performance of MCBs and auxiliaries

- Breaking capacity in IT neutral earthing system

MCB single pole breaking capacity at 400 V according to IEC $60947-2$

Breaking capacity in the event of short-circuit to earth
and insulation voltage

n 1: Breaking capacity on 1 pole for multipole MCBs in the event of - Rated insulation

- Terminal connection cross-sections (mm^{2})

■ MCB tripping curves

MA ${ }^{(1)}$

- Technical characteristics of auxiliaries

Max. connection cross-section: $2.5 \mathrm{~mm}^{2}$
Operating temperature: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Undervoltage releases
Pull-in voltage $\geq 0.55 \mathrm{nn}$
Tripping time: 100 to $400 \mathrm{~ms} \pm 10 \%$ (adjustable)
Power consumption: $24 \mathrm{~V} \sim$ and $=:=0.1 \mathrm{VA}$
$48 \mathrm{~V} \sim$ and $=:$
$230 \mathrm{~V}: 1 \mathrm{VA}$

Nominal voltage:
24 and $48 \mathrm{~V} \sim$ and $=$
$230 \mathrm{~V} \sim$

Stand-alone releases for N/C push-buttons
Min. and max. operating voltage: 196 to $250 \mathrm{~V} \mathrm{\sim}$

Signalling auxiliaries
Umin.: $24 \mathrm{~V} \sim /=$ and Imin.: 5 mA

Performance of add-on module

AC type ϖ - Standard applications

A type - Specific applications: dedicated lines
A addition to the characteristics of AC Cype add--on modules, A type
add-on modules also detect residual currents with DC components hey are used whenever the faut currents are not sinusoidponents are particularly suitable for the following dedicated line applications: - On circuits where class 1 equipment may produce fault currents
with DC components, such as variable speed drives with frequenc witherter, etc.

Hpi type $\sim \sim$ Hpol - Special applications

Apia add-on modules, with addititional immunity to false tripping,
which is much higher than the level required by the standard, which is much higher than the level required by the standard, detec residual currents with AC and DC components (A type), operate
between $-25^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$, and are used in the following special
When loss of data would be detrimental, such as computer
equipment power supply lines (banks, military instrumentation
When loss of operation would
machines, medical instrumentatit detrimental (automated

- In places where there is a high risk of lightning strikes
- On sites with lines subject to considerable interference (use of On sites with very long lines

Special case of continuity of servic

certain locations where no staff are present and in which
continuity of service is particularly important, false tripping of
MCBS
not permitted (isolated telephone/TV or radio substations
pumping stations, etc.).
Combining an Hpi RCBO with a motorised control and a STOP \& GO recloser provides optimum continuity of service

Residual current breaking capacity of DX ${ }^{3}$

add-on modules

$\Delta \mathrm{M}$ according to EN 61009-1

		${ }^{1} \mathrm{~mm}$
DX ${ }^{3}$ (1 mod./pole)	$25 \mathrm{kA} \leq 25 \mathrm{~A}$ (B, C, Z curves) $25 \mathrm{kA} \leq 10 \mathrm{~A}$ (D, MA curves)	6000 A
${ }_{\text {(1.5 mod./pole }}{ }^{\text {P3 }}$		3000

