEV 441-11-13) Room temperature (for example of the shopfloor or control room) in which the switching device is located.

Auxiliary contact

(IEC 60947-1/IEV 441-15-10) A contact which is included in an auxiliary circuit and is mechanically operated by the switching device.

Auxiliary switch

(IEC 60947-1/IEV 441-15-11) Switch containing one or more control or auxiliary contacts and which is mechanically operated by a switching device. Auxiliary switches can be retrofitted in modular systems of contactors, circuit breakers and motor-protective circuit breakers, or they are a fixed component of a switching device, e.g. contactor relay.
They are designated according the functions

- Making contact as a normally closed contact, normally open contact, changeover contact or fleeting contact.
- Function as normal, early, late, drive or trip indicator switches.

Back-of-hand proof

Switchgear is considered as back-of-hand proof if its conductive parts cannot be touched with a ball with a diameter of 50 mm .

Busbar tag shroud

Design measures incorporated into equipment to prevent direct contact (i.e. without tools) with live parts of a system (finger-proof, back-of-hand proof).

Clearance in air

(cf. IEC/EN 60947-1; 2.5.46/IEV 441-17-31) The distance between the two conductive parts at the point at which they are closest to each other. The clearance in air is determined by the rated impulse withstand voltage, the overvoltage category and the pollution degree.

Closing delay

The interval of time between the instant of command and the first make operation of the contacts of the first pole to close. The closing delay is made up of the response time and the closing time.

Control circuit reliability

The probability with which switching states arise during the lifespan of a contact that would be interpreted as faults by downstream electronic controllers (PLCs). Control circuit reliability is expressed in values based on tests using standard limit values for signals to IEC/EN 61131-2.

Conventional thermal current $I_{\text {th }}$

(cf. IEC/EN 60947-1; 4.3.2.1) The maximum value of current that a device is capable of carrying for a maximum of 8 hours without thermal overloading. As a rule, it corresponds to the maximum rated operational current.

Coordination type

State of a switchgear assembly (motor starter) during and after testing at rated conditional short-circuit current:

Type "1" coordination:

- No hazard to persons and systems.
- No immediate operational readiness necessary.
- Damage to the starter permissible.

Type "2" coordination:

- No hazard to persons and systems.
- Starter is suitable for further operation.
- Have the switch positions marked " 0 " and " I "
- Be lockable in the OFF position.
- Cover the connection terminals against accidental contact.
- Have a minimum switching capacity for load disconnectors and motor switches for AC-23.

Mechanical shock resistance

The ability of a device to withstand pulse-like movement without changing its operating state or sustaining damage. No contact lifting must take place on devices in the On position, the main contacts must not knock against one another in the Off position. A circuit-breaker must not trip, and control circuit switches must not change their switching state.

Minimum command time

Minimum period of time for which a trip-initiating factor (such as a control pulse or a short-circuit current) must be present to cause the corresponding reaction, for example the short-circuit duration necessary to initiate tripping.

Mirror contact

(cf. IEC/EN 60947-4-1 appendix F) A mirror contact is an auxiliary break contact that can not be closed at the same time as the contactor's main make contacts.

Motor rating

(cf. IEC/EN 60947-1; 4.3.2.3) Motor output that can be switched by a switching device at the assigned rated operational voltage, depending on the utilization category, e.g. a contactor of utilization category AC-3: 37 kW at 400 V .
Opening delay
(cf. IEV 441-17-36) The interval of time between the specified instant of initiation of the opening operation and the instant when the arcing contacts have separated in all poles. The opening delay is the sum of the tripping delay and the inherent delay of the contacts.

Overvoltage category

(cf. IEC/EN 60947-1; 2.5.60) Classification for prospective overvoltages at the point of installation, such as might be caused by the effect of lightning or switching processes. The overvoltage category for industrial switchgear is III. According to the overvoltage categories, the use of switchgear is permissible in the following areas:

Overvoltage category I:

Apparatus for connection to circuits with overvoltage protection, e.g. electronic devices.

Overvoltage category II:

Consumers for connection to fixed installations, such as household appliances or electrical tools.

Overvoltage category III:

Apparatus with special serviceability requirements for connection in fixed installations that are protected by overvoltage diverters, e.g. switches in low-voltage distribution systems or in control systems for industrial use.

Overvoltage category IV:

Use immediately at the the connection point of the installation (direct lightning impact possible), for example on an overhead power line connection.

Pollution degree

(cf. IEC/EN 60947-1; 5.5.58) Classification for the likely amount of conductive dust and humidity, which can lead to a reduced electric strength of a switching device. The pollution degree is described by the following influencing factors:

Pollution degree 1:

If soiling occurs, pollutants are usually only dry or non-conductive. The soiling does not affect electric strength.

Pollution degree 2:

Usually only non-conductive pollutants. Temporary conductivity due to condensation is to be expected, however.

Pollution degree 3:

(Switchgear for industrial use) Conductive pollution or dry, non-conductive pollution that is made conductive through condensation.

Pollution degree 4:

Pollution leading to continuous conductivity, for example conductive dust, rain or snow.

Positive/enforced operation/actuation

This describes an arrangement where a mechanical link between the actuator and the switching element ensures that the force exerted on the actuator is exerted directly, onto the switching element, i.e. without the use of spring-loaded parts.

Positive opening

(cf. IEC/EN 60947-1; 2.4.10 / IEV 441-16-11) An opening operation which ensures that the main contacts of a mechanical switching device have attained the open position when the actuator is in the Off position.

Power disconnecting device

\rightarrow Main switch
Rated actuating voltage $\mathbf{U}_{\mathbf{c}}$
(cf. IEC/EN 60947-1; 4.5.1) Voltage applied to the actuation N/O contact in a control circuit. May deviate from the rated control voltage due to the presence of transformers or resistors in the control circuit.

Rated breaking capacity
(cf. IEC/EN 60947-1; 4.3.5.3) The r.m.s. value that a switching device is capable of breaking according to its utilization category. This value refers to the rated operational voltage and the rated operational current. Equipment must be capable of breaking of current up to and including its specified rated breaking capacity.

Rated conditional short-circuit current I_{q}
(cf. IEC/EN 60947-1; 2.5.29/IEV 441-17-20) The short-circuit current that a switching device, e.g. a contactor, protected by a short-circuit protective device, such as a motor-protective circuit-breaker, can carry for the duration of the tripping delay of the protective mechanism.

Rated control voltage $\mathbf{U}_{\mathbf{s}}$

(cf. IEC/EN 60947-1; 4.5.1) The voltage applied to the input terminals of the control circuit of a switching device. Due to the presence of transformers or resistors in the control circuit, this voltage may differ from the rated control circuit voltage.

Rated frequency

(cf. IEC/EN 60947-1; 4.3.3) The frequency for which a switching device is designed and to which the other characteristics relate.

Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$
(cf. IEC/EN 60947-1; 4.3.1.3) Measure of the stability of the internal clearances of a switching device against overvoltage peaks. The utilization of suitable switchgear can ensure that overvoltages are prevented from transferring from the mains to deenergized system sections within it.

Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$
(cf. IEC/EN 60947-1; 4.3.1.2) Voltage to which insulation tests and clearances relate. The highest rated operational voltage must not be greater than the rated insulation voltage.

Rated making capacity

(cf. IEC/EN 60947-1; 4.3.5.2).The current that a device is capable of making in accordance with the utilization category and at the rated operational voltage.

Rated operational current I_{e}
(cf. IEC/EN 60947-1; 4.3.2.3) The current that a switching device is capable of carrying, taking into account the rated operational voltage, duration of operation, utilization category and ambient air temperature.

Rated operational current I_{n} (of a circuit-breaker)

(cf. IEC/EN 60947-2; 4.3.2.3) For circuit breakers, this current value is equal to the rated uninterrupted current and the conventional free air thermal current.

Rated operational voltage $\mathbf{U}_{\mathbf{e}}$
(cf. IEC/EN 60947-1; 4.3.1.1) Voltage to which the characteristic values of a switching device relate. The highest rated operational voltage must not be greater than the rated insulation voltage.

Rated service short-circuit breaking capacity $I_{\text {cs }}$
(cf. IEC/EN 60947-2; 4.3.5.2.2) The short-circuit current that a circuit-breaker is able to interrupt repeatedly; dependent on the rated operational voltage (test 0-CO-CO, previously $\mathrm{P}-2$). After breaking the short-circuit, the circuit-breaker is able to carry the rated uninterrupted current again with increased self-heating, and to trip in the event of an overload.

Rated short-circuit breaking capacity $I_{\text {cn }}$

(cf. IEC/EN 60947-1; 4.3.6.3) The maximum current that a switching device can break at rated operational voltage and frequency without sustaining damage. It is expressed as an r.m.s. value.

Rated short-circuit making capacity I_{cm}

(cf. IEC/EN 60947-1; 4.3.6.2) The maximum current that a switching device can make at a certain rated operational voltage and frequency without sustaining damage. In contrast to other characteristic values, it is expressed as maximum prospective peak value.

Rated short-time withstand current I_{cw}

(cf. IEC/EN 60947-1; 4.3.6.1) The short-time withstand current that a device is capable of carrying for a specified time without damage, e.g. due to excessive heating.
Rated ultimate short-circuit breaking capacity $I_{\text {cu }}$
(cf. IEC/EN 60947-2; 4.3.5.2.1) Maximum short-circuit current that a circuit-breaker can interrupt (test 0-CO; formerly P-1). After short-circuit breaking, the circuitbreaker is able to trip in the event of an overload with increased tolerances.

Rated uninterrupted current I_{u}
(cf. IEC/EN 60947-1; 4.3.2.4) Current that a switching device can carry in continuous operation (for weeks, months or years).

Rating

(cf. IEC/EN 60947-1; 4.3.2.3) The power output of a motor at its rated operational voltage.

Safe isolation

(cf. IEC 536) Isolation of circuits not carrying hazardous voltage, e.g. protective extra-low voltage, from circuits in which hazardous voltage flows. Such isolation is achieved by means of reinforced or double insulation, which reliably prevents voltage transfer from one circuit to another, for example between main and auxiliary switchgear circuits or the primary and secondary sides of a safety transformer. Safe isolation is required mainly for safety and functional extra-low voltage circuits.

Stopping in case of emergency

(EN ISO 13850) Function intended to prevent hazards or minimize existing risks for people or of damage to machines or running processes, and which is triggered by a single action by one person.

Accessible, Readily

NEC, Article 100) Readily accessible for operations, replacement or inspection without having to breach or remove obstacles or having to use steps, etc.

Ampacity

(NEC, Article 100) Current in amperes that a conductor can continuously carry under operational conditions without exceeding its permissible temperature.

Approved

(NFPA 79, Chapter 3) Acceptable for the Authority having Jurisdiction (AHJ).

Authority Having Jurisdiction

(NEC, Article 100) Organization, authority or person responsible for implementing the stipulations of the Codes or Standards, or for approving equipment, materials, installations or procedures.

Branch Circuit

Here the applicable standards deviate. NEC has highest priority, but the UL definition appears to be closer to reality. In any case, "branch circuit" denotes everything that comes after the last overcurrent protective element.
(NEC, Article 100) Conductor in a circuit between the last overcurrent protection element that protects the circuit and the apparatus.
(UL 508A, Part 1, Introduction, 2) Conductors and components after the last overcurrent protection element that protects a load.

Branch Circuit Overcurrent Device (BCOD)

(NEC, Article 100) Device suitable for protecting supply, feed and outgoer circuits or apparatus across the whole range of overcurrents between the rated current and its switching capacity. BCODs must have a breaking capacity appropriate for its use, but no less than 5 kA .

Branch Circuit Protective Device

(UL 508A, Part 1, Introduction, 2) Fuses or circuit breakers that have been assessed according to a safety standard with respect to the provision of overcurrent protection.

Circuit Breaker, CB

(NEC, Article 100) Device developed for non-automated opening and closing of a circuit and which automatically opens a circuit at a fixed overcurrent without itself being damaged if used correctly within its rated data.

Adjustable (if applicable for the circuit-breaker)

A qualifying term which indicates that the CB can be adjusted to variable trip values of current, time or both within a particular range.

Instantaneous Trip (if applicable for the circuit-breaker)

A qualifying term which indicates that the $C B$ is designed to trip without a delay.

Inverse Time (if applicable for the circuit-breaker)

A qualifying term which indicates that the $C B$ is designed to trip with a delay such that the delay decreases with increasing current.

Tamper-proof

An Emergency-Stop switching device is regarded as tamper-proof if it cannot be reset without tools or using specified procedures after tripping. The switching device locks in its tripped position. Accidental or controlled manipulation (inching) is not possible.

Utilization category

cf. IEC/EN 60947-1; 2.1.18/IEV 441-17-19) A combination of specified requirements relating to the condition in which the switching device or fuse fulfills its purpose and selected to represent a characteristic group of real-life applications. The specified requirements may, for example, relate to the values of making and breaking capacity and other characteristic values, data concerning associated circuits and the applicable conditions of use and operational behavior.
(cf. IEC/EN 60947-2; 4.4) For circuit breakers, the utilization category denotes whether the equipment is designed for selectivity using time delay (category B) or not (category A).

Non adjustable (if applicable for the circuit-breaker)

A qualifying term which indicates that the CB's tripping current or delay can not be adjusted.

Setting (of circuit breakers)

The set current or time value, or both, at which an adjustable circuit-breaker is to trip.

Combination Motor Controller

(UL 508A, Part 1, Introduction, 2) One or several devices that have been fitted to be able to isolate the conductors of a circuit from their power supply (disconnecting means), to protect the branch circuit (branch circuit protection), to switch the motor (motor control) and to provide motor over-load protection for an individual motor circuit.

Device

(NEC, Article 100) Assembly within an electrical system whose primary function is to carry or control electrical energy.

Disconnecting means

(NEC, Article 100) Device or group of devices or other means through which the conductors of a circuit can be isolated from their power supply.

Emergency Switching Off

(NFPA 79, Chapter 3) Emergency actuation that switches off the electrical power supply to the installation or parts thereof.

Enclosed Industrial Control Panel

(UL 508A, Part 1, Introduction, 2) Factory-provided industrial control system supplied within an enclosure or control panel.

Feeder

(NEC, Article 100) All conductors of a circuit between the incoming unit of the source of a separate system or other power supply equipment and the last branch circuit overcurrent device (unofficial definition, not from NEC: viewed from consumer to energy source).

Feeder Circuit

(UL 508A, Part 1, Introduction, 2) Conductor and switchgear on the supply side of a branch circuit protective device (BCPD).

Field Installed Equipment

(UL 508A, Part 1, Introduction, 2) Devices that have been installed only after the production of an indust-rial control panel and the application of an approval label.

Field Wiring

Conductors that are connected (on-site) by other persons to connect the industrial control panel with power sources, remote control devices (local devices) and consumers.

Fuse, Branch Circuit Type

(UL 508A, Part 1, Introduction, 2) Fuses of Classes CC, G, H, J, K, L, R and T. Can provide branch circuit protection.

Selected terms from the codes \& standards of the USA

Fuse, Semiconductor Type

(UL 508A, Part 1, Introduction, 2) Fuses developed for protecting semiconductor devices. Can protect motor circuits containing frequency inverters (Low Voltage Fuses - Part 13: Semiconductor Fuses, UL 248-13).

Fuse, Supplementary Type

(UL 508A, Part 1, Introduction, 2) Various different fuses and device protection fuses (fine-wire or micro fuses). Can be used only in addition to branch circuit protective devices.

General Use Rating

(UL 508A, Part 1, Introduction, 2) Rated operational data expressed in V and A and assigned to a device designed for switching a load with a continuous current or peak inrush current whose rated values do not exceed the device's rated operational current.
With AC the load can have a power factor between 0.75 and 0.8 (inductive). With DC the load must be resistive (non-inductive).

Industrial Machinery (Machine)

(NFPA 79, Chapter 3) Powered machine (or group of machines that work together in a coordinated fashion) that is not portable while in operation and which is used to process material by cutting, forming, pressing, by electrical, thermal or optical means, coating or through a combination of these processes. The machine can include associated equipment used for material transport, tool provision, securing, joining, disassembling, inspection or testing, or packaging. (The full associated electrical equipment, including software, sensors and actuators, is to be regarded as part of the machine.)

Industrial Manufacturing System

(NFPA 79, Chapter 3) Systematic arrangement of one or more industrial machines that is not transportable by hand and which encompasses conveying of the associated material, processing, calibration, measurement, or inspection and testing equipment.

Interrupting Rating

(NEC, Article 100) The highest current at rated operating voltage which the device is designed to interrupt under standard test conditions.

Labeled

(NEC, Article 100) Apparatus or materials with applied markings, symbols or other identification signs of organizations that are acceptable for AHJs are termed "labeled". The term "labeled" includes the inspection and testing of products as well as periodic inspection of their production. With labeling the manufacturer indicates the product's conformance with applicable standards or its production by defined means.

Listed

(NEC, Article 100) Apparatus, materials or services contained in a list published by an organization that is acceptable for AHJs and which confirms that the products or services have been tested and that the production of the listed products or performance of the listed services is subject to periodic investigation. The listing verifies that the products, materials or services comply with the applicable standards or that they have been tested and deemed suitable for specific purposes.

Load
(UL 508A, Part 1, Introduction, 2) Device (load) that is connected with the main circuit outside the indust-rial control panel.

Low-Voltage Limited Energy Circuit

(UL 508A, Part 1, Introduction, 2) Control circuit with a peak voltage in the open circuit of not more than 42.4 V (DC or peak). Is supplied from a battery or an insulated secondary circuit whose current is limited by an overcurrent protective device. This can be a fuse, the power of a transformer's secondary side, or a power supply unit, a secondary winding and an impedance.
A current being tapped by a mains voltage circuit through a resistor, and which is intended to limit the current and voltage in a series connection with power supply circuit is not regarded as low-voltage limited energy circuit.

Mandatory Rules

(NEC, Article 90) Mandatory rules in the Code, which identify actions that are specifically prescribed or prohibited. Identified with the terms "shall" or "shall not".

Motor Starter

(UL 508A, Part 1, Introduction, 2) Combination of a contactor and an overload relay.

Overcurrent

(NEC, Article 100) Any current exceeding the rated current of apparatus or the load rating of cables. The overcurrent can result from an overload, a short circuit or a ground fault.

Overload

(NEC, Article 100) Operation of equipment above its normal full-load rating or the rated capacity of cables. If the overload condition persists for a certain time, damage or dangerous heating occurs. Faults such as short circuits or ground fault are not over-loads.

Permissive Rules

(NEC, Article 90) Rules in the Code, which identify actions that are allowed but are not mandatory. They normally describe options or alternative methods. Identified with the terms "shall be permitted" or "shall not be required".
For further definitions see Article 100, Definitions, of the National Electrical Codes of the USA (NEC, NFPA 70), Standards NFPA 79, Chapter 3 and UL 508A.

Pilot Duty Rating

(UL 508A, Part 1, Introduction, 2) Rated values assigned to a relay or auxiliary contact that actuates the coil of another relay or switchgear.

Power Circuit

(UL 508A, Part 1, Introduction, 2) Conductors and components of branch circuits (load branch circuits) or feeder circuits.

Self-Protected Combination Motor Controller

(UL 508A, Part 1, Introduction, 2) Combination motor controller incorporating coordinated short-circuit and overload protection, an isolating function and a remote-controllable motor switch (e.g. a contactor). If it does not already exist, coordinated protection must be implemented through the correct selection of components or additional parts according to the manufacturer's instructions.

Shall

(NFPA 79, Chapter 3) Mandatory condition.

Short-Circuit Current

(NFPA 79, Chapter 3) Overcurrent resulting from a short-circuit, which, in turn, is caused by a fault or a faulty connection in an electrical circuit.

Short-Circuit current rating (SCCR)

(NEC, Article 100) Prospective symmetrical fault current at nominal voltage at which a device or a system can be connected without incurring damage that exceeds defined acceptance criteria.

Should

(NFPA 79, Chapter 3) Identifies a recommended characteristic that is not mandatory.

Supplementary Overcurrent Protective Device

(NEC, Article 100) Device intended to provide limited overcurrent protection for particular applications and apparatus, such as lighting and non-industrial consumers. This limited protection is provided in the load circuit in addition to the protection provided by the branch circuit protective device (BCPD).

Supplementary Protection

(UL 508A, Part 1, Introduction, 2) Device arranged behind a branch circuit protection device to provide additional protection. Such devices are not, themselves, regarded as branch circuit protective devices (BCPD).

Voltage, Nominal

(NEC, Article 100) Rating assigned to a circuit or system to indicates its voltage in a suitable manner (e.g. $120 / 240 \mathrm{~V}, 480 \mathrm{Y} / 277 \mathrm{~V}, 600 \mathrm{~V}$). The actual voltage with which the circuit works may deviate from the nominal voltage within a range that permits satisfactory operation of the equipment.

Symbol	Meaning
DF	Duty factor
I_{cm}	Rated short-circuit making capacity
I_{cn}	Rated short-circuit breaking capacity
$\mathrm{I}_{\text {cs }}$	Rated service short-circuit breaking capacity
I_{cu}	Rated ultimate short-circuit breaking capacity
I_{cw}	Rated short-time withstand current
$\mathrm{I}_{\Delta \mathrm{n}}$	Response value of earth-fault release
I_{e}	Rated operational current
I_{g}	Response value of earth-fault release
I_{i}	Response value of non-delayed short-circuit release
1 lsc	Transformer initial short-circuit AC current
IL	Load monitoring response value
I_{n}	Rated operational current
I_{NT}	Transformer rated operational current
I_{PK}	Rated peak withstand current
I_{q}	Rated conditional short-circuit current
I_{r}	Overcurrent release set value
$\mathrm{I}_{\text {rm }}$	Response value of non-delayed short-circuit release
$\mathrm{I}_{\text {rmf }}$	Response value of fixed, non-delayed short-circuit release
$\mathrm{I}_{\text {rmv }}$	Response value of short-time delayed short-circuit release
$\mathrm{I}_{\text {sd }}$	Response value of short-time delayed short-circuit release
I_{T}	Response value of earth-fault release
$1{ }_{\text {th }}$	Conventional free air thermal current
Ithe	Conventional thermal current of enclosed devices
I_{u}	Rated uninterrupted current
S_{NT}	Transformer rating
t_{g}	Delay time when the earth-fault release trips
t_{r}	Delay time when the overload release responds
t_{T}	Delay time when the earth-fault release trips
t_{v}	Time delay of short-circuit release response
U_{c}	Rated excitation voltage
U_{e}	Rated operational voltage
$\mathrm{U}_{\text {imp }}$	Rated insulation voltage
$\mathrm{U}_{\mathrm{imp}}$	Rated surge voltage invariability
u_{k}	Transformer short-circuit voltage
U_{s}	Rated control voltage

Meaning	Symbol
Conventional free air thermal current	I_{th}
Conventional thermal current of enclosed devices	$\mathrm{I}_{\mathrm{the}}$
Delay time when the earth-fault release trips	I_{g}
Delay time when the earth-fault release trips	t_{T}
Delay time when the overload release responds	t_{r}
Load monitoring response value	I_{L}
Overcurrent release set value	I_{r}
Rated conditional short-circuit current	I_{q}
Rated control voltage	U_{s}
Rated excitation voltage	U_{c}
Rated insulation voltage	$\mathrm{U}_{\mathrm{imp}}$
Rated operational current	I_{e}
Rated operational current	I_{n}
Rated operational voltage	U_{e}
Rated peak withstand current	I_{PK}
Rated service short-circuit breaking capacity	I_{cs}
Rated short-circuit breaking capacity	I_{cn}
Rated short-circuit making capacity	I_{cm}
Rated short-time withstand current	I_{cw}
Rated surge voltage invariability	$\mathrm{U}_{\mathrm{imp}}$
Rated ultimate short-circuit breaking capacity	I_{cu}
Rated uninterrupted current	I_{u}
Response value of earth-fault release	$\mathrm{I}_{\mathrm{Ln}}, \mathrm{I}_{\mathrm{g}}, \mathrm{I}$
Response value of fixed, non-delayed short-circuit release	$\mathrm{I}_{\mathrm{rmf}}$
Response value of non-delayed short-circuit release	I_{i}
Response value of non-delayed short-circuit release	I_{rm}
Response value of short-time delayed short-circuit release	$\mathrm{I}_{\mathrm{rmv}}$
Response value of short-time delayed short-circuit release	I_{sd}
Time delay of short-circuit release response	t_{v}
Transformer initial short-circuit AC current	I_{sc}
Transformer rated operational current	I_{NT}
Transformer rating	S_{NT}
Transformer short-circuit voltage	U_{k}

DILE...	
Auxiliary contact modules	5/7
...LO...	
Transparent insert plates	2/97
...025TS-...	
Marking plates	2/94
...T018(25)	
Button plates RM016	2/91
...ZA16..., ZW16	
Additional tappings	15/11
1...100...	
Optical sensors	3/84
13...A..., 14...A, 14...R	
Reflected-light barrier	3/84
20..., 21..., 50..., 51...	
Fuse-links	9/9
6...	
Optical sensors	3/89
A-PKZ...	
Shunt release for PKZ	7/29
A22-GL..., A22-LED...	
Lamps	2/50
AB-CI-K...	
Fixing bracket set	4/67
AD...	
Component adapter	7/64
AE/I...	
Individual enclosures MCB	20/31
AFP-...-CS	
Bottom plates with flange apertures	21/11
AGM2...-PKZ...	
Trip-indicating auxiliary contact for PKZ 7/12	
AH-GA	
Keypad carrier for Meter shrouds	20/28
AK-PKZO	
Lockable rotary handle	7/21
AK...	
Terminations	16/11
AM-...	
Empty section cover	16/7
ARB-ID	
Assembly bracket for insulated enclosures	20/68
AS-RS-CI	
Blanking strip for Insulated enclosures	20/47
ATEX...	
ATEX type	4/58
AV/I...	
Enclosures for miniature circuit breakers	20/32
AVS...	
Busbar coupling kits	20/40
AW-T5-...	
Connecting angle	4/67
AW...	
Busbar terminals	20/41
AZ-XAA...	
Shunt release (for power circuit breaker)	19/24
AZ-XHI11	
Auxiliary contact	19/24
AZ...	
Miniature circuit-breakers (MCB)	19/14
AZFIM...	
Residual-current protective modules	19/16
B-GST00-40-60/CI/1	
Blind cover frame	$\begin{aligned} & 20 / 47 \\ & 19 / 52 \end{aligned}$

B3...-PKZ...	
Three-phase commoning links	7/26
BA/C...	
Notching tool	2/51
BBA-...	
Connection	16/4
BBA...	
Component adapter, Door coupling handle	7/22
BBC-...	
Covers	16/5
BBT-CU...	
Busbar, longitudinal connection	16/13
BFS-...	
Fixing kit	20/28
BFZ-DES	
Door ground set	16/83
BIEO...	
Maximum (bimetallic) ammeter	16/78
BK...-PKZ...	
Extension terminal	7/27
BL-CI	
Fixing strap kits	20/30
BPF...NZM	
Lightning symbol	17/127
BPZ-BB/T-...	
Flat copper bars, predrilled	16/73
BR...	
Braking resistances	10/17
BS-SET-GST...	
Handguard	16/16
BS...	
Insert label	4/60
BS...-CI	
Assembly kits	20/29
Retaining frames for Measuring instruments	16/79

C-GSTA00	
Clip set	$19 / 52$

C10-FD/20...	
Fuse switch disconnector	$19 / 48$

CANU-M...-CS	
Cage nuts	$21 / 7$

CBDR	
Multi-connection blocks	$3 / 106$

CBMCAP	
Protection cap, for sensors	$3 / 106$

CI-...PKZ...
Insulated enclosure for PKZM... 7/16

CL-PKZ...	
\quad Current limiter for PKZ	$7 / 12$

CL...

Mounting rail for Insulated enclosure 20/27
CMD

Contactor monitoring devices	$5 / 68$
CNP-...CS	
\quad Rain protection roofs	$21 / 13$

CS-TE

Screw adapters	11/2
CS...	
Connecting cables, for sensors	3/105
CU...	
Copper busbars	16/5
D-K...	
Conversion kits for terminals	16/69
D...-Cl...	
Cover for basic enclosures	20/17
DO...-SO...	
Fuse bases	19/42

D02-S0/...	
D busbar mounted fuse devices	16/20
D02...	
D-fuse switch-disconnector	16/21
D2(3.4)-CI...	
Gasket for basic enclosures	20/30
DA...	
Pressure equalization plug	21/18
DAS-SET/...-CS	
Depth adjustment elements	21/7
DAV-M40	
Pressure equalization plug	16/64
DE-...	
Coupling drive	4/65
DEX-L...	
Chokes	10/20
DH-COMF	
Comfort hinged handle	16/81
DI-...-CS	
Door for internal partitions	21/9
DII...-S0/...	
D-Busbar mounting fuses	16/20
DIL-SWD-32...	
SmartWire-Darwin contactor modules	5/62
DILH...-XSP/E...	
Electronic module	5/67
DILH...(RA...)	
Comfort device AC-1 contactor	5/34
DILM...-XDSB..., DILM...-XEK	
Commoning busbars	5/60
DILM...-X...	
Covers	5/65
DILM...-XTEY...	
Electronic timer modules	5/61
DILM...XHI...	
Auxiliary contact modules	5/38
DILM...XKB...	
Flat strip conductor terminal kit	5/64
DILM...X...	
Accessories contactor	5/56
DILM12...	
Wiring set motor feeder plug	5/62
DILMC...(...)	
Spring-cage terminals	5/23
DILMF...(...)	
Contactors	5/29
DILMP...	
4 pole	5/37
DIUL...	
Reversing contactors	5/52
DOOR-RET-CS	
Door detent	21/6
DP-ID	
Top plate flanges for distribution boards 20/69	
dRCM-...	
Residual current devices	19/21
DS-...-CS	
Doors closed	21/16
DS7-FAN-...	
Equipment ventilator	9/36
DSCH-CI	
Set of cover hinges	20/22
DT-...-CS	
Doors with inspection window	21/15
DTZ...	
Three-phase transformers	15/8
DV...-CI	
Cover fasteners	20/22

E-PKZ...	
Insulated enclosures flush mounting for PKZ	7/17
E10(01)	
Contact element RM016	2/84
E51KF... 13	
Optical sensors	3/88
E52...	
E52-Series	3/72
E53...	
Capacitive sensors	3/78
E55...	
E55-series	3/67
E56...	
Inductive Sensors	3/75
E57-...	
Inductive Sensors	3/37
E57...	
Premium Plus series E57	3/47
E57EAL...	
Miniature series E57	3/63
E57KC...	
Cable adapters,, for sensors	3/106
E57KM...	
Fixing bracket, for sensors	3/107
E57KP...	
Protection cap, for sensors	3/106
E57S...	
Premium Plus Short series E57	3/51
E58...	
Optical sensors	3/89
E58KAM...	
Fixing bracket, for sensors	3/107
E58KC...	
Cable adapters,, for sensors	3/106
E58KN...	
Replacement nuts, for sensors	3/107
E58KNZ...	
Sensor fixing	3/107
E58KS5200	
Comet series, safety bar	3/89
E59-...	
iProx series	3/60
E65-SM...	
E65-SM-Serie	3/102
E8-MCS	
Compression fitting	3/33
E8...	
Flush mounting plates RM016	2/95
EASY-...-CAB	
Connecting cables	12/17
EASY-COMBINATION-*	
Customized inscription	12/6
EASY-LINK-DS	
Connection plug	12/11
EASY-M-...K	
Memory cards	12/17
EASY-NT-...	
Network-Connecting cables	12/18
EASY-NT-CAB	
Data cable	12/18
EASY-NT-R	
Bus termination resistor	12/18
EASY-NT-RJ45	
Bus connector plug	12/18
EASY-RJ45-TOOL	
Crimping tool	12/18

EASY-SOFT...	
Programming software	12/9
EASY-USB-CAB	
Connecting cable for PC to DMI module 12/9	
easy...-SIM	
Input/output simulator	12/10
EASY...E	
Expansions I/O	12/8
EASY2...	
Modules	12/8
EASY256-HCI	
Upstream device	12/11
EASY400-POW	
Power supplies	12/10
EC4-COMBINATION-*	
Customized inscription	14/69
EC4E...	
I/O system XI/ON	14/65
EEB...	
Inrush current limiters	15/10
EM...-CI	
Hank nut	20/26
EMS20	
M20 diaphragm bolt	3/10
EMT6...	
Thermistor overload relays for machine protection	6/24
EPENI...	
Corner enclosures	20/48
EO...	
Voltmeter, ammeter	16/74
ES-...-T0	
Individual keys, cam switch	4/66
ES-BBS-...	
End shroud	16/4
ES16...	
Individual keys RM016	2/97
ES4-COMBINATION-*	
Customized inscription	13/5
ES4A-221-DMX-SIM	
Memory cards	13/8
ES4A-MEM-CARD1	
Memory cards	13/8
ES4P...	
Control relay, safety-related	13/5
ESK...	
Corner enclosures	20/48
ESP-...	
Programming software, for easySafety	13/8
ESR5-...	
Electronic safety relays	13/15
ETR2-...	
Electronic timing relay (17.5 mm)	11/6
ETR4-...	
Electronic timing relay (22.5 mm)	11/4
ETS4-VS3	
Amplifier module	5/66
EU4A-...	
Programming cable	14/41
EU4A-MEM-CARD1	
Memory cards	14/67
EU4A...CAB...	
Connecting cables	14/67
EU5C-SWD...	
SmartWire-Darwin Gateways	14/97
EU5E-SWD...	
SWD-I/O module	14/97

EVB-ID	
Corner plate for Insulated distribution board	20/67
EVG-...	
Busbar (fork connector)	19/25
EZ-PKZ...	
Base for separate mounting	7/65
EZ...	
Centre mounting accessories	4/64
EZ/S...	
Key operated lock mechanisms	4/77
F3A-...	
Flanges	16/62
FAK...	
FAK foot and palm switches	2/79
FAZ-XAA-...	
Shunt release (for power circuit breaker)	19/24
FAZ-XAM002	
Auxiliary contact	19/24
FAZ-XHIN...	
Auxiliary contact	19/24
FAZ-XK...	
Extension terminal	19/27
FAZ-XUA...	
Under voltage coil	19/24
FAZ/FIP-X...	
Remote switching module	19/22
FCFB...	
D busbar mounted fuse devices	16/27
FCFS...	
NH fuse switch-disconnectors	16/27
FDT-NAVIGATOR	
FDT frame software	17/140
FHF-ID	
Foot for base	20/69
FI-...	
Residual current devices	19/23
FIM-...	
Residual-current protective modules	19/16
FIP-XHI11	
Auxiliary contact	19/24
FIPA-XAM011	
Auxiliary contact	19/24
FL...	
Flange for insulated enclosures	20/23
FP...-ID	
Cable compartment cladding	20/70
FS-AT	
Locating plate	3/10
FS...	
Cam switch front plates	4/59
FT-CI	
Flange adapter for Insulated enclosure	20/29
GA-...	
Shock protection cover	20/33
GA-MS-I...	
Meter shroud	20/28
GD4..., GW4...	
Power supply units	14/131
GS...	
Insulated enclosures	20/54
GS00-160	
Low Voltage HRC fuse base	19/51
GST...	
NH fuse switch-disconnectors	19/51
GST...-A	
NH fuse switch-disconnectors	16/16

GST...-DSI	
Cover	19/51
GSTA...	
Insulated enclosures	20/61
GSU...	
NH fuse base	19/51
H-B3-PKZ...	
Shroud for unused terminals	7/27
H-K...	
Terminal shroud	16/69
H-S27-1	
Transparent shroud	19/43
H...	
Shrouds	4/66
HB-PKZ4	
Clamp cover	7/20
HBA-4344	
Retaining frames	20/28
HDILE	
Sealable shrouds	5/9
HDP-ID	
Keypad carrier for Insulated enclosure	20/69
HG-CI	
Handle for cover	20/22
HI...-P...	
Auxiliary contact	4/64
HI...-PKZ2	
Auxiliary contact	7/67
HK-K...	
Conversion kits f	16/69
HMX...	
Frequency inverter H -Max ${ }^{\text {TM }}$	10/10
HS-SA(*)-T0	
Key	4/66
HS...-Cl	
Spacer for Insulated enclosure	20/27
HSH...	
Support bracket for busbar supports	20/44
HZ-T5	
Terminal cover extension	4/66
18	
Surface mounting enclosure RM016	2/95
IM4-CI...	
Insulating material mounting plate	20/26
IN...B3-...	
Open switch-disconnectors, 3-pole IN26	18/56
IP23...	
IP23 enclosure	15/10
IS/SPE-1TE	
MCB lock	19/24
ISH2.8	
Insulated ferrule	2/96
ITB...	
Industrial cable binders	16/66
IVS-T0	
Service distribution board mounting accessories	4/64
IZM-AS...	
Auxiliary contact for IZM26	18/63
IZM-CAS...	
Withdrawable units o	18/58
IZM-CS...	
Position signalling switch for IZM26	18/60
IZM-CTN...	
Current sensor for neutral conductor for IZM26	18/70
IZM-D..., IZM-SEC... General accessories for IZM26	18/72

IZM-DT...	
Additional functions for IZM26	18/66
IZM-KLC..., IZM-MIL...	
Interlocks for IZM26	18/64
IZM-LCS...	
Auxiliary contact for IZM26	18/63
IZM-M...	
Motor operator for IZM26	18/60
IZM-OC	
Operations counter for IZM26	18/60
IZM-OTS, IZM-RA	
Auxiliary contact for IZM26	18/63
IZM-PLPC...	
Interlocks for IZM26	18/64
IZM-RP...	
Rating plug sensor combinations for IZM26	18/68
IZM-SH...	
Withdrawable units	18/59
IZM-SIM-KIT	
Additional functions for IZM26	18/67
IZM-S..., IZM-UVR-..., IZM-UVR...	
Shunt release for IZM26	18/61
IZM-T...	
Connection for IZM26	18/71
IZM...-A...	
Circuit-breakers for system protection	18/43
IZM...-P...	
Power measuring	18/48
IZM...-U...	
Circuit-breaker for universal protection	18/47
IZM...-V...	
Selectively-opening circuit breakers	18/45
IZM...B4-P...	
Power measuring	18/54
IZM...S4-...-1100V	
Circuit-breaker 4 pole for 1100 V	18/55
IZM...S3-...-1100V	
Circuit-breaker 3 pole for 1100 V	18/49
IZMX-AS...	
Auxiliary contact for IZMX16	18/14
IZMX-BC16	
Blind cover IZMX16	18/18
IZMX-CAS...	
Withdrawable units IZMX16	18/12
IZMX-CRB16	
Replacement coding IZMX16	18/18
IZMX-CT...	
Trip block IZMX16	18/17
IZMX-DC 16	
Protective cover IZMX16	18/18
IZMX-DT..., IZMX-MB16	
Additional functions for IZM16	18/16
IZMX-LC...	
Shunt release for IZMX16	18/14
IZMX-LT16	
Replacement hand lever IZMX16	18/18
IZMX-M16...	
Motor operator for IZMX16	18/12
IZMX-0C...	
Operations counter for IZMX16	18/13
IZMX-...	
Additional functions for IZM16	18/15
IZMX-RP...	
Trip block IZMX16	18/17
IZMX-SEC16-TB...	
Control circuit terminal IZMX16	18/18

IZMX-SH...	
Shutter for IZMX16	18/12
IZMX-SR...	
Closing release for IZMX16	18/13
IZMX-ST...	
Shunt release for IZMX16	18/13
IZMX-TCA...	
Tunnel terminal IZMX16	18/18
IZMX-TFL..., IZMX-THV...	
Main connection kit for IZM16	18/18
IZMX-UVR...	
Undervoltage releaser for IZMX16	18/14
IZMX16	
Open switch-disconnectors	18/10
IZMX16-DEG-...	
Spare door seal IZMX16	18/18
JB...	
Accessories, mobile panel	14/13
KP	
Terminations	7/19
K-AGM-PKZ2	
Short-circuit indicators	7/59
K-CI	
Wedge for insulated enclosures	20/30
K-CI-K...	
N terminals	20/98
K...	
Connection terminal 160 ... 1000 A	16/67
K...	
Busbar terminals	7/19
K...-A	
Hinged flaps	16/82
K...-B-DIL...	
Clamps	6/27
K.../1	
Insulated individual terminals 32-100 A 7/19	
K...KST...	
Distribution board terminal enclosure	20/38
K12(20)...	
Busbar terminals	20/41
K30..., K40...	
Connection flat cable, cu bar	20/41
K35-AB	
Connection terminal	19/43
K6(16)/1	
Terminations	7/66
KD...	
Cable duct cover	16/65
Bracket for insulated enclosures	20/30
KETOP-...	
Accessories, mobile panel	14/13
KEY-E10/30-GS	
Spare key for cylinder lock	16/81
KH...	
Cable support bracket for cable duct	21/21
KH25/35	
Cable support bracket for cable duct	16/66
KK...	
Clamping brackets for cable ducts	16/66
KL...	
Cable ducts	16/65
KNB-...	
Thumb-grips	4/58
KNK-TO(P3)	
Maintenance keys	4/58
KS...	
Notched phase busbars	19/43

KS...NZM7	
Cable lug	17/89
KS3(4)-CI	
Gland plates	20/29
KST...	
Distribution board enclosure with gland plate	20/10
KSV...-ID	
Cable anchoring rails	20/67
KSX-...	
Busbar supports	16/38
KT-M...	
Metric diaphragm grommets	7/20
KT...	
Cable grommets	7/20
KVB-ID	
Cross plate for insulated enclosures	20/68
KWZ-3PH...	
Power meter	19/17
L-...	
Indicator light, conical	2/26
L-KL-R	
Connection expansions	16/71
L-PKZO-...	
Indicator light for insulated enclosure	7/21
LC-DBIT...-CS	
Universal locks	16/81
LEDWB...	
Single chip LEDs	2/96
LIC-...	
Visualisation software	14/130
LIC-OPT...	
XV license product certificates	14/12
LIC-OS-...	
Windows CE licenses	14/12
LIC-PLC...	
XV license product certificates	14/12
LPS-ID	
Strap for insulated enclosure	20/69
LS-...	
Position switch LS...	3/16
LS-XAP	
Adapter plate	3/10
LS-XSK-ZBZ	
Dust protection cap	3/17
LS-XTW	
Cage clamp twin N/C contacts	3/10
LS-XZ...	
Operating heads	3/9
LS(M)-...	
LS-Silver position switches,	3/4
LSE-...	
Position switches LS silver, electronic	3/3
LSE-A...	
Position switch, analog	3/8
LSR-.../TKG	
Door flap switch	3/18
LSR-.../TS	
Hinge switch	3/18
LT284-M6X20-C	
Fixing screw	20/30
LT306.022.3	
Flat pin bushing	2/96
LTS-...	
NH fuse switch-disconnectors	16/16
LVP-...-CS	
Ventilating plates	21/14

LW096	
Power factor meter	16/74
M-...-PKZ2	
Motor protection trip blocks	7/55
M-CI-K...	
Mounting plates	7/64
M-MCS	
Pressure pipe flange	3/33
m...	
Combination switch	19/18
M12...	
Plug connectors	3/10
M16-COMBINATION-...	
Customised complete unit	2/95
M22-...	
Dust cover	2/50
M22-A...	
Fixing adapters	2/31
M22-AK...	
Complete modules	2/32
M22-AMC	
Acoustic device indicators	2/27
M22-ASI...	
AS-Interface connection RMQ-Silver	2/47
M22-ATEX	
ATEX accessory	2/51
M22-CK	
Contact elements	2/31
M22-CLED...	
LED elements with Cage Clamp	2/34
M22-COMBINATION-**)	
Customer specific complete devices RMQ-Silver	2/6
M22-D...	
Pushbutton actuators, RMQ-Silver	2/16
M22-D4...	
4-way pushbuttons	2/24
M22-DZ...	
Off button	6/26
External reset button	2/51
M22-E...	
Mounting plates RM0-Silver	2/22
M22-FR-AU	
Bezel gold	2/48
M22-G...	
Ring nut, RMQ-Silver	2/49
M22-H...	
Shrouds, RMQ-Silver	2/44
M22-I...	
Surface mounting enclosure RMO-Silver 2/15	
M22-K	
Contact elements with screw terminals	2/31
M22-L...	
Indicator light RMQ-Silver	2/26
M22-LED...	
LED elements with screw terminals	2/33
M22-LG	
Bulb extractor	2/51
M22-LS	
Fixing adapters	3/9
M22-MS	
Mounting ring tool	2/50
M22-PL-PV	
Sealable shroud	2/10
M22-PV...	
Emergency stop/emergency switching off pushbuttons RMQ-Titan	2/6
M22-R...K...	
Potentiometer	2/27

M22-RJ45-SA Bulkhead interface	$2 / 51$
M22-SWD-... SmartWire-Darwin elements	$2 / 69$
M22-T-... Pushbutton diaphragm RMQ-Silver	$2 / 48$
M22-TA Telescopic adapters	$12 / 11$
M22-UPE Set of plaster keys	$2 / 44$
M22-USB-SA Bulkhead interface	$2 / 51$
M22-W... Selector switch actuators RMQ-Silver	$2 / 20$
M22-WJ... Joysticks	$2 / 24$
M22-X... Emergency stop labels, RM0-Titan	$2 / 11$
M22-XAM... Buzzer for acoustic device	$2 / 27$
M22-XD... Button plates	$2 / 36$
M22-XDL...	
Button lenses	

M22-XLED...
LED test/series resistor elements 2/34
M22-XW
Plunger bridge RMQ-Silver 2/49

M22-XWS
Protective diaphragm 2/48

M22...-B(-GVP)

Blanking plugs, RMQ-Silver 2/48

M22...-DL-... Illuminated pushbuttons RMQ-Titan 2/28
M22...-DP-...
Mushroom-headed pushbutton 2/19 RMO-Silver
M22...-DRL-...
\quad Illuminated pushbuttons RMQ-Titan $2 / 28$

M22...-DRP-..
Mushroom-headed pushbutton 2/19 RMO-Silver

M22...-PV...	
Stop pushbuttons	$2 / 13$

M22...-ST...	
Label mounts	$2 / 35$

Label mounts	$2 / 35$
M22...-W... Pushbutton actuators, RMQ-Silver $2 / 17$	

M22...-W(R)S...
Key-operated pushbuttons RMQ-Titan $2 / 15$

M22...-XC-...
Designation lable RMO-Titan 2/25
Coding kit 2/23
M22...XG...
Guard-ring

M22...ST... Insert plates RMO-Titan

M22(S)-R...

M3-CI-...	
Mounting plate for insulated enclosure	20/26
MAST-FIT-CS	
Mast fastening	21/14
MBS-...	
Mounting plate screen	4/66
MCCB...	
Prepared enclosures MCCB	20/35
MCS...	
Pressure switches	3/32
MEMORY-...	
Memory card, for touch Panel	14/12
MFD-...	
Multi-function display	12/24
MFD-...-CAB	
Connecting cables	12/17
MFD-80..., MFD-AC-CP...	
Multi-function display	12/9
MFD-COMBINATION-*	
Customized inscription	12/23
MFD-TS-144	
Mounting rails	12/29
MFD-X...	
Protective cover	12/29
MFD4	
Touch panel	14/7
MFV...	
Sealing plug	21/17
ML	
Module mounting rail for insulated enclosures	20/27
MMX-COM-PC	
PC-Interface cards	10/18
MMX-IP21...	
Increase of degree of protection	10/19
MMX-LZ...	
RFI filters	10/19
MMX...	
Frequency inverter M-Max ${ }^{\text {™ }}$	10/5
MPL-...-CS	
Mounting plates without apertures, galvanized	21/8
MPL-.../RAL2000-CS	
Mounting plates without apertures, RAL 2000	21/8
MPP-...-CS	
Mounting plates, perforated	21/7
MSC-D...	
DOL starter	8/2
MSC-R...	
Reversing starter	8/20
MTR-D...-CS	
Mounting bars	21/6
MV-PKZ2, MVDIL...	
Mechanical interlock	7/67
MVS-...	
Mounting and wiring aid system	5/9
N-P1(3)..., N-P5...	
Neutral conductor	4/64
N-PKZ...	
Neutral terminal	7/19
N...	
Switch-disconnector	17/42
N...-NA	
Moulded-case switches for North America	17/80
N...-S1-DC	
Switch-disconnectors for 1000 V DC	17/49

N...-SVE	
Switch-disconnector	17/43
N...AE, N...RS...	
N bars	20/33
N...XAS	
Conversion kit N(ZM)12 to N(ZM)4	17/104
NH-SLS-...	
Low-voltage h.b.c. switch-fuse units	16/19
NHI...-PKZ...	
Standard auxiliary contact PKZ	7/10
NHI...PKZO...	
Auxiliary contact	8/39
NWS-SL/DLB/...	
Key for lock inserts	16/81
NWS-SRL/S/ST/MG	
Control panel lighting	16/82
NWS-TKT...	
Door contact	16/82
NZM-XDMI-DPV1	
Circuit-breaker	17/139
NZM-XSWD...	
Interface for circuit breakers NZM	1/16
NZM...-A...	
Thermomagnetic release	17/10
NZM...-M...	
Thermomagnetic release	17/14
NZM...-S	
Magnetic short-circuit release	17/18
NZM...-VE...	
Electronic release	17/24
NZM...-XAD...	
Component adapter	16/14
NZM...-XIP...	
IP2X protection against contact with a finger	9/21
NZM...-XKSA	
Covers	9/21
NZM...FIA30	
Earth-fault release	17/135
NZM...XA	
Shunt release (for power circuit breaker)	17/114
NZM...XBR	
Blind cover frame	17/129
NZM...XC	
Adapter plate	17/129
NZM...XC...	
Adapter plate	5/60
NZM...XCI...-TVD	
Insulated enclosures	17/142
NZM...XD(T)V	
Rotary handle on circuit-breaker	17/122
NZM...XDZ	
Additional handle	17/129
NZM...XFI	
Earth-fault release	17/136
NZM....XHB	
Main switch assembly kit	17/124
NZM....XHIV	
Early-make auxiliary contact	17/106
NZM...XIPA, NZM...XIPK	
IP2X protection against contact with a finger	$\begin{aligned} & 9 / 21 \\ & 17 / 89 \end{aligned}$
NZM....XISP	
Insulation plate	17/103
NZM...XK	
Terminations	17/83
NZM...XKAV	
Toggle lever locking device	17/129

NZM...XKM	
Module plate	17/97
NZM...XKM1	
Cable lug	17/97
NZM...XKP	
Phase isolators	17/103
NZM...XKR	
Connection block for component adapters	17/133
Rear Connected	17/83
NZM...XKS	
Screw connection	17/83
NZM...XKSA	
Covers	17/103
NZM...XKSFA	
Terminal covers	17/85
NZM...XKV	
Connection width extension	17/101
NZM...XKV2P	
Jumper kit for 1000 V DC	17/49
NZM...XMC-...	
Measurement and communication modules	17/141
NZM...XMV	
Mechanical interlock	17/130
NZM...XR	
Remote operator, can be synchronized	17/134
NZM...XRAV	
Rear drive	17/127
NZM...XRD	
Remote drive	17/134
NZM...XS	
Main switch assembly kits	17/124
NZM...XSH...-NA	
Side mounted handle	17/128
NZM...XSM, NZM...XZB	
Main switch assembly kit	17/125
NZM...XSTK, NZM...XSTS	
Control cable connection	17/85
NZM...XSV...	
Plug-in units	17/105
NZM...XT	
Earth fault release	17/137
NZM...XTVD	
Door coupling rotary handles	17/118
NZM...XU	
Under voltage coil	17/108
NZM...XV	
Extension shaft	17/118
NZMXBZ	
Bowden cables	17/130
NZMXCM	
Capacitor unit	17/115
NZMXDMI6	
Data management interface	17/139
NZMXMC-AC	
Power supply	17/141
NZMXMC-DISP	
Display	17/141

NZMXPC-DTM, NZMXPC-KIT
Diagnostics and parameter assignment 17/139 module
NZMXSWD-704
SWD Interface for NZM 17/140
OS-FLASH...
Memory card, for touch Panel 14/12

P-E... Covers 19/43

P-SOL...		018(25)BS	
DC Switch-disconnectors	7/86	Blanking plugs RM016	2/96
P1DIL...M		018(25)S...	
Parallel connector	5/8	Key-operated actuators RM016	2/88
PAINT-RAL...		018(25)W...	
Touch-up paint	16/83	Key-operated actuators RM016	2/88
PDIM-...		025...PV...	
Leakage current indicator	19/16	Emergency stop pushbuttons RM016	2/90
PE-P5...		025A...	
Earth terminal	4/64	Blanking plates RMQ16	2/95
PEN...		025T...X	
PEN busbars	20/33	Label mounts RM016	2/95
PFR		OUICK-C-CS	
Accessories NZM	17/137	Hinge pin	21/6
PHZ-A-...		R...-MCS...	
Comfort rotary handles	16/81	Pressure pipe flange	3/33
PHZ-E10/...		R...-PKZ2...	
Cylinder locks for comfort handles	16/81	Remote drive	7/63
PK...		R16-MS	
Plate terminals	16/13	Mounting ring tool	2/96
PKE-X(R)H...		RCDILE...	
Door coupling handles	7/20	Suppressor circuits	5/8
PKE...		REG-BB	
PKE Motor protective circuit breaker	7/8	Busbar tag shroud	19/27
PKE...XTU...		RM0-...ASI	
PKE trip block	7/9	AS-Interface connection RMQ-Silver	2/47
PKE32-XMB		RPEN..., RSK	
Mounting angle bracket	7/21	Back-to-back	20/49
PKNM-...		RS.../l...	
Combination switch	19/17	Panel enclosures for fuses	20/50
PKZ-SOL...		RTR-0	
DC-String circuit-breaker	7/86	Remote operator, protective cover	17/135
PKZ...-X...		S-...-T0	
Door coupling handles	7/20	Key operated lock mechanisms	4/63
PKZ...-XAH		S-PKZ...	
Extension shaft	7/20	High-capacity contact module	7/65
PKZM...-XC...		S...	
Top hat rail adapter plate 7/25		Fuse Bases	19/42
PKZM...-XM...DE		S1DIL...M	
Contact module	7/25	Star-point bridge	5/9
PKZMO-XD...		SBS-RS60	
DOL starter wiring set	7/25	Lateral cover	16/20
PKZMO-XMR...		SCH-1-WINBLOC	
Mounting rails	7/24	Screen connection for gateway	14/98
PKZM0-XR...		SDAINL...	
Reversing starter wiring set	7/25	Star-delta contactors	5/48
PL-PKZ...		SE-RS-...	
Sealing facility	7/21	Busbar assemblies	20/45
PLI-...-CS		SE.../...-PKZ...	
Cable marshalling bases 21/12		Contact modules	7/65
PLV200-CI			SFP-...-CS
Sealing kit	20/22	Bottom plates without apertures	21/11
PN...		SH...	
Switch-disconnector	17/42	Busbar support	20/43
PN...XPA			
Paralleling mechanism	17/131	Protective caps Small enclosures $\mathrm{CI}-\mathrm{Ks} \mathrm{7/65}$	
PS416-ZBK-210		SK...	
Serial interface	9/56	Box terminals	16/18
PSK...		SKA...	
Cable clamps	16/18	Busbar housing	20/40
0...L...		SKF-FF..., SKF-HA	
Indicator lights RM016	2/89	Inspection window	12/11
0...WK...		SL-...	
Selector switch actuators RM016	2/86	Signal towers	2/104
018(25)...		SLHF-ID	
(Illuminated) pushbutton actuators RM016	2/84	Foot prop for insulated enclosure	20/69
		SN3-...	
		Power supplies	14/131

SOL...	
DC Switch-disconnectors	7/85
SP-CI-RAL7032	
Spray can for Cl enclosure cover	20/68
SPT...	
Circuit diagram pockets	16/82
S0...	
Emergency switching off label RM016	2/90
SR...	
Emergency stop labels RM016	2/90
SRA...	
RM016 screw adapters	2/97
SS5...	
Base for insulated enclosure	20/68
SSW...	
Summation current converter	6/21
ST-P5-...	
Control cable connection	4/65
ST-PKZ2	
Control cable connection	7/67
STB-M...F	
Ventilation cable gland	16/63
STB...-CI	
Cross strut kit for insulated enclosures	20/29
STB...Z0LL	
Cable screw glands	16/63
STR...-ID	
Support struts for insulated enclosure	20/69
SV...	
Padlocking feature	7/19
SVCU20X5	
Busbar bracing	20/45
SVS250630-5	
Busbar connection	20/40
SW-...	
Software	14/130
SWD-PKE...	
SmartWire-Darwin PKE module	1/14
SWD4-...	
SmartWire-Darwin accessories	2/70
SWHDP-ID	
Support bracket for insulated enclosures	20/69
SWIRE-...	
Connection system	8/38
SWRL...-ID	
Side walls for insulated enclosures	20/70
T-Cl...	
Door for cover of Cl enclosure	20/20
T-CI...-NA	
Door for cover of CI enclosure	20/25
TB-CI-K	
Carrier rail adapter for $\mathrm{Cl}-\mathrm{K}$	20/98
TG...	
Mounting rail supports	20/33
TM-...	
Mini rotary switches	4/70
TM/E-...	
Non-standard front plate	4/78
T0...-...	
Lifting eyes kit	20/68
TOR-SET/135-CS	
Lift eye kit with profile bracket	21/14
TS-CI-K...	
Mounting rails	7/64
TS...	
Mounting rail support	20/27

TS1-BRA-CS	
Mounting bracket, inclined	21/6
TS35-DS4-CS	
Mounting rail module for soft starters	21/6
TS35X...	
DIN-rail	16/73
U-CI...	
Enclosure bases	20/16
U-PKZ...	
Under voltage coil	7/12
UBS4.8	
Captive screw	20/27
UNI-BRA-CS	
Universal bracket	21/6
UV-T0(P3)	
Interlock sections	4/65
UV...	
Under voltage coil	7/61
UVU-NZM	
Under voltage coil	17/113
V-GSTA00-1P	
Set of connecting links	19/51
V-M...	
Cable gland, metric	16/62
V-M20-VENT	
Ventilation cable gland	16/63
V...DIL	
Connector	5/8
V/EA/SVB-T0(T5)...	
Main switch assembly kit	4/58
V1/2/M20...	
Screw connection	3/10
VBS-RS	
Set of connecting links	20/47
VG...	
Varistor suppressor	7/65
VGDILE	
Varistor suppressor	5/8
VHG50-CI	
Extension for handle	20/22
VHI...-PKZ...	
Early-make auxiliary contact	7/12
VLC...	
Fuse switch disconnector	19/49
VR-TO(T3)	
Locking cam	4/66
VS	
Anti-rotation tab RM016	2/96
VS-TR-CI	
Assembly bracket for insulated enclosures	20/68

VS..	
Anti-rotation tab RM016	20/98
VS(-KS)-CI	
Coupling piece	20/30
VST12	
Blanking strips	16/83
W-MCS	
Wall fixing bracket	3/33
WBGL..., WBLED...	
Filament bulbs	2/96
WBW...-ID	
Wall fixing bracket	20/67
WFB-SET-CS	
Wall fixing bracket set	21/10
WS...-ID	
Section for mounting frames	20/64
WW...-ID	
Section for mounting frames	20/64
XAT	
Eyelets	16/83
XC-CPU1...	
Modular control system	14/38
XGK...	
Device labelling	5/65
XIO-EXT121-1	
I/O expansion, for XC121	14/38
XIOC-...	
I/O modules, $\mathrm{XI} / \mathrm{OC}$	14/39
XMX-IO-B...	
Plug-in modules	10/18
XMX-NET...	
Fieldbus connections	10/18
XN...	
I/O system XI/ON	14/91
X0...D-...	
Button plates	2/91
X0...LT*	
Lenses for illuminated pushbutton actuators	2/97
XT-BS1	
Text display	14/41
XT-CAT...	
Programming cable	14/41
XT-CPU-BAT1	
Battery	14/41
XT-FIL...	
Filter	14/41
XT-MEM...	
Multi-media card	14/41
XT-RJ45-ETH-RS232	
Interface switch	14/41

XT-SUB-D/RJ45	
Programming cable	14/41
Z5/FF...	
Cover	6/27
ZAV-...	
Shaft extensions	4/65
ZB4-...	
Accessories easy, automation	12/11
ZBS-GSTA...	
Busbar tag shroud	19/52
ZEB-XCT...	
Current sensor for protective relay	6/18
ZEB-...	
Reset adapter	6/18
ZEV-XSW...	
Current sensors	6/20
ZEV-XVK...	
Electronic motor-protective relay	6/20
ZFS...	
Add-on front plates	4/60
ZFS...NZM	
External warning plate	17/127
ZFSX-T0(P3)	
Label mounts	4/60
ZG/I...	
Meter enclosures	20/36
ZK1	
Meter rail	16/83
ZM-...	
Trip block	7/54
ZP...-ID	
Intermediate plates for insulated enclosures	20/70
ZRF...	
Spacer for insulated enclosures	20/24
ZSD-2K/FLA	
Flanges	16/62
ZV-A...	
Shroud section	19/27
ZV-BS-G	
Busbar tag shroud	19/27
ZV-BS-UL	
Busbar cover	19/41
ZV-L...-80A-...	
Connecting angle	19/27
ZV-SS...	
Busbar	19/27
ZVV-T0(P3)	
Interlock extensions	4/65

4 pole	5/37
4-way pushbuttons	2/24
A	
Accessories, touch panel	14/13
Acoustic device	2/27
	2/105
Actuating rod (Complete device)	3/7
Actuator LS...ZBZ	3/17
Adapter	16/33
Adapter plate	$\begin{aligned} & 5 / 60 \\ & 17 / 129 \end{aligned}$
Adapter/conversion set $\mathrm{N}(\mathrm{ZM}) 12$ to $\mathrm{N}(\mathrm{ZM}) 4$	17/104
Add-on front plates	4/60
Add-on module for measurement/communications module	17/141
Additional functions for IZM16	18/15
Additional functions for IZM26	18/66
Additional handle	17/129
Additional tappings	15/11
Additional windings	15/11
Adjustable roller lever (Complete device)	3/7
Ammeter	16/75
Amplifier module	5/66
Analog input modules, XI/ON	14/39
	14/92
Anti-rotation tab RMQ16	2/96
AS-Interface connection RMQ-Silver	2/47
Assembly bracket for insulated enclosures	20/68
Assembly kits for insulated enclosures	20/29
ATEX	2/51
	4/58
Auxiliary contact	19/24
Auxiliary contact for IZM26	18/63
Auxiliary contact for IZMX16	18/14
Auxiliary contact modules	$\begin{aligned} & 5 / 38 \\ & 5 / 13 \end{aligned}$
Auxiliary contact, trip-indicating auxiliary switch	$\begin{aligned} & 2 / 31 \\ & 17 / 106 \end{aligned}$
B	
Bar covers	$\begin{aligned} & 16 / 5 \\ & 16 / 24 \end{aligned}$
Base	6/26
	7/65
Base for insulated enclosure	20/68
Base modules, XI/ON	14/94
Base plates with flange apertures (for F3A flanges-...)	21/11
Basic enclosures	20/99
Bezel gold	2/48
Blanking plates RMQ16	2/95
Blanking plugs RMQ16	2/96
Blanking plugs, RMO-Silver	2/48
Blanking strip for Insulated enclosures	20/47
Blanking strips	16/83
	20/33
Blind cover frame	17/129
Blind cover IZMX16	18/18
Bottom plate	16/4
	16/6
Bottom plates without apertures	21/11
Bowden cables	17/130
Boxterminal	17/83
Box terminals	16/18
Bracket empty section cover	16/7

Bracket for insulated enclosures	20/30
Braking resistances	5/63
	10/17
Bulb extractor	2/51
Bulkhead interface	2/51
Bus connector plug	12/11
	12/18
	12/28
	13/9
	14/68
Bus modules	12/8
	12/16
	12/26
	13/6
	14/66
Bus refreshing module, $\mathrm{XI} / \mathrm{ON}$	14/90
Bus termination resistor	12/18
	12/27
	13/9
	14/68
Busbar	19/25
	19/41
Busbar adapter	7/22
Busbar adapters for PKZ and PKE	16/15
Busbar assemblies	20/45
Busbar block	19/43
Busbar bracing	20/45
Busbar coupling kits	20/40
Busbar cover	19/41
Busbar housing	20/40
Busbar support	16/24
Busbar supports	16/38
Busbar tag shroud	19/27
Busbar terminals	16/70
	20/42
Busbar, longitudinal connection	16/13
Button lenses	2/42
Button plates	2/36
	2/91
Buzzer for acoustic device	2/27
C	
Cable adapters,, for sensors	3/106
Cable anchoring rail for insulated housing	20/67
Cable clamp	6/27
Cable clamps	19/52
	16/18
Cable compartement cladding for insulated housing	20/70
Cable duct cover	21/21
	16/65
Cable ducts	16/65
	21/20
Cable grommets	7/20
	16/64
	21/19
Cable lug	17/89
Cable marshalling bases	21/12
Cable screw glands	16/62
	21/17
Cable support bracket for cable duct	$\begin{aligned} & 16 / 66 \\ & 21 / 21 \end{aligned}$
Cable terminal block	5/63
Cage clamp twin N/C contacts	3/10
Cage nuts	21/7
Cam switch front plates	4/59
Cam switches	4/30
Capacitive sensors	3/78
Capacitor unit	17/115
Captive screw	20/27
Carrier rail adapter for $\mathrm{Cl}-\mathrm{K}$	20/98
Centre mounting accessories	4/64

Changeover switch	4/33	Connection system	8/38
Circuit diagram pockets	16/82	Connection width extension	17/101
Circuit-breaker	17/139	Connector	5/56
Circuit-breaker	7/52	Connector for insulated enclosure	20/30
Circuit-breaker with earth-fault release	17/135		
		Contact element RM016	2/84
Circuit-breaker, magn. shortcircuit trip.	17/18		2/85
		Contact modules	7/65
Circuit-breakers, electron. trip, selective \& generator protection	17/24		7/71
		Contactor monitoring devices	5/68
Circuit-breakers, electron. trip, system protection	17/22	Contactor relays	$\begin{aligned} & \hline 5 / 72 \\ & 5 / 11 \end{aligned}$
Circuit-breakers, thermomagn. trip, motor protection	17/14	Contactors	$\begin{aligned} & 5 / 19 \\ & 5 / 73 \end{aligned}$
Circuit-breakers, thermomagn. trip, system protection	17/10	Contactors for capacitors	5/80
		Contactors with electronic	5/29
Clamp cover	$\begin{aligned} & \hline 7 / 20 \\ & 16 / 19 \\ & 16 / 33 \\ & 16 / 69 \end{aligned}$	actuation	
		Continuous light module	2/104
		Control cable connection	17/85
Clamp plate	16/25		17/93
Clamp terminal	$\begin{aligned} & \hline 16 / 10 \\ & 16 / 25 \\ & 16 / 34 \end{aligned}$	Control circuit isolator	4/70
		Control circuit terminal IZMX16	18/18
Clamping brackets for cable ducts	21/21	Control panel lighting	16/82
	16/66	Control relay, safety-related	13/5
Claw-terminal	16/33	Control Relays	12/14
Clip for conductor support	16/66	Control switch	4/36
Clip plate	17/129		4/44
Clip set	19/52	Conversion kits for terminals $160 \text {... } 1000 \mathrm{~A}$	16/69
Closing release for IZMX16	18/13	.	
Coding kit	2/23		
Combination switch	19/17	Copper busbars	20/4
Comet series	3/84	Corner enclosures	20/48
	3/89	Corner plate for Insulated distribution board	20/67
Comfort device AC-1 contactor	5/34	Counter module, XI/ON	14/93
Comfort device contactor	5/33	Counter/PWM module, XI/ON	14/93
Comfort hinged handle	16/81	Coupling drive	4/65
Comfort rotary handles	$21 / 10$	Coupling modules	12/8
			12/15
Communication modules	14/13		12/25
	14/40		13/6
	14/67		14/65
Compact PLC	14/64	Cover fasteners for insulated enclosures	20/22
Complete modules	2/32		
Complete units	5/64	Cover for basic enclosures	20/17
Component adapter	$\begin{aligned} & \hline 7 / 64 \\ & 14 / 29 \end{aligned}$	Cover for fuse switchdisconnector	$\begin{aligned} & 19 / 51 \\ & 16 / 17 \end{aligned}$
Component adapter for circuit breakers and switchdisconnectors	16/14	Cover with fuse monitoring	19/51
		Covers	6/27
Compression fitting	3/33		17/103
Connecting angle	19/27	Crimping tool	12/18
Connecting cable for PC to DMI module	$\begin{aligned} & 12 / 9 \\ & 17 / 139 \end{aligned}$		$12 / 28$ $13 / 9$
Connecting cable for ZEV electronic motor-protective relay	6/20		14/68
		Cross plate for insulated enclosures	20/68
Connecting cables	$\begin{aligned} & 12 / 17 \\ & 12 / 27 \\ & 13 / 8 \end{aligned}$	Cross strut kit for insulated enclosures	20/29
		Current limiter for PKZ	7/12
Connecting cables, for sensors	3/105	Current monitoring relays	11/16
Connecting cord	7/24	Current sensors	6/18
	16/15		18/70
Connecting screw	2/46	Current transformer	16/33
Connection block for component adapters	16/14	Current transformer for IZM26	18/68
		Current transformer-operated	6/13
Connection for flat cable and cu bar	20/41	overload relay	
		customised complete unit	2/6
Connection kit	16/9		2/15
Connection plug	12/11		2/51
	12/19		2/95
	12/29		2/104
	13/10		3/7
	14/68	Customized inscription	12/6

Cylinder locks for comfort handles	$\begin{aligned} & \hline 21 / 10 \\ & 16 / 81 \end{aligned}$
Cylindrical fuse inserts	19/50
D	
D busbar mounted fuse devices	16/20
D-fuse switch-disconnector	16/21
Data cable	$\begin{aligned} & 12 / 11 \\ & 12 / 18 \\ & 12 / 27 \\ & 13 / 9 \\ & 14 / 68 \end{aligned}$
Data management interface (DMI module)	17/139
DC Switch-disconnectors	7/85
DC-String circuit-breaker	7/86
Depth adjustment elements for mounting plates	21/7
Designation lable RMQ-Silver	2/25
Device carrier with DIN rail	16/33
Device labelling	5/65
Diagnostics and parameter assignment module	17/139
Digital I/O modules, XI/OCI/O system XI/OC	$\begin{aligned} & \hline 14 / 39 \\ & 14 / 90 \end{aligned}$
DIN-rail	16/73
Display for measuring and communication module (door installation)	17/141
Display/operating unit module	$\begin{aligned} & \hline 12 / 9 \\ & 12 / 16 \\ & 12 / 22 \\ & 13 / 7 \end{aligned}$
Dissconnector kit	19/46
Distribution board terminal enclosure	20/38
DOL starter	8/2
DOL starters on busbar adapter	8/26
Door contact switch	16/82
Door coupling handles	7/20
Door coupling rotary handles	17/118
Door detent	21/6
Door flap switch	3/18
Door for cover of CI enclosure	20/20
Door for cover of CI enclosure, North America	20/25
Door for internal partitions	21/9
Door ground set	$\begin{aligned} & \hline 16 / 83 \\ & 21 / 17 \end{aligned}$
Doors closed	21/16
Doors with inspection window	21/15
Double T	$\begin{aligned} & \hline 16 / 6 \\ & 16 / 30 \end{aligned}$
Double-contact elements	$\begin{aligned} & 2 / 32 \\ & 17 / 107 \end{aligned}$
Dust cover	$\begin{aligned} & 2 / 50 \\ & 3 / 17 \end{aligned}$
E	
E52-Serie	3/72
E53-series	3/78
E55-series	3/67
E56-series	3/75
E57 Global series	3/37
E57 Miniature series	3/63
E57 Premium Plus series	3/47
E57 Premium Plus Short series	3/51
E65-SM-Serie	3/102
Early-make auxiliary contact	17/106
Earth fault release	17/137
Earth terminal	4/64
Earth-fault release	17/136
easyControl PLC	14/64
Electronic module	5/67

Electronic motor-protective relay	6/20	Flat copper bars	$\begin{aligned} & \hline 16 / 5 \\ & 16 / 24 \end{aligned}$
Electronic overload relays	6/15		16/73
Electronic safety relays	13/15		20/44
Electronic timer modules	5/61	Flat pin bushing	2/96
Electronic timing relay	11/2	Flat strip conductor terminal kit	5/64
Emergency stop labels RM016	2/90	Flush mounting plates RM016	2/95
Emergency stop labels,	2/11		3/88
RMO-Titan		Foot for insulated enclosures base	20/69
Emergency stop pushbutton actuators RMQ16	2/90	Foot prop for insulated enclosure	20/69
Emergency stop/emergency switching off pushbuttons RMQ-Titan	2/6	Frequency inverter H-Max ${ }^{\text {TM }}$	10/10
		Frequency inverter M-Max ${ }^{\text {™ }}$	10/5
Emergency-Stop label RM016	2/90	Front connection IZM26	18/71
Empty module, XIOC	14/41	Fuse bases	19/42
Empty section cover, front panel cutout	16/7	Fuse Bases	19/42
		Fuse links	19/47
Empty section covers	16/7	Fuse monitoring	16/17
Enclosure accessories for increased degree of protection	10/19		19/51
		Fuse sets	19/45
Enclosure bases for insulated enclosures	20/16	Fuse switch disconnector	19/45
Enclosure cover for socket devices	20/19	Fuse-links	$\begin{aligned} & 9 / 9 \\ & 9 / 20 \\ & 9 / 33 \end{aligned}$
Enclosure intermediate frame for insulated enclosures	20/16		9/57
End bracket	14/98	G	
End cap for busbar block	19/27	Gasket for basic enclosures	20/30
	19/43	Gasket set	2/107
End cap for shroud section	19/27	Gateway, XI/ON	14/88
End shroud	16/4	Gateways, SmartWire-Darwin	1/6
Energy measurement module	17/141		
Equipment ventilator	9/36	Gauge screw	19/44
Ethernet gateway	12/8	Gland plates	20/29
	12/16	Group switch	4/75
	12/26	Guage ring	19/47
Extension shaft	$\begin{aligned} & \hline 17 / 118 \\ & 17 / 131 \end{aligned}$	Guard-ring	$\begin{aligned} & 2 / 10, \\ & 2 / 13 \end{aligned}$
Extension terminals	$\begin{aligned} & \hline 7 / 27 \\ & 19 / 27 \end{aligned}$	H	
Extension terminals	5/63	Hand/auto switch	4/72
External reset button	2/51	Handguard for switchdisconnectors	16/16
External warning plate	17/127	Handle extension for insulated enclosure cover	20/22
Eyebolts	$\begin{aligned} & 16 / 83 \\ & 20 / 68 \\ & 21 / 14 \end{aligned}$		
		Handle for insulated enclosures cover	20/22
F		Hank nut for insulating material mounting plate	20/26
FAK foot and palm switches	2/79		
FDT frame software	17/140	High-capacity compact starters	$\begin{aligned} & 7 / 51 \\ & 7 / 70 \end{aligned}$
Fieldbus connections	10/18		
Filament bulbs	2/107	High-capacity contact module	$\begin{aligned} & \text { 7/65 } \\ & 7 / 71 \end{aligned}$
Filter	14/41	Hinge pin	21/6
Fixing	16/33	Hinge switch	3/18
Fixing adapters	1/11	Hinged flaps	$\begin{aligned} & 16 / 82 \\ & 20 / 20 \end{aligned}$
	2/31		
Fixing bracket set	4/67	HMI	$\begin{aligned} & 14 / 5 \\ & 14 / 9 \end{aligned}$
Fixing bracket, for sensors	$\begin{aligned} & 3 / 89 \\ & 3 / 107 \end{aligned}$		
		HS25(50)-CI	$\begin{aligned} & \hline 7 / 64 \\ & 14 / 29 \end{aligned}$
Fixing brackets	14/12		
Fixing kit for fitting of meters	20/28	I	
Fixing plate	2/50	I/O expansions	$\begin{aligned} & \hline 12 / 8 \\ & 12 / 15 \\ & 12 / 25 \\ & 13 / 6 \\ & 14 / 65 \end{aligned}$
Fixing screw	$\begin{aligned} & 20 / 30 \\ & 20 / 68 \end{aligned}$		
Fixing strap kits for insulated enclosures	20/30		
Flange adapter for Insulated enclosure	20/29	I/O module, SmartWire-Darwin	$\begin{aligned} & 1 / 6 \\ & 14 / 97 \end{aligned}$
Flange for insulated enclosures	20/23	I/O modules	12/24
Flanges	16/62	1/0 system	14/38
	21/12		14/91
Flashing light module	2/105	(Illuminated) pushbutton	2/84
Flat cable terminal	17/99	ac	

Illuminated pushbuttons RMO-Titan	2/28
Incoming connection block	5/60
	9/35
Incoming double terminal	19/46
Indicator light for insulated enclosure	7/21
Indicator light RMQ-Silver	2/26
Indicator lights RM016	2/89
Individual enclosures CS	20/6
	20/9
	20/54
	20/60
Individual fuse enclosures	20/50
Individual keys RM016	2/97
Individual keys, cam switch	4/66
Inductive Sensors	3/37
Industrial cable binders	16/66
Input/output simulator	12/10
	12/17
	14/67
Inrush current limiters	15/10
Insert label	4/60
Insert labels RM0-Titan	2/35
Inspection window	12/11
	12/19
	13/10
	14/69
Insulated additional terminals	7/19
	16/70
	17/142
Insulated enclosure for PKZM...	7/16
Insulated enclosures	17/142
Insulated enclosures flush mounting for PKZ	7/17
Insulated enclosures for North America	20/14
Insulated enclosures, "back-to-back" design	20/49
Insulated ferrule	2/96
Insulated individual terminals	7/19
32-100 A	16/70
	17/142
Insulating material mounting plate	20/26
Insulation monitoring relays	11/20
Insulation plate	17/103
Interface switch	14/41
Interlock extensions	4/65
Interlock sections	4/65
Interlocks for IZM26	18/64
Intermediate plates for insulated enclosures	20/70
IP23 enclosure	15/10
IP2X protection against contact	9/21
with a finger	9/36
	17/89
iProx series	3/60
IVS top-hat rail adapter	2/49
J	
Joysticks	2/24
Jumper kit for 1000 V DC	17/49
K	
Key	4/66
Key for lock inserts	16/81
Key operated lock mechanisms	4/63
Key-operated actuators RMO-Titan	2/15
Key-operated actuators RM016	2/88
Keypad carrier for Insulated enclosure	20/28
	20/44
	20/69

L		Motor operator for IZM26	18/60
Label mounts	4/60	Motor operator for IZMX16	18/12
Label mounts	2/35	Motor protection trip blocks	7/54
	2/95	Motor protective circuit breaker 7/24	
Labels	14/98	Motor starter Complete devices	8/2
Lateral shroud D busbar mounted fuse devices	16/20	Motor starters - complete devices on busbar adapters $8 / 26$	
LCD keypad for DM4	9/56	Motor suppressor module	5/63
Leakage current indicator	19/16	Motor-protective circuit breakers for starter combinations	7/6
LED elements with Cage Clamp RMQ-Silver	2/34		
LED elements with screw terminals RMO-Titan	2/33	Moulded-case switches for North America	17/80
LED test/series resistor elements	2/34	Mounting and wiring aid system 5/9	
		Mounting angle bracket Mounting bars for door profile moldings and cable ducts	2/107
Legend holder	2/35		21/6
Lenses for illuminated pushbutton actuators	2/97		
		Mounting bracket, inclined	21/6
Lenses for indicator lamps RMQ-Silver	2/41	Mounting clip	17/137
		Mounting Foot	12/11
Level monitoring relays	11/17		12/19
Lifting eyelets	16/83		12/29
Lighting contactors	5/45		$\begin{aligned} & 13 / 10 \\ & 1 / 109 \end{aligned}$
Locating plate	3/10	Mounting frame for fieldbus connections	10/18
Lockable rotary handle	7/21		
Locking cam	4/66	Mounting kit	9/36
Low-voltage h.b.c. switch-fuse units	16/19	Mounting plate screen	4/66
LS silver position switches	$\begin{aligned} & 3 / 3 \\ & 3 / 8 \\ & 3 / 16 \end{aligned}$	Mounting plates	7/64
			20/97
		Mounting plates CS	21/7
M		Mounting plates RMQ-Silver	2/22
M20 diaphragm bolt	3/10	Mounting rail module for soft starters	21/6
Magnetic shielding	17/137		
Main connection kit for IZM16	18/18	Mounting rail support	20/27
Main connection kit for IZM26	18/71	Mounting rail supports for insulated enclosures	20/33
Main switch assembly kits	17/124		
Mains chokes	10/20	Mounting rails	12/29
Maintenance keys	4/58	Mounting ring tool	2/50
Manual override switch	4/21	Multi-connection blocks	3/106
Marking plates	2/94	Multi-function display	$\begin{aligned} & 12 / 9 \\ & 12 / 16 \\ & 12 / 22 \\ & 13 / 7 \end{aligned}$
	2/97		
Mast fastening	21/14		
Maximum (bimetallic) ammeter	16/78	Multi-media card	14/41
MCB lock	19/24	Multiple gaskets	21/17
Measuring and communication module	17/141	Multiple LED RMQ-Silver	2/96
		Multiple LED-Signal towers	2/107
Mechanical interlock 17/130			2/19
Memory card, for touch Panel	14/12	Mushroom-headed pushbutton RMQ-Silver	
Memory cards	$\begin{aligned} & \hline 12 / 17 \\ & 12 / 27 \end{aligned}$	N	
Meter enclosures	20/36	N bars	20/33
Meter rail	$\begin{aligned} & 16 / 83 \\ & 20 / 37 \end{aligned}$	N terminals	$\begin{aligned} & \hline \text { 4/67 } \\ & 20 / 98 \end{aligned}$
Meter shroud for insulated enclosures $20 / 28$		Network-Connecting cables	$\begin{aligned} & \hline 12 / 18 \\ & 12 / 27 \\ & 13 / 9 \\ & 14 / 41 \\ & 14 / 68 \end{aligned}$
Meters for DIN-rail	16/80		
Metric diaphragm grommets	7/20		
Mini contactor relays	$\begin{aligned} & 5 / 5 \\ & 5 / 70 \end{aligned}$	Neutral conductor	4/64
		NH fuse base	19/51
Mini rotary switches	4/70	NH fuse switch-disconnectors	16/16
Miniature circuit breakers	20/31	NH-Fuse-links	19/53
Miniature circuit-breakers (MCB)	19/10	Non-standard front plate	4/78
		Notched phase busbars	19/43
Modem cable	$\begin{aligned} & 12 / 17 \\ & 12 / 27 \\ & 13 / 8 \\ & 14 / 67 \end{aligned}$	Notching tool	2/51
		0	
		ON OFF button	4/75
Modular control system	14/38		4/70
Module mounting rail for insulated enclosures	20/27	On-Off switch	3/84
Module plate	17/97	Open circuit breakers 3-pole	18/10
Motor chokes	10/21		

Open circuit breakers 4 pole	$\begin{aligned} & 18 / 11 \\ & 18 / 50 \\ & 18 / 54 \end{aligned}$	Pressure pipe flange	3/33
		Pressure switches	3/32
		Printed board contact	5/63
Open switch-disconnectors, 3-pole	$\begin{aligned} & \hline 18 / 10 \\ & 18 / 56 \end{aligned}$	Profile strip for clip	16/66
Open switch-disconnectors, 4 pole	18/11	Profile terminal	$\begin{aligned} & \hline 16 / 11 \\ & 16 / 35 \end{aligned}$
Operating heads	3/9	Profiled busbars	16/31
Operations counter for IZM26	18/60	Programming cable	12/9
Operations counter for IZMX16	18/13		12/27
Optical sensors	3/84		13/8
Overload relays	6/11		14/67
Overload relayss	6/11		7/139
		Programming software	12/9
P			12/17
Padlocking feature	4/63		12/27
Padlocking feature	7/19	Programming software, for easySafety	13/8
Paint finish	$\begin{aligned} & \hline 16 / 83 \\ & 21 / 17 \end{aligned}$	Protection against direct contact	19/52
Panel enclosures	20/10	Protection cap, for sensors	3/106
	$\begin{aligned} & 20 / 57 \\ & 20 / 62 \end{aligned}$	Protective caps Small enclosures Cl -Ks	7/65
Panel enclosures for fuses	20/52	Protective cover	12/29
Panic switch	4/56		14/69
Parallel connector	5/57	Protective cover IZMX16	18/18
Paralleling mechanism	17/131	Protective diaphragm	2/48
Partition profile	16/7	Protective diaphragm	12/29
PC-Interface cards	10/18		20/98
PE/N	$\begin{aligned} & \hline 16 / 4 \\ & 16 / 30 \end{aligned}$	Protective shroud for small insulating material enclosures	
		Pushbutton actuators, RMQ-Silver	2/16
PEN busbars	20/33		
Phase busbars accessory	19/27	Pushbutton diaphragm RMQ-Silver	2/48
Phase imbalance monitoring relays	11/16		
Phase isolators	17/103	R	
Phase monitoring relays	$\frac{11 / 18}{}$	Rack, I/0 system	14/40
Phase sequence relays	11/16	Radio interference suppression filters	10/19
PKE Motor protective circuit breaker	7/8	Rain protection roofs	21/13
Plate terminals	$\begin{aligned} & 16 / 13 \\ & 16 / 37 \end{aligned}$	Rating plug IZMX16	18/17
		Rating plug sensor combinations for IZM26	18/68
PLC-Programming software	14/130		
Plug connectors	3/10	Rear Connected	17/83
Plug-in modules 10/18		Rear drive	127
Plug-in units	17/105	Reflected-light barrier	$\begin{aligned} & \hline 3 / 84 \\ & 3 / 99 \end{aligned}$
Pluggable reversing bridge	8/39	Reflected-light beam	3/99
Plunger bridge RMQ-Silver	2/49	Relay jumpers	14/98
Point-to-point connection cable	$\begin{aligned} & 12 / 18 \\ & 12 / 28 \end{aligned}$	Relay modules, XI/ON	14/91
Position signalling switch for IZM26	18/60	Remote text display	$\begin{aligned} & 12 / 9 \\ & 12 / 16 \\ & 12 / 22 \\ & 13 / 7 \end{aligned}$
Potentiometer	2/27		
Power factor meter (cos meter)	16/74	Remote drive	17/134
Power feeding module, $\mathrm{XI} / \mathrm{ON}$	14/90	Remote monitoring unit	19/22
Power meter	19/17		19/22
Power supplies	$\begin{aligned} & 12 / 10 \\ & 12 / 18 \\ & 12 / 28 \\ & 13 / 9 \\ & 14 / 131 \end{aligned}$	Remote switching module	19/22
		Replacement coding IZMX16	18/18
		Replacement hand lever IZMX16 Replacement nuts, for sensors	18/18
			6/18
Power supply unit for measurement/communication module	17/141	Reset adapter	
		Residual current devices	19/21
Power supply unit/ communication module	$\begin{aligned} & \hline 12 / 9 \\ & 12 / 16 \\ & 12 / 23 \\ & 13 / 7 \\ & 14 / 66 \end{aligned}$	Residual current relays	17/137
		Residual-current protective modules	19/16
		Retainer spring	19/47
Power supply unit/CPU module	12/22	Retaining frames for Measuring instruments	16/79
Power supply units	14/131		
Prepared enclosures MCCB	20/35	Retaining frames for meter shrouds	20/28
Pressure compensating grommet	21/19	Retro-reflector	3/108
Pressure equalization plug	21/18	Reversing contactors	5/52
	16/64	Reversing starter	8/20

Reversing starter on busbar adapter	8/28
Reversing starter wiring kits	5/59
Reversing switch	4/38
Ring inserts	19/44
Ring nut, RMO-Silver	2/49
Ring-type transformer	17/137
RMQ-Silver contact elements	$\begin{aligned} & \hline 2 / 31 \\ & 17 / 106 \end{aligned}$
RM016 screw adapters	2/97
Roller lever (Complete device)	3/6
Roller plunger (Complete device)	3/5
Rotary handle on circuit-breaker	17/122
Rotary handle on switch with door interlock	17/123
Rotary lever (Complete device)	3/7
S	
Safety relays	13/5
Safety switches	4/32
Screen connection for gateway	14/98
Screen winding	15/10
Screw adapters	11/2
Screw cap	19/44
Screw closure	3/10
Screw connection	17/83
Sealable shrouds	2/10
	11/20
Sealing facility	7/21
Sealing kit for insulatedenclosure cover	20/22
Sealing plug	21/17
Section for mounting frames	20/64
Selector switch actuators RMQ16	2/86
Self-Protected Starter	7/53
Sensor fixing	3/107
Sensors, optical	3/99
Serial interface	9/56
Serial interface, $\mathrm{XI} / \mathrm{ON}$	14/93
Service cable	14/98
Service distribution board mounting accessories	4/64
Set of adapter rings	2/49
Set of connecting links	19/51
Set of cover hinges for insulated enclosures	20/22
Set of plaster keys	2/44
Shaft extensions	4/65
Short-circuit indicators	7/59
Shroud for protection against accidental contact for insulated enclosures	$\begin{aligned} & \hline 20 / 33 \\ & 20 / 47 \end{aligned}$
Shroud for unused terminals	7/27
Shroud section	19/27
Shrouds	4/66
Shrouds, RMO-Silver	2/44
Shunt release (for power circuit breaker)	17/114
Shunt release for IZM26	18/61
Shunt release for IZMX16	18/13
Shunt release for IZMX16	18/14
Shunt release for PKZ	7/29
	7/12
Shutter for IZMX16	18/12
Side mounted handle	17/128
Side mounted handle	17/128
Side walls for insulated enclosures	20/70
Signal module	14/131
Signal towers	2/104

Single chip LEDs	2/96
Single-Chip LEDs for indicator lights	2/50
Single-phase control transformers	15/4
Single-phase control, isolating and safety transformers	15/6
Single-phase multi-winding transformers	15/9
Small insulating material enclosures	20/93
SmartWire-Darwin	$\begin{aligned} & \hline 1 / 6 \\ & 14 / 97 \end{aligned}$
SmartWire-Darwin accessories	$\begin{aligned} & 1 / 18 \\ & 2 / 70 \end{aligned}$
SmartWire-Darwin Connection	14/93
SmartWire-Darwin contactor modules	$\begin{aligned} & 1 / 14 \\ & 5 / 62 \end{aligned}$
SmartWire-Darwin elements for pilot devices	$\begin{aligned} & 1 / 11 \\ & 2 / 69 \end{aligned}$
SmartWire-Darwin for circuitbreaker	1/16
SmartWire-Darwin Gateways	$\begin{aligned} & 1 / 6 \\ & 14 / 97 \end{aligned}$
SmartWire-Darwin I/O modules	$\begin{aligned} & \hline 1 / 6 \\ & 14 / 97 \end{aligned}$
SmartWire-Darwin PKE module	1/14
SmartWire-Darwin soft starter	1/15
Soft starters	9/55
Software	14/130
Spacer for Insulated enclosure	$\begin{aligned} & \hline \text { 20/27 } \\ & 20 / 97 \end{aligned}$
Spacer for insulated enclosures	20/24
Spare door seal IZMX16	18/18
Spare key for cylinder lock	$\begin{aligned} & \hline 21 / 10 \\ & 16 / 81 \end{aligned}$
Spray can for Cl enclosure cover	20/68
Spring-cage terminals	5/23
Spring-rod actuator (Complete device)	3/5
Stand with spacer tube	2/107
Standard auxiliary contact PKZ	$\begin{aligned} & 7 / 10 \\ & 7 / 59 \end{aligned}$
Star-delta combination	5/48
Star-delta contactors	5/48
Star-delta wiring kit	5/58
Star-point bridge	5/57
Stepped cable grommets	$\begin{aligned} & \hline 20 / 29 \\ & 21 / 19 \end{aligned}$
Stop pushbuttons	2/13
Strap for insulated enclosure	20/69
Strobe light module	2/106
Summation current converter	6/21
Superstructure for busbar supports	16/20
suppressor circuits	5/54
Surface mounting enclosure RMO-Silver	2/15
Surface mounting enclosure RM016	2/95
SWD contactor modules	$\begin{aligned} & \hline 1 / 14 \\ & 5 / 62 \\ & \hline \end{aligned}$
SWD gateways	$\begin{aligned} & \hline 1 / 6 \\ & 14 / 97 \end{aligned}$
SWD Interface for Circuitbreakers NZM	$\begin{aligned} & 1 / 16 \\ & 17 / 140 \end{aligned}$
SWD-I/O module	$\begin{aligned} & \hline 1 / 6 \\ & 14 / 97 \end{aligned}$
Switch-disconnector	17/42
Switch-disconnector, Cam switches, Main switch, Maintenance switches, Manual override switch	4/10

Switch-disconnectors for 1000 V DC	17/49	Universal brackets for door contact switches and cable	21/6
Switch-disconnectors, ATEX design	17/50	conduit holders	
		Universal conductor connection terminal	16/12
Switch-on inhibits	19/46		16/25
Switched-mode power supply units	12/10	Universal locks	$\begin{aligned} & \hline 16 / 81 \\ & 21 / 10 \end{aligned}$
	12/18		
	12/28	Universal power supply units	15/9
	$\begin{aligned} & 13 / 9 \\ & 14 / 131 \end{aligned}$	Upstream device	12/11
System covers	$\begin{aligned} & \hline 16 / 8 \\ & 16 / 24 \end{aligned}$		12/28
		$\overline{\mathrm{V}}$	
T		V terminals	
Telescope clips	2/48		
Telescopic adapters	$\begin{aligned} & \hline \text { 2/48 } \\ & 7 / 21 \end{aligned}$	Varistor suppressor	21/14
	$\begin{aligned} & 12 / 11 \\ & 12 / 19 \end{aligned}$	Ventilation cable gland	21/18
			16/63
	12/29	Visualisation software	14/130
	13/10	Voltmeter	16/74
Temperature sensor	19/22	W, X	
Terminal cover extension	4/66	Wall fixing bracket	3/33
Terminal covers	$\begin{aligned} & \hline 9 / 21 \\ & 9 / 35 \\ & 17 / 85 \\ & 17 / 103 \end{aligned}$	Wall fixing bracket for insulated enclosures	20/30
		Wall fixing bracket set	21/10
		Wall-mounting enclosures CS with mounting plate	21/4
Terminal panel	14/98		
Termination expansion	$\begin{aligned} & 16 / 33 \\ & 16 / 71 \end{aligned}$	Wedge for insulated enclosures	20/30
		Windows CE licenses	14/12
Terminations	$\begin{aligned} & \hline 7 / 66 \\ & 12 / 21 \\ & 14 / 40 \\ & 16 / 13 \\ & 16 / 67 \end{aligned}$	Wiring set	7/25
		Withdrawable units	18/12
			18/58
		X	
Test cube	5/63	XV license product certificates	14/12
Text display	$\begin{aligned} & \hline 14 / 38 \\ & 14 / 41 \end{aligned}$		
Thermistor overload relays for machine protection	6/24		
Three-phase commoning links	7/26		
Three-phase control, isolating and safety transformers	15/8		
Thumb-grips	4/58		
Toggle lever locking device	17/129		
Top hat rail adapter plate	7/25		
Top mounting auxiliary contacts			
Top plate flanges for distribution boards	20/69		
Top-hat rail adapter	7/25		
	9/34		
Top-hat rail adapter for inspection flap window	12/11		
	12/19		
	13/10		
	14/69		
Touch panel	14/5		
Touch-up paint	16/83		
Transparent insert plates	2/97		
Transparent shroud	19/43		
Trip block	$\begin{aligned} & \hline 7 / 9 \\ & 7 / 55 \end{aligned}$		
Trip block IZMX16	18/17		
Trip-indicating auxiliary contact for PKZ			
Tripping signal contact	19/40		
Tunnel terminal	$\begin{aligned} & \hline 17 / 83 \\ & 18 / 18 \end{aligned}$		
Two-way fuse box	20/56		
U			
Ultra-flat busbar terminals	16/70		
100-800 A	20/42		
Under voltage coil	17/108		
Undervoltage releaser for IZMX16	18/14		
Undervoltage releases, off-delayed	17/113		

HP	110-120 V			220-240 Va,b			360-380V		440-480 V			550-600V		
	Single phase	Two phase	Three phase	Single phase	Two phase	Three phase	Single phase	Three phase	Single phase	Two phase	Three phase	Single phase	Two phase	Three phase
1/10	3.0	-	-	1.5	-	-	1.0	-	-	-	-	-	-	-
1/8	3.8	-	-	1.9	-	-	1.2	-	-	-	-	-	-	-
1/6	4.4	-	-	2.2	-	-	1.4	-	-	-	-	-	-	-
1/4	5.8	-	-	2.9	-	-	1.8	-	-	-	-	-	-	-
1/3	7.2	-	-	3.6	-	-	2.3	-	-	-	-	-	-	-
1/2	9.8	4.0	4.4	4.9	2.0	2.2	3.2	1.3	2.5	1.0	1.1	2.0	0.8	0.9
3/4	13.8	4.8	6.4	6.9	2.4	3.2	4.5	1.8	3.5	1.2	1.6	2.8	1.0	1.3
1	16.0	6.4	8.4	8.0	3.2	4.2	5.1	2.3	4.0	1.6	2.1	3.2	1.3	1.7
1-1/2	20.0	9.0	12.0	10.0	4.5	6.0	6.4	3.3	5.0	2.3	3.0	4.0	1.8	2.4
2	24.0	11.8	13.6	12.0	5.9	6.8	7.7	4.3	6.0	3.0	3.4	4.8	2.4	2.7
3	34.0	16.6	19.2	17.0	8.3	9.6	10.9	6.1	8.5	4.2	4.8	6.8	3.3	3.9
5	56.0	26.4	30.4	28.0	13.2	15.2	17.9	9.7	14.0	6.6	7.6	11.2	5.3	6.1
7-1/2	80.0	38.0	44.0	40.0	19.0	22.0	27.0	14.0	21.0	9.0	11.0	16.0	8.0	9.0
10	100	48.0	56.0	50.0	24.0	28.0	33.0	18.0	26.0	12.0	14.0	20.0	10.0	11.0
15	135	72.0	84.0	68.0	36.0	42.0	44.0	27.0	34.0	18.0	21.0	27.0	14.0	17.0
20	-	94.0	108	88.0	47.0	54.0	56.0	34.0	44.0	23.0	27.0	35.0	19.0	22.0
25	-	118	136	110	59.0	68.0	70.0	44.0	55.0	29.0	34.0	44.0	24.0	27.0
30	-	138	160	136	69.0	80.0	87.0	51.0	68.0	35.0	40.0	54.0	28.0	32.0
40	-	180	208	176	90.0	104	112	66.0	88.0	45.0	52.0	70.0	36.0	41.0
50	-	226	260	216	113	130	139	83.0	108	56.0	65.0	86.0	45.0	52.0
60	-	-	-	-	133	154	-	103	-	67.0	77.0	-	53.0	62.0
75	-	-	-	-	166	192	-	128	-	83.0	96.0	-	66.0	77.0
100	-	-	-	-	218	248	-	165	-	109	124	-	87.0	99.0
125	-	-	-	-	-	312	-	208	-	135	156	-	108	125
150	-	-	-	-	-	360	-	240	-	156	180	-	125	144
200	-	-	-	-	-	480	-	320	-	208	240	-	167	192
250	-	-	-	-	-	602	-	403	-	-	302	-	-	242
300	-	-	-	-	-	-	-	482	-	-	361	-	-	289
350	-	-	-	-	-	-	-	560	-	-	414	-	-	336
400	-	-	-	-	-	-	-	636	-	-	477	-	-	382
500	-	-	-	-	-	-	-	786	-	-	590	-	-	472

a) To obtain full-load currents for 200 and 208 V motors, increase corresponding $220-240 \mathrm{~V}$ ratings by 15 and 10 percent, respectively.
b) To obtain full-load currents for 265 and 277 V motors, decrease corresponding $220-240 \mathrm{~V}$ ratings by 13 and 17 percent, respectively.

Quote from "Power Conversion Equipment - UL 508C, May 3, 2002".
Reproduced from UL 508 C, Power Conversion Equipment, 3rd edition (May 2, 2002) with permission of Underwriters Laboratories Inc.

[^0]: Notes

 1) Date of described Codes and Standards, and development and approval status: January 2010
 See: http://www.moeller.net/de/company/news/publications/index.jsp,
 The papers are also available free of charge in print
 2) Occupational Safety and Health Administration, http://www.osha.gov

 National Electrical Code
) UL, http://www.ul.com
 6) e.g. TUV Rheinland of North America, Inc., http://www.tuv.com/us
 7) http://www.intertek.com, http://www.intertek.de
 8) Canadian Electrical Code

[^1]: Notes

 1) System of categorization in the USA, corresponds with UL White Book, UL 508A System of categorization in Canada, corresponds with CSA
 2) https://wss.moeller.net/approbationen
 de.ecat.moeller.net
 HP = horse-power
 3) Voltage between phases
[^2]: 7) Voltage between phase and neutral
 8) Service Voltage
 9) Point of Connection, Point of Common Coupling
 10) Utilization Voltage
 11) AWA = Moeller nomenclature: Installation instructions,

 IL = Eaton nomenclature: Instructional Leaflet

[^3]: Notes
 ${ }^{1)}$ In NA, the term "feeder circuits" is used in the widest sense
 2) Feeder circuits

[^4]: BCPD = branch circuit protective device
 4) NEMA = National Electrical Manufacturers Association (USA, http://www.NEMA.org)

